
#1

Lambda CalculusLambda Calculus

#2

Plan

• Introduce lambda calculus
– Syntax

– Substitution

– Operational Semantics (… with contexts!)

– Evaluation strategies

– Equality

• Later:
– Relationship to programming languages

– Study of types and type systems

#3

Lambda Background

• Developed in 1930’s by Alonzo Church
• Subsequently studied by many people

– Still studied today!

• Considered the “testbed” for procedural and
functional languages
– Simple
– Powerful
– Easy to extend with new features of interest
– Lambda:PL :: Turning Machine:Complexity
– Somewhat like a crowbar …

“Whatever the next 700 languages turn out to be,
they will surely be variants of lambda calculus.”

(Landin ’66)

#4

Lambda Syntax
• The -calculus has 3 kinds of expressions (terms)

e ::= x Variables
 | x. e Functions (abstractions)
 | e1 e2 Application

• x. e is a one-argument anonymous function with
body e

• e1 e2 is a function application

• Application associates to the left
x y z === (x y) z

• Abstraction extends far to the right
x. x y. x y z === x. (x [y. {(x y) z}])

#5

Why Should I Care?

• A language with 3 expressions? Woof!
• DeVito et al. First-class Runtime Generation of

High-performance Types using Exotypes. PLDI ’14
– Just one example of a recent PL/security paper

#6

Lambda Celebrity Representative
• Milton Friedman?
• Morgan Freeman?
• C. S. Friedman?

#7

 Gordon Freeman

• Best-selling PC FPS to date …

#8

Examples of Lambda Expressions

• The identity function:
I =def x. x

• A function that, given an
argument y, discards it and
yields the identity function:

y. (x. x)
• A function that, given an

function f, invokes it on the
identity function:

f. f (x. x)
“There goes our
grant money.”

#9

Scope of Variables
• As in all languages with variables, it is

important to discuss the notion of scope
– The scope of an identifier is the portion of a

program where the identifier is accessible

• An abstraction x. E binds variable x in E
– x is the newly introduced variable

– E is the scope of x (unless x is shadowed)

– We say x is bound in x. E

– Just like formal function arguments are bound in
the function body

#10

Free and Bound Variables

• A variable is said to be free in E if it has
occurrences that are not bound in E

• We can define the free variables of an
expression E recursively as follows:
– Free(x) = {x}

– Free(E1 E2) = Free(E1) [Free(E2)

– Free(x. E) = Free(E) – {x}

• Example: Free(x. x (y. x y z)) = {z}
• Free variables are (implicitly or explicitly)

declared outside the expression

#11

Free Your Mind!

• Just as in any language with statically-nested
scoping we have to worry about variable
shadowing
– An occurrence of a variable might refer to

different things in different contexts

• Example in IMP with locals:
let x = 5 in x + (let x = 9 in x) + x

• In -calculus:

x. x (x. x) x

#12

Renaming Bound Variables
• -terms that can be obtained from one another by

renaming bound variables are considered identical

• This is called -equivalence

• Renaming bound vars is called -renaming

• Ex: x. x is identical to y. y and to z. z

• Intuition:
– By changing the name of a formal argument and all of its

occurrences in the function body, the behavior of the
function does not change

– In -calculus such functions are considered identical

#13

Make It Easy On Yourself
• Convention: we will always try to rename

bound variables so that they are all unique
– e.g., write x. x (y.y) x instead of x. x (x.x) x

• This makes it easy to see the scope of
bindings and also prevents confusion!

#14

Substitution

• The substitution of F for x in E (written [F/x]E)
– Step 1. Rename bound variables in E and F so they are

unique

– Step 2. Perform the textual substitution of f for X in E

• Called capture-avoiding substitution

• Example: [y (x. x) / x] y. (x. x) y x
– After renaming: [y (x. x) / x] z. (u. u) z x

– After substitution: z. (u. u) z (y (x. x))

• If we are not careful with scopes we might get:
y. (x. x) y (y (x. x)) Ã wrong!

#15

The De Bruijn Notation
• An alternative syntax that avoids naming of bound

variables (and the subsequent confusions)
• The De Bruijn index of a variable occurrence is the

number of lambdas that separate the occurrence
from its binding lambda in the abstract syntax tree

• The De Bruijn notation replaces names of
occurrences with their De Bruijn indices

• Examples:
–  x. x . 0
–  x.  x. x . . 0
–  x.  y. y . . 0
– ( x. x x) ( z. z z) (. 0 0) (. 0 0)
–  x. ( x.  y. x) x . (. . 1) 0

Identical terms
have identical
representations!

