Program Synthesis
“is 3
Program Reachabilit

FF‘[‘I.-ELE'E’E F‘!‘Hl.’a] =

Ok, 1 THINES | HOBLEM, BlEkT? SoLUToN EiNDA N

FINALLY UNDER- THAT'S REALLY " COLVES IT... Tﬁ‘éé? ‘"JEEEE

STAND WHAT You IMPORTARNT.... i EVER WRITTEN
DD N YouR . BUT OHLY UNDER - WETTEN,

CERTAIN CoNDIMOoNS —
RESEARCH TUAT'S AND ASCUMPTIONS {they all o
BEEN DONE BEFORE THAT MAY OR MAY HOT J the some
TOESH'T GQUTE APPLY TO REALTY. e

colLVE M

WWW.PHDCOMICS.COM

One-Slide Summary

* The template-based program synthesis
problem asks if values can be found for
template parameters such that the
instantiated program passes all tests.

* The program reachability problem asks if
values can be found for a set of program
variables such that program execution reaches

a given label.

* There is a constructive, polytime reduction
between synthesis and reachability.

Westley Weimer

Program Repair via Synthesis

* Suppose we have a buggy program

|t passes some tests and fails others

* Suppose we have localized the bug

* We know which line is buggy

* Suppose we have a repair template

«)

* Fix is of the form “x = o + o(y, 0);

* Can we fill in the template so that the
program passes all of the tests?

Westley Weimer

Templated Program Syntax

cmd ;= skip
| cmd1;cmd2
V= aexp
aexp ::= aexp, + aexp,

| aexp_ - aexp,

| | C.

|

Westley Weimer

Called a template parameter

Template Instantation

* Given a templated program with template
parameters c_ ... ¢ , and given template values

V = V. .. V_(expressions or constants), we can
instantiate, yielding a non-templated program.
e inst(skip, v) — skip

. inst(cmd ; cmd,, v) — inst(cmd,, v) ; inst(cmd , v)

* inst(x = aexp, v) — X = inst(aexp, V)

inst(, V) =V

Westley Weimer

Template-Based Program Synthesis

* Given a templated program P with
template parameters c_ ... c , and a

set T of input-output pairs (tests),

do there exist template values
v =v_ ..V such that for all

<input, output> pairs in T,
(inst(P, v))(input) = output ?

Westley Weimer

i EWAE

 How hard is it to solve program synthesis in
general?

« “Can you find values for these template variables
such that this program passes all of its tests?”

Westley Weimer

Tools Exist: sketch

1.1 Hello World

To illustrate the process of sketching, we begin with the simplest sketch one can possibly write: the "hello
world" of sketching.

harness void doubleSketch(int x){
int t = x * ?7?7;
assert t == x + X;

The syntax of the code fragment above should be familiar to anyone who has programmed in C or Java.
The only new feature is the symbol ??, which is Sketch syntax to represent an unknown constant. The
synthesizer will replace this symbol with a suitable constant to satisfy the programmer’s requirements. In
the case of this example, the programmer’s requirements are stated in the form of an assertion. The keyword
harness indicates to the synthesizer that it should find a value for ?? that satisfies the assertion for all
possible inputs x.

Flag --bnd-inbits In practice, the solver only searches a bounded space of inputs ranging from zero to
obnd-inbits_ 4 The default for this flag is 5: attempting numbers much bigger than this is not recommended.

1.2 Running the synthesizer

To try this sketch out on your own, place it in a file, say testl.sk. Then, run the synthesizer with the
following command line:

> sketch testl.sk

When you run the synthesizer in this way, the synthesized program is simply written to the console. If

Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13.

Westley Weimer

Tools Exist: sketch

1.1 Hello World

To illustrate the process of sketching, we begin with the simplest sketch one can possibly write: the "hello
world" of sketching.

harness void doubleSketch(int x){

int t = x ‘!il'

assert t == X + X;

The syntax of the code fragment above should be familiar to anyone who has programmed in C or Java.
The only new feature is the symbol ??, which is Sketch syntax to represent an unknown constant. The
synthesizer will replace this symbol with a suitable constant to satisfy the programmer’s requirements. In
the case of this example, the programmer’s requirements are stated in the form of an assertion. The keyword
harness indicates to the synthesizer that it should find a value for ?? that satisfies the assertion for all
possible inputs x.

