
#1

#2

Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics

– Reductions, Redexes, and Contexts

• Applications and Recent Research

#3

Bookkeeping

• Hookkeeper (wire ring that holds a fly-fishing
hook in place)

• Tattooee
• Bookkeeper

– Subbookkeeper (!)

• Sweettooth

#4

60 Second Summary -
Semantics

• A formal semantics is a system for
assigning meanings to programs.

• For now, programs are IMP commands and
expressions

• In operational semantics the meaning of
a program is “what it evaluates to”

• Any opsem system gives rules of
inference that tell you how to evaluate
programs

#5

Summary - Judgments

• Rules of inference allow you to derive
judgments (“something that is knowable”) like

<e, >  n
– In state , expression e evaluates to n

<c, >  ’
– After evaluating command c in state  the new state

will be ’

• State  maps variables to values ( : L ! Z)

• Inferences equivalent up to variable renaming:
<c, >  ’ === <c’, >  

#6

Notation: Rules of Inference

• We express the evaluation rules as rules
of inference for our judgment
– called the derivation rules for the judgment

– also called the evaluation rules (for
operational semantics)

• In general, we have one rule for each
language construct:

<e1 + e2, >  n1 + n2

<e1, >  n1 <e2, >  n2 This is the only
rule for e1 + e2

#7

Evaluation By Inversion

• We must find n1 and n2 such that
e1  n1 and e2  n2 are derivable

– This is done recursively

• If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed
– At each step at most one rule applies

– This allows a simple evaluation procedure as
above (recursive tree-walk)

– True for our Aexp but not Bexp.

#8

Summary - Rules

• Rules of inference list the hypotheses
necessary to arrive at a conclusion

• A derivation involves interlocking (well-
formed) instances of rules of inference

<x, >  (x) <e1 - e2, >  n1 minus n2

<e1, >  n1 <e2, >  n2

<(4*2) - 6, >  2
<4*2, >  8 <6, >  6

<4, >  4 <2, >  2

#9

Operational SemanticsOperational Semantics
Small-Step SemanticsSmall-Step Semantics

#10

Provability

• Given an opsem system, <e, >  n is
provable if there exists a well-formed
derivation with <e, >  n as its conclusion
– “well-formed” = “every step in the derivation is

a valid instance of one of the rules of inference
for this opsem system”

– “` <e, >  n” = “it is provable that <e, >  n”

• We would like truth and provability to be
closely related

#11

Truth?

• “A Vorlon said understanding is a three-
edged sword. Your side, their side and
the truth.”
– Sheridan, Babylon 5, Into The Fire

• We will not formally define “truth” yet
• Instead we appeal to your intuition

– <2+2, >  4 -- should be true

– <2+2, >  5 -- should be false

#12

Completeness

• A proof system (like our operational
semantics) is complete if every true
judgment is provable.

• If we replaced the subtract rule with:

• Our opsem would be incomplete:
<4-2, >  2 -- true but not provable

<e1 - e2, >  n
<e1, >  n <e2, >  0

#13

Consistency
• A proof system is consistent (or sound) if

every provable judgment is true.
• If we replaced the subtract rule with:

• Our opsem would be inconsistent (or
unsound):
– <6-1, >  9 -- false but provable

<e1 - e2, >  n1 + 3

<e1, >  n1 <e2, >  n2

“A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.”
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.

#14

Desired Traits
• Typically a system (of operational semantics) is

always complete (unless you forget a rule)

• If you are not careful, however, your system may
be unsound

• Usually that is very bad
– A paper with an unsound type system is usually rejected

– Papers often prove (sketch) that a system is sound

– Recent research (e.g., Engler, ESP) into useful but
unsound systems exists, however

• In this class your work should be complete and
consistent (e.g., on homework problems)
Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here.
What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously
and every molecule in your body exploding at the speed of light.

#15

With That In Mind

• We now return to opsem for IMP

<while b do c, >  
<b, >  false

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, >  [x := n]

<e, >  n

<while b do c,  >  ’
<b, >  true <c; while b do c, >  ’

#16

Command Evaluation Notes

• The order of evaluation is important
– c1 is evaluated before c2 in c1; c2

– c2 is not evaluated in “if true then c1 else c2”

– c is not evaluated in “while false do c”

– b is evaluated first in “if b then c1 else c2”

– this is explicit in the evaluation rules

• Conditional constructs (e.g., b1 Ç b2) have
multiple evaluation rules
– but only one can be applied at one time

#17

Command Evaluation Trials

• The evaluation rules are not syntax-
directed
– See the rules for while, Æ

– The evaluation might not terminate

• Recall: the evaluation rules suggest an
interpreter

• Natural-style semantics has two big
disadvantages (continued …)

#18

Disadvantages of Natural-Style
Operational Semantics

• It is hard to talk about commands whose
evaluation does not terminate
– When there is no ’ such that <c, >  ’

– But that is true also of ill-formed or
erroneous commands (in a richer language)!