#16

Combinators
• A -term without free variables is closed or a

combinator
• Some interesting combinators:

I =  x. x
K =  x.  y. x
S =  f.  g.  x. f x (g x)
D =  x. x x
Y =  f. ( x. f (x x)) ( x. f (x x))

• Theorem: any closed term is equivalent to one
written with just S, K and I
– Example: D = S I I
– (we’ll discuss this form of equivalence later)

Q: Music (241 / 842)

• Name the singer and his crossover
1982 album that holds (as of 2017)
the record of being the best-selling
album of all-original material in the
US (33 times platinum, 37 weeks as
Billboard #1). Much of that success
was the result of the singer's use of
the MTV music video.

Q: Class Archives
• This is the largest

city proper in the
world (over 24
million in 2014),
located on the
Yangtze river delta.
Its name means
“upper sea” or
“upon the sea”.

Q: Class Archives

•This recreational activity is the
world's most popular sport (over
250 million players in 200
countries). It is governed by the
Laws of the Game. For fouls,
players are cautioned with
yellow cards and ejected with
red cards.

Q: Class Archive

•This Prarie State has a
reputation as a predictor and
model of the US as a whole.
Barack Obama was a senator
from this state before being
elected president. It is also
known as the Land of Lincoln.

Q: Class Archives

•This king of Uruk reigned around
2500 BCE and is the eponymous
protagonist of an Epic, the
greatest surviving work of
Mesopotamian literature. In it,
he and his wild companion
Enkidu kill the Bull of Heaven
sent by Ishtar. Sadly, Enkidu dies.

Q: Class Archives
• This space-themed MMORPG has been

uncharitably described as a “rousing
game of combat spreadsheets”.
Characters train skills in real time, even
when players are not logged into the
game. Players can create in-game Ponzi
schemes and illegal banks if they choose,
and philosophies battle it out in a
microcosm of society.

Q: Class Archives

•In cryptography, this is an attack
involving information gained
from the physical reification of a
cryptosystem, rather than via
brute force or algorithmic flaws.
Power consumption and EM leaks
are classic examples.

Q: General (452 / 842)

• Name any 3 of
the 22 letters in
the Hebrew
alphabet.

#25

Informal Semantics
• We consider only closed terms
• The evaluation of

( x. e) f
– Binds x to f

– Evaluates e with the new binding

– Yields the result of this evaluation

• Like a function call, or like “let x = f in e”
• Example:

( f. f (f e)) g evaluates to g (g e)

#26

Operational Semantics
• Many operational semantics for the -calculus
• All are based on the equation

( x. e) f = [f/x]e
usually read from left to right

• This is called the -rule and the evaluation step a
-reduction

• The subterm ( x. e) f is a -redex
• We write e ! g to say that e -reduces to g in one

step
• We write e !

* g to say that e -reduces to g in 0
or more steps
– Remind you of the small-step opsem term rewriting?

#27

Examples of Evaluation
• The identity function:

( x. x) E ! [E / x] x = E
• Another example with the identity:

( f. f ( x. x)) ( x. x) !
[ x. x / f] f ( x. x)) =

[ x. x / f] f ( y. y)) =
( x. x) ( y. y) !

[ y. y / x] x =  y. y
• A non-terminating evaluation:

( x. xx) ( y. yy) !
[ y. yy / x] xx = ( y. yy) ( y. yy) ! …

• Try T T, where T = x. x x x

#28

Evaluation and the Static Scope

• The definition of substitution guarantees
that evaluation respets static scoping:
( x. ( y. y x)) (y ( x. x)) !  z. z (y ( v. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y:
( x. ( y. y x)) (y ( x. x)) !

*  y. y (y ( v. v))
(y was free before but is bound now)

#29

Another View of Reduction

• The application

• Becomes:

(terms can grow substantially through -reduction!)

e
x x x g

x. e

e

g g g

I am g!

Not one g,
but three!

#30

Normal Forms

• A term without redexes is in normal form
• A reduction sequence stops at a normal form

• If e is in normal form and e !
* f then e is

identical to f

• K =  x.  y. x is in normal form
• K I is not in normal form

#31

Nondeterministic Evaluation

• We define a small-step reduction relation

• This is a non-deterministic semantics
• Note that we evaluate under  (where?)

( x. e) f ! [f/x]e

 x. e !  x. f

e ! f

e1 f ! e2 f

e1 ! e2

e f1 ! e f2

f1 ! f2

#32

Lambda Calculus Contexts

• Define contexts with one hole

• H ::= ² |  x. H | H e | e H

• Write H[e] to denote the filling of the hole in
H with the expression e

• Example:

H =  x. x ² H[ y. y] =  x. x ( y. y)

• Filling the hole allows variable capture!