Flag --bnd-inbits In practice, the solver only searches (@zded space of inputs danging from zero to

obnd-inbits_ 4 The default for this flag is 5: attempting numbers much bigger than this is not recommended.

1.2 Running the synthesizer

To try this sketch out on your own, place it in a file, say testl.sk. Then, run the synthesizer with the
following command line:

> sketch testl.sk

When you run the synthesizer in this way, the synthesized program is simply written to the console. If

Armando Solar-Lezama: The Sketching Approach to Program Synthesis. APLAS 2009: 4-13.

Westley Weimer

Program Synthesis as Repair

* A program synthesis algorithm can be used to
solve program repair

* Conceptually: replace the buggy line with []

* If you can synthesize XYZ to fill in that hole,
the patch is “delete that line and replace it
with XYZ”

* |In practice, template: o = o + o*a + o*b + o¥c;
 where a, b, c are all in-scope variables

» cf. Linear Regression. cf. Daikon.

Westley Weimer

10

Program Repair Example

int is_upward(int in, int up, int down){
int bias, r;
if (in)
bias down; //fix: bias = up + 100
else
bias = up;
if (bias > down)
r = 1:
else
r = 0:
return r;

1
2
3
4
5
6
7
8
9
10

Inputs Output
up down | expected observed | Passed?

0 100
11 110

0

0

100 50 1
-20 60 0
0 10 0

0 -10 1

Westley Weimer

Program Repair Example

int is_upward(int in, int up, int down){
int bias, r;
if (in)

bias = |co c1 [¥bias + c2 ¥in +Hc3 [fup +

else ' ' -
bias = up;

if (bias > down)
r = 1:

else
r = 0:

return r;

1
2
3
4
5
6
7
8
9
10

Inputs Output
up down | expected observed | Passed?

0 100
11 110

0

0

100 50 1
-20 60 0
0 10 0

0 -10 1

Westley Weimer

Program Repair Example

int is_upward(int in, int up, int down){

int bias, r;

if (in)
bias = |co C1 [¥bias +H c2 [*¥1 3 [fup +

else ' ' -
bias = up;

if (bias > down)
r = 1:

else
r = 0:

return r;

- C

1
2
3
4
5
6
7
8
9
10

(A

IN

((n 1R (n R i IR (n B (p |
— l\‘, =

Inputs Output
up down | expected observed | Passed?

0 100
11 110

0

0

100 50 1
-20 60 0
0 10 0

0 -10 1

Westley Weimer

Program Reachability

* Given a program P and a set of program
variables x_ ... x_and a program label L, do

there exist values C ..C such that P with X
set to C. reaches label L in finite time?

* This is what SLAM and BLAST do (repeatedly).

» L is the error label, c. is the counterexample.

* This is what HW #5 does (repeatedly).
- Lis the end of a path, c_ is the test input.

Westley Weimer

14

Reachability Example

b x5 va f+ slobsl idpat &

int Py 4

return O:;

Reachability Example

11 ¥y ¥ global input x/

il P(]) 4
if (2 * X —— ¥)

return O:;

Reachability Analysis

 How hard is it to solve reachability in general?

« “Can you find values for these variables such that
this program reaches this label?”

* Many tools exist, including some that are quite
mature:

 DART, KLEE, SLAM, BLAST, PEX, CREST, CUTE,
AUSTIN, “tigen”

Westley Weimer 17

Comparative Analysis

* Program synthesis and program reachability
are both undecidable in general

 The “heart” of reachability is solving all path
constraints

 Each “if” makes it harder to find a single
consistent set of values

* The “heart” of synthesis is handling all tests

 Each new test makes it harder to find a single
consistent set of values

Westley Weimer

18

Reductions

* Problem A is reducible to Problem B if an
efficient algorithm for B could be used as a
subroutine to solve A efficiently.

* A gadget is a subset of a problem instance that
simulates the behavior of one of the
fundamental units of a different problem.