• It does not give us a way to talk about
intermediate states
– Thus we cannot say that on a parallel

machine the execution of two commands is
interleaved (= no modeling threads)

#19

Semantics Solution

• Small-step semantics addresses these
problems
– Execution is modeled as a (possible infinite)

sequence of states

• Not quite as easy as large-step natural
semantics, though

• Contextual semantics is a small-step
semantics where the atomic execution
step is a rewrite of the program

#20

Contextual Semantics

• We will define a relation <c, >  <c’, ’>
– c’ is obtained from c via an atomic rewrite step

– Evaluation terminates when the program has
been rewritten to a terminal program
• one from which we cannot make further progress

– For IMP the terminal command is “skip”

– As long as the command is not “skip” we can
make further progress
• some commands never reduce to skip (e.g., “while

true do skip”)

#21

Contextual Derivations

• In small-step contextual semantics,
derivations are not tree-structured

• A contextual semantics derivation is a
sequence (or list) of atomic rewrites:

<x+(7-3),> ! <x+(4),> ! <5+4,> ! <9,>

x)=5

#22

What is an Atomic Reduction?
• What is an atomic reduction step?

– Granularity is a choice of the semantics designer

• How to select the next reduction step, when
several are possible?
– This is the order of evaluation issue

Q: Computer Science
• This American computer scientist won the

2009 Turing award for her work on design of
programming language sand software
methodology that led to the development of
object-oriented programming. In addition to
the first high-level language to support
distributed programs and notable results on
Byzantine fault tolerance, she is perhaps
best known for her formulation of object-
oriented subtyping.

Correcting English Prose
4. Lizzy drank in the sight of him like a thirst craven

man consumes water.

421. "I go here, silly," said Kimi with a proud
expression. "And how I might ask? Your scores were
not legible for this school."

312. Every member of the Thespians, or anyone who
has ever acted in one of our school plays was a pre-
Madonna, mellow-dramatic; over-actor and I didn't
want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence
evil. But Livvy doesn't she see's something no one
else does.

#25

Redexes
• A redex is a syntactic expression or command that

can be reduced (transformed) in one atomic step

• Redexes are defined via a grammar:
r ::= x (x 2 L)

 | n1 + n2

 | x := n

 | skip; c

 | if true then c1 else c2

 | if false then c1 else c2

 | while b do c

• For brevity, we mix exp and command redexes

• Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

#26

Local Reduction Rules for IMP
• One for each redex: <r, >  <e, ’>

– means that in state , the redex r can be replaced in
one step with the expression e

<x, >  <(x), >
<n1 + n2, >  <n, > where n = n1 plus n2

<n1 = n2, >  <true, > if n1 = n2

<x := n, >  <skip, [x := n]>
<skip; c, >  <c, >
<if true then c1 else c2, >  <c1, >

<if false then c1 else c2, >  <c2, >

<while b do c, > 
<if b then c; while b do c else skip, >

#27

The Global Reduction Rule

• General idea of contextual semantics
– Decompose the current expression into

the redex-to-reduce-next and the
remaining program
•The remaining program is called a context

– Reduce the redex “r” to some other
expression “e”

– The resulting (reduced) expression
consists of “e” with the original context

Not happy? I’ll explain with pictures soon!

#28

As A Picture (1)

(Context)
…
x := 2+2 ;
print x

Step 1: Find The Redex

#29

As A Picture (2)

(Context)
…
x := ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

#30

As A Picture (3)

(Context)
…
x := ;
print x

2+2 (redex)

Step 1: Find The Redex
Step 2: Reduce The Redex

4 (reduced)

#31

As A Picture (4)

(Context)
…
x := ;
print x

4

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context

#32

Contextual Analysis

• We use H to range over contexts
• We write H[r] for the expression obtained

by placing redex r in context H
• Now we can define a small step

If <r, >  <e, ’>
then <H[r], >  <H[e], ’>

#33

Contexts

• A context is like an expression (or
command) with a marker  in the place
where the redex goes

• Examples:
– To evaluate “(1 + 3) + 2” we use the redex

1 + 3 and the context “+ 2”

– To evaluate “if x > 2 then c1 else c2” we use
the redex x and the context “if  > 2 then c1
else c2”

#34

Context Terminology

• A context is also called an “expression
with a hole”

• The marker  is sometimes called a hole
• H[r] is the expression obtained from H by

replacing  with the redex r

“Avoid context and specifics; generalize
and keep repeating the generalization.”
-- Jack Schwartz

#35

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

What happens next?