H =  x. x ² H[x] =  x. x x

#33

Contextual Opsem

• Contexts allow concise formulations of
congruence rules (application of local
reduction rules on subterms)

• Reduction occurs at a -redex that can be
anywhere inside the expression

• The latter rule is called a congruence or
structural rule

• The above rules to not specify which redex
must be reduced first

( x. e) f ! [f/x]e H[e] ! H[f]

e ! f

#34

The Order of Evaluation

• In a -term there could be more than one
instance of ( x. e) f, as in:

( y. ( x. x) y) E
– Could reduce the inner or outer 

– Which one should we pick?
( y. ( x. x) y) E

inner outer

( y. [y/x] x) E = ( y. y) E [E/y] ( x. x) y = ( x. x) E

E

#35

The Diamond Property

• A relation R has the diamond property if
whenever e R e1 and e R e2 then there exists
e3 such that e1 R e3 and e2 R e3

• ! does not have the diamond property

• !
* has the diamond property

• Also called the confluence property

E
R R

e1 e2

R R
E3

#36

A Diamond In The Rough

• Languages defined by non-deterministic sets
of rules are common
– Logic programming languages
– Expert systems
– Constraint satisfaction systems

• And thus most pointer analyses …

– Dataflow systems
– Makefiles

• It is useful to know whether such systems
have the diamond property

#37

(Beta) Equality

• Let = be the reflexive, transitive and
symmetric closure of !

= is (! [Ã)*

• That is, e = f if e converts to f via a
sequence of forward and backward !

 ² ²

e ² f

#38

The Church-Rosser Theorem

• If e1 = e2 then there exists e3 such that
e1 !

* e3 and e2 !
* e3

² ²

e1 ² e2

 ² ²

 e3

• Proof (informal): apply the diamond property
as many times as necessary

#39

Corollaries

• If e1 = e2 and e1 and e2 are normal forms
then e1 is identical to e2

– From C-R we have 9e3. e1 !
* e3 and e2 !

* e3

– Since e1 and e2 are normal forms they are
identical to e3

• If e !
* e1 and e !

* e2 and e1 and e2 are
normal forms then e1 is identical to e2

– “All terms have a unique normal form.”

#40

Evaluation Strategies

• Church-Rosser theorem says that independent of
the reduction strategy we will find ·1 normal form

• But some reduction strategies might find 0

• ( x. z) (( y. y y) ( y. y y)) !

( x. z) (( y. y y) ( y. y y)) ! …

• ( x. z) (( y. y y) ( y. y y)) ! z

• There are three traditional strategies
– normal order (never used, always works)

– call-by-name (rarely used, cf. TeX or Haskell)

– call-by-value (amazingly popular)

#41

Civilization: Call By Value
• Normal Order

– Evaluates the left-most redex not contained in another
redex

– If there is a normal form, this finds it
– Not used in practice: requires partially evaluating

function pointers and looking “inside” functions

• Call-By-Name (“lazy”)
– Don’t reduce under , don’t evaluate a function

argument (until you need to)
– Does not always evaluate to a normal form

• Call-By-Value (“eager” or “strict”)
– Don’t reduce under , do evaluate a function’s argument

right away
– Finds normal forms less often than the other two

#42

Endgame

• This time:  syntax,
semantics, reductions,
equality, …

• Next time: encodings, real
programs, type systems,
and all the fun stuff!

Wisely done, Mr.
Freeman. I will see
you up ahead.

#43

Homework

• Homework 5 Due Later
• Final Project?

#44

Tricksy On The Board Answer
• Is this rule from lectures ago unsound?

• Nope: it’s our basic rule plus 2x consequence

• Note that Bthen) Bthen Ç Belse

` {A} if p then cthen else celse {Bthen Ç Belse}
` {A Æ :p} celse {Belse}` {A Æ p} cthen {Bthen}

` {A} if p then c1 else c2 {B}
` {A Æ p} c1 {B} ` {A Æ : p} c2 {B}

` {A’} c {B’}
` A’) A ` {A} c {B} ` B) B’

	Lambda Calculus
	Plan
	Lambda Background
	Lambda Syntax
	Why Should I Care?
	Lambda Celebrity Representative
	Gordon Freeman
	Examples of Lambda Expressions
	Scope of Variables
	Free and Bound Variables
	Free Your Mind!
	Renaming Bound Variables
	Make It Easy On Yourself
	Substitution
	The De Bruijn Notation
	Combinators
	Q: Music (241 / 842)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Q: General (452 / 842)
	Informal Semantics
	Operational Semantics
	Examples of Evaluation
	Evaluation and the Static Scope
	Another View of Reduction
	Normal Forms
	Nondeterministic Evaluation
	Lambda Calculus Contexts
	Contextual Opsem
	The Order of Evaluation
	The Diamond Property
	A Diamond In The Rough
	(Beta) Equality
	The Church-Rosser Theorem
	Corollaries
	Evaluation Strategies
	Civilization: Call By Value
	Endgame
	Homework
	Tricksy On The Board Answer