» Gadgets are hard to come up with the first time
(e.g., when you are doing your Algo homework)

* Gadgets often look simple once presented

Westley Weimer

19

Reduction Recipe

* Given an instance | of problem X

* Assume an oracle that can solve Y

* Transform | into f(l), verify f is polytime
e Let J =Y(f(l))

* Transform J into g(J), verify g is polytime
* Verify g(J) = X(I)

e Return g(J)

Westley Weimer

20

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

e Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

* Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

e Use Graph 3-
Colorability to
solve 3-SAT

* |[nstance shown:

xIlyll!z)&&
(Ix 11yl z)

Gadget

Example

Use Graph 3-
Colorability to
solve 3-SAT

Instance shown:

xIlyll!z)&&

(X 111lyllz)
e X =true

Trivia

* The this-Howard Isomorphism establishes a
direct relationship between computer program
and proofs. It shows a correspondence
between proof calculi and type systems for
models of computation.

Logic side Programming side
axiom variable
introduction rule constructor
elimination rule destructor

normal deduction normal form

normalisation of deductions weak normalisation
provability type inhabitation problem

intuitionistic tautology inhabited type
Westley Weimer

34

Physics

* This 1909 experiment involved tiny charged droplets
of a fluid falling between two horizontal electrodes.
With the electrodes uncharged, the drops reach
terminal velocity while falling. By varying the voltage
in the electrode plates and inducing an
electromagnetic field, the drops could be perfectly
suspended (electric force = gravitational force). Using
the mass of the drops and the voltage, they solved
for the electric charge, finding it to be always a small
integer multiple of a basic constant (1.6 * 107-19 C):
the charge of a single electron. Name the
experimenter or the fluid.

Westley Weimer 35

Reducing Synthesis To Reachability

* Given an instance of a synthesis (repair)
problem, and assuming we have an oracle that
can solve reachability, let us convert the
synthesis instance into a reachability instance.

 |If we can do this efficiently, any existing
reachability tool (e.g., DART, KLEE, SLAM)
could be used to repair programs.

Westley Weimer

36

'_I.

int is_upward(int in, int up, int down){

int bias, r;
if (in)

bias = H c1]xbias Hca rin +*up H 4 Jxdown;;

else

i

]

SIS

—
-

bias = up;

if (bias > down)
r = 1;

else
r = 0;

return r;

) E::I |:i|:':| —-]

Inputs Output
up down | expected observed | Passed?

0 100 0
11 110 0
100 50
-20 60
10
-10

Westley Weimer

int is_upward(int in, int up, int down){
int bias, r;
if (in)
bias = |co| + *bias + *in + c3 prup + *down ;
else ' ' o
bias = up;
if (bias > down)
r = 1;
else
r = 0;
return r,;

O 00 =1 U= Wk =

Inputs Output
up down | expected observed | Passed?

0 100
11 110

100 50 int . olobal 1nput =
-20 60 i E ” : /
0 10

0 -10

return O0;

Westley Weimer

int is_upward(int in, int up, int down){

int bias, r;
if (in)

bias = |co| + *bias + *in + c3 prup + *down ;
else ' ' o

bias = up;
if (bias > down)

r = 1;
else

r = 0;
return r,;

O 00 =1 U= Wk =

Inputs Output
up down | expected observed | Passed?

0 100
11 110

100 50 ' . lTobal 1ipial &
-20 60) = } /

0 10
0 -10

return O0;

Westley Weimer

int is_upward(int
int bias, r;
if (in)
bias = |co| +
else
bias = up;
if (bias > down)
r = 1;
else
r = 0;
return r,;

O 00 =1 U= Wk =

Inputs
up down

*bias +

in, int

up .

*1in + c3

int down) {

*down ;

*up +

Out
expected

0 100
11 110

100 50
-20 60

0 10
0 -10

Westley Weimer

int cp,

int Pisupward (Int

cy1, Co2, Cg, Cga, fx
in ,
int bias, r;

if (in)

bias = cptcyi*biastco*xintcygxup+cy*xdown ;

else
bias = up:
if (bias > down)
r = 1;
else
r = 0;
return r

int main() {

if (plb_'llp“-drd (1,0, 100)
Pis_upward (1,1 1 110)
Pis_upward (0,10 O 5 0 }
Pis_upward (— ZD bO)
Pis_upward ({ O U 10) —

p is_upward
[L]
}

return 0O;

int up,

global

input

int down) {

f
E
!

Proving Correctness

 We must show that the constructed
reachability instance is solvable (with values
c1 ... cn) iff the original synthesis instance is

solvable (with values c1 ... cn).

* The reachability instance is solved if those
values cause execution to reach L.

* The synthesis instance is solved if those values
cause every test to pass.