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>

#36

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

<skip, [x := 2]>

x := 2<x := 2, [x := 1]>

x := 1 + 1<x := 1 + 1, [x := 1]>

x :=  + 1x<x := x+1, [x := 1]>

skip; x := x+1<skip; x := x+1, [x := 1]>

; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex <Comm, State>

#37

More On Contexts

• Contexts are defined by a grammar:

 H ::=  | n + H
| H + e
| x := H
| if H then c1 else c2

 | H; c
• A context has exactly one  marker
• A redex is never a value

#38

What’s In A Context?
• Contexts specify precisely how to find the

next redex
– Consider e1 + e2 and its decomposition as H[r]

– If e1 is n1 and e2 is n2 then H =  and r = n1 + n2

– If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2
= H2[r]

– If e1 is not n1 then H = H1 + e2 and e1 = H1[r]

– In the last two cases the decomposition is done
recursively

– Check that in each case the solution is unique

#39

Unique Next Redex:
Proof By Handwaving Examples

• e.g. c = “c1; c2” – either
– c1 = skip and then c = H[skip; c2] with H = 

– or c1  skip and then c1 = H[r]; so c = H’[r] with
H’ = H; c2

• e.g. c = “if b then c1 else c2”
– either b = true or b = false and then c = H[r]

with H = 
– or b is not a value and b = H[r]; so c = H’[r] with

H’ = if H then c1 else c2

#40

Context Decomposition
• Decomposition theorem:

 If c is not “skip” then there exist unique
H and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism

#41

Short-Circuit Evaluation

• What if we want to express short-circuit
evaluation of  ?
– Define the following contexts, redexes and

local reduction rules
 H ::= ... | H  b2

 r ::= ... | true  b | false  b
 <true  b, >  <b, >
 <false  b, >  <false, >

– the local reduction kicks in before b2 is
evaluated

#42

Contextual Semantics Summary
• Can view  as representing the program counter
• The advancement rules for ² are non-trivial

– At each step the entire command is decomposed
– This makes contextual semantics inefficient to

implement directly

• The major advantage of contextual semantics: it
allows a mix of local and global reduction rules
– For IMP we have only local reduction rules: only the

redex is reduced
– Sometimes it is useful to work on the context too
– We’ll do that when we study memory allocation, etc.

#43

Reading Real-World Examples

• Cobbe and Felleisen, POPL 2005
• Small-step contextual opsem for Java
• Their rule for object field access:

P ` <E[obj.fd],S> ! <E[F(fd)],S>
– where F=fields(S(obj)) and fd 2 dom(F)

• They use “E” for context, we use “H”
• They use “S” for state, we use “”

#44

Lost In Translation

• P ` <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They have “P `”, but that just means “it
can be proved in our system given P”

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

#45

Lost In Translation 2

• <H[obj.fd],> ! <H[F(fd)],>
– Where F=fields((obj)) and fd 2 dom(F)

• They model objects (like obj), but we do
not (yet) – let’s just make fd a variable:

• <H[fd],> ! <H[F(fd)],>
– Where F= and fd 2 L

• Which is just our variable-lookup rule:

• <H[fd],> ! <H[(fd)],> (when fd 2 L)

#46

“Sleep On It”

#47

Homework

• Homework 1 Due soon
• Reading!

	Slide 1
	Today’s Cunning Plan
	Slide 3
	Summary - Semantics
	Summary - Judgments
	Notation: Rules of Inference
	Evaluation By Inversion
	Summary - Rules
	Operational Semantics Small-Step Semantics
	Provability
	Truth?
	Completeness
	Consistency
	Desired Traits
	With That In Mind
	Command Evaluation Notes
	Command Evaluation Trials
	Disadvantages of Natural-Style Operational Semantics
	Semantics Solution
	Contextual Semantics
	Contextual Derivations
	What is an Atomic Reduction?
	Slide 23
	Slide 24
	Redexes
	Local Reduction Rules for IMP
	The Global Reduction Rule
	As A Picture (1)
	As A Picture (2)
	As A Picture (3)
	As A Picture (4)
	Contextual Analysis
	Contexts
	Context Terminology
	Contextual Semantics Example
	Slide 36
	More On Contexts
	What’s In A Context?
	Unique Next Redex: Proof By Handwaving Examples
	Context Decomposition
	Short-Circuit Evaluation
	Contextual Semantics Summary
	Reading Real-World Examples
	Lost In Translation
	Lost In Translation 2
	“Sleep On It”
	Slide 47