Westley Weimer

41

High-Level Proof Structure

 Lemma 1. The reachability instance method
and the synthesis instance method agree on all
(non-template) variables.

 Lemma 2. If the reachability instance reaches
L from a state S (with values c1 ... cn), then
that state and values model the weakest
precondition of the synthesis instance method
passing each test.

 Theorem 1. The synthesis instance is solvable
iff the reachability instance is solvable (with
the same values).

Westley Weimer

42

int is_upward(int in, int up, int down){
int bias, r;
if (in]
bias = 1 *in + c3 pkup + ¢4 kdown;
else ' ' -

bias % int co, c1, co, ¢c3, cg; /* global input x/

T

if (bl
% int Pisupwara(int in, int up, int down){
elae int bias, r:

r = 0; if (in)
return r bias = cptcyi*biastco*xintcygxup+cy*xdown ;
f else
bias = up:
Inputs if (bias > down)
r = 1;
lse

% r = 0;

O 00 =1 U= Wk =

up down

100

0
1@ 110 } return 1T

% int main() {
% if(pis_upward 1,0, 100)
1,11,110)

(

Pis_upward (

Pis_upward (0,10 O 5 0 }

Pis_upward (—2 D t‘r 0)

Pis_upward (O U 1 U) F—
(0,0,—10) =—

Pis_upward

Westley Weimer

Lemma 1 (Agree on Vars)

* Let Q be the input synthesis instance method
with template variables v, ... v .

n

* Let P = Gadget(Q) be the reachability instance
corresponding to method P.

« For all states 6,0, O, all values C ...C, all
inputs values x, it holds that
. If 0 (v) = c, then <P(x), 6> | o iff
<inst(Q,c), 0> | o,
and for ally = v, o (y) = o,(y).

Westley Weimer

44

Lemma 1 Proof

. If 0.(v) = ¢, then <P(x), 0 > | o iff
<inst(Q,c), 6.> | O,
and for ally = v, o (y) = o,(y).

 How shall we prove it? What proof technique
should we use?

Westley Weimer

45

Lemma 1 Proof

 If o (v)=c, thenD ::<P(x), 0> | o iff
D, :: <inst(Q,c), 0> | O,

and for ally = v, o (y) = o,(y).

* The proof proceeds by induction on the
structure of the operational semantics
derivation D_. By inversion, the structure of D

corresponds exactly to the structure of D,
except for template variables.

Westley Weimer

46

Lemma 1 Case: Template Variable

» Case. Suppose D. (reachability instance) is:

6,=0[a—o(v)]

1

<a:i=Vv,0 >]0,
» By inversion and the construction of P, D_ is:

0,=0 [a—c]

<a:i=exp,0 >0,

- Where exp = inst(, c)=cC

1

Westley Weimer

47

Lemma 1 Case: Template Variable

- Have: o0, =0 [a—o0 (V)]

i
- Have: 0,=0 [a —c]

b

» To show: “for ally = v, o (y) = o,(y)
» Sub-Case 1.y # a. Then o _(y) = o,(y).

» Sub-Case 2. y = a. To show: o (v) = c. This was

1

actually one of the assumptions in the
statement of the lemma. (ntuitively, it means the

reachability analysis assigned c. to each variable v. to reach the label L.)

Westley Weimer

48

Lemma 1 (Agree on Vars)

* Let Q be the input synthesis instance method
with template variables v, ... v .

n

* Let P = Gadget(Q) be the reachability instance
corresponding to method P.

« For all states 6,0, O, all values C ...C, all
inputs values x, it holds that
It o (v) = ¢, then <P(x), 6> | o iff
anst(Q,c), 0> | O,
and for ally = v, o (y) = o,(y).

Westley Weimer 49

Lemma 2 (Reach L = Pass Tests)

* Let Q be the input synthesis instance method with

template variables v, ... v and tests <input , output >.

* Let P = Gadget(Q) be the reachability instance
method main.

» The execution of P reaches L starting from state o iff
o, |= wp(result = inst(Q,E)(input1), result = output)
&& ... wp(result = inst(Q,c)(input), result = output)

)= C..

1

where o (v

Westley Weimer

50

Lemma 2 Proof

* By gadget construction there is only one label
L in P, “if e then [L]” where e is of the form
f(input) = output && ... f(intput) = output .

* By standard weakest precondition definitions
for if, conjunction, equality and function calls,
we have that L is reachable iff ¢ |= wp(result =

f(input), result = output) && ... wp(result = f(input),

result = output).

Westley Weimer

51

Lemma 2 Proof

- Have: L is reachable iff o |= wp(result = f(input),
result = output) && ... wp(result = f(input), result =

output).

« Want: L is reachable iff ¢ |= wp(result =
, result = output) && ... wp(result = inst(Q,
c)(input), result = output)

» Toshow: o |= wp(result = f(input), result = output)
iff o |= wp(result = inst(Q, c)(input), result = output)

Westley Weimer

52

Lemma 2 Proof

» To show: o, |= wp(result = f(input,), result = output))
iff 6 |= wp(result = inst(Q, c)(input), result = output)

... where f is the method from Gadget(Q)

* By the soundness and completeness of weakest
preconditions with respect to operational semantics,
we have <result = f(input) , o > | o iff o, |=result =

output.

Westley Weimer

53

Lemma 2 Proof

o Have: <result = f(input) , 6. > | o iff o, |=result =
outputi.

. By Lemma 1, we have < result = inst(Q, c)(input) , o,

> | o, iff o (y) =o,(y) forally = v.

- Since “result” = v, o (result) = o (result) (“Lemmal”)
and o_(result) = output. (“Have”). Transitively ...

* So running the template program Q instantiated with
C. = v.on a test input produces the required output.

Westley Weimer 54

Correctness Theorem

* Let Q be the input synthesis instance method with
template variables v, ... v and tests <input , output >.

* Let P = Gadget(Q) be the reachability instance
method main.

» There exist parameter values c. such that for all

<input,output>, inst(Q,c)(input) = output iff there
exist input values t such that the execution of P with

V. — ti reaches L.

« Proof: From Lemma 2 with ti = C.

Westley Weimer

55

Reducing Reachability To Synthesis

 We can also carry out a constructive reduction
going the other direction.

* Suppose we are given an instance of program
reachability. Can we convert it into a program
synthesis instance to solve it?

Westley Weimer 56

Reachability to Synthesis Example

global input x/

int is_upward(int in, int up, int down){
int bias, r;
if (in)
bias = +*bias +*in H cs prup + c4 [kdown;
return O0; - ‘?1-‘-;3'3;1_ .
as — ;
if (bias > down)
r = 1;
else
r = 0;
return r;

Inputs Output
up down | expected observed | Passed?

0 100
11 110

100 50
-20 60

0 10
0 -10

0
0
1
0
0
1

Sy U W=

Westley Weimer

Reachability to Synthesis Example

global input

- l: int Jmain () {

in / :

- 0. ap () { /#* Find |z | and |y |.
ket ’ if (2% : Equivalently
synthesize :

if ([z y [+10)

/* location of [L] X |
in P %/ y Cy ok
raise REACHED:; try o
ap () ;
return 0: } catch (REACHED)
} return 1;
}
Test suite: Q()=1 return 0;

}

Westley Weimer

Implications

* Program reachability tools are much more
mature than program repair tools.

 CETI Program Repair Algorithm

* For each buggy line, in ranked order

- For every repair template, in ranked order

e Convert repair instance to reachability instance
« Call off-the-shelf reachability tool (e.g., SMT solver / KLEE)
 If reachable, return parameters as patch

Westley Weimer

59

Westley Weimer

Prototype CETI Evaluation

SR

AR

<

<

{.-r"
v
- v,-""
W
o

Considered 41 bugs and
simple one-line templates

Fixed 100% of bugs
admitting one-line fixes

22 seconds each, average

Debroy & Wong (random
mutation): 9 repairs

GenProg: 11 repairs

Forensic (concolic
execution): 23 repairs

CETI: 26 repairs

60

Concluding Thoughts

* PL Theory almost always translates into useful PL
Practice (just with an X year lag time)

* There is plenty of scope for insight and creativity
(e.g., whence these gadgets?)

* Techniques like structural induction, SMT solving,
fault localization, substitution, axiomatic semantics,
etc., remain relevant!

« HWO (BLAST), HW5 (tigen), FlashFill (Gulwani Excel)
and GenProg (last lecture) are all “secretly the same
thing”

= “statically reason about dynamic execution”

Westley Weimer

61

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

