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Abstract—Dynamic invariant analysis identifies likely prop-
erties over variables from observed program traces. These
properties can aid programmers in refactoring, documenting,
and debugging tasks by making dynamic patterns visible
statically. Two useful forms of invariants involve relations
among polynomials over program variables and relations
among array variables. Current dynamic analysis methods
support such invariants in only very limited forms. We combine
mathematical techniques that have not previously been applied
to this problem, namely equation solving, polyhedra construc-
tion, and SMT solving, to bring new capabilities to dynamic
invariant detection. Using these methods, we show how to
find equalities and inequalities among nonlinear polynomials
over program variables, and linear relations among array
variables of multiple dimensions. Preliminary experiments on
24 mathematical algorithms and an implementation of AES
encryption provide evidence that the approach is effective at
finding these invariants.

Keywords-program analysis; dynamic analysis; invariant
generation; nonlinear invariants; array invariants

I. INTRODUCTION

The study of program invariants—relations among vari-
ables that are guaranteed to hold at certain locations in a
program—is a cornerstone of program analysis [1]–[3] and
has been a major research area since the 1970s [2], [4]–[8].
Invariants can be identified using static or dynamic analysis.
Static analysis is typically computationally expensive but
more likely to provide provably sound results. Dynamic
analysis is usually efficient, but its results are not guaranteed
to be correct because the discovered properties may not gen-
eralize to all program traces. Nonetheless, dynamic invariant
analysis is useful in practice because of its scalability and
the help it can provide in program refactoring, documenting
and debugging [9]–[11].

Nonlinear polynomial properties are essential to the suc-
cess of many scientific, engineering and safety-critical appli-
cations. For example, Astrée [12], [13], a successful program
analyzer used to verify the absence of run-time errors in
Airbus avionic systems, implements a static analysis involv-
ing the ellipsoid abstract domain to represent and reason
about a class of quadratic inequality invariants.1 Nonlinear

1The ellipsoid domain used by Astrée [13] to examine the Airbus system
is expressed in the quadratic form x2 +axy + by2 ≤ k, where 0 < b < 1
and a2 < 4b.

invariants have also been found useful for the analysis of
hybrid systems [14], [15].

Arrays are a widely used data structure that is fundamental
to many programs. For example, in C.A.R. Hoare’s seminal
1971 paper on algorithm verification, Proof of a program:
FIND, the overall goal is to prove an array invariant that
lies at the heart of the correctness of quicksort [16, p.40].
Fixed-size arrays are also present in many systems programs,
and proper analysis is often critical for security (e.g., buffer
overruns). Finally, the ubiquity of arrays in general software
engineering makes reasoning about arrays crucial for per-
formance (e.g., for bounds check elimination [17]).

Daikon [9] is a well-known dynamic analysis system that
detects invariants from program traces. However, Daikon
supports only a limited form of linear relations among
program variables and arrays. For example, Daikon cannot
discover (i) that the location of the chosen pivot in binary
search is l + u − 1 ≤ 2p ≤ l + u as these inequalities
involve three variables, (ii) that the gcd of x, y is nx + my
because this is a nonlinear polynomial, (iii) the equation
v = 2x + 3y + 4z + 5 because it involves four variables,
or (iv) the relation A[i] = B[C[i]] because it is a nested
array relation. It is thus difficult to fully capture and reason
about the semantics of programs that can only be expressed
in such forms of invariants with Daikon.

To address the issues outlined above and improve dynamic
invariant detection, we combine mathematical techniques
that have not been previously applied to the problem:
equation solving, polyhedra, and SMT (Satisfiability Modulo
Theories) solving. More specifically, we focus on generating
invariants expressed as nonlinear arithmetic relations among
program variables and invariants on relations among com-
plex data structures such as multi-dimensional arrays.

This paper makes the following contributions:
• Polynomial Invariants: We find equalities among non-

linear polynomials of program variables using equation
solving, and we find nonlinear inequalities by construct-
ing convex polyhedra. When additional inputs from the
user are available, we can also deduce new inequalities
from previously obtained equality relations.

• Array Invariants: We find linear equalities among arrays
by first finding equalities among array elements and
then identifying the relations among array indices from



the obtained equalities. We find nested array relations
by performing reachability analysis. Our analysis has
potentially high time complexity, thus we encode the
problem as a satisfiability problem, which can be effi-
ciently solved with an SMT solver.

• Evaluation: We implemented a prototype tool, depicted
in Figure 1, based on this approach. The implemen-
tation was evaluated on a set of 24 programs that
come with documented invariants involving nonlinear
polynomials and on an implementation of AES en-
cryption that contains annotated invariants involving
array relations. The tool successfully discovered all
documented invariants of the types described above.

Figure 1. Automatic Generation of Dynamic Invariants. The generator
finds different types of invariants from program traces. The post-processing
step removes redundant and spurious invariants.

Dynamic invariant detection can be viewed as two
separate subproblems: (i) fixing a priori candidate invariants
over program variables and then (ii) ruling out invalidated
candidates based on observed traces of program variables.
We hypothesize that a key reason that previous approaches
do not scale to nonlinear invariants or array invariants is that
they enumerate candidates based on fixed templates (e.g.,
linear equations involving at most three variables). Such
eager enumeration strategies do not scale to higher-degree
polynomials or array invariants due to the large number
of possible candidates. By contrast, our approach lazily
explores the search space based on the structure of the trace
data. It considers candidate invariants based on the traces
available, rather than an eager enumeration. This insight,
coupled with tools such as equation and SMT solvers, allows
us to find human-relevant nonlinear and array invariants in
nontrivial programs efficiently.

The paper is organized as follows: Section II provides
a motivating example. Sections III and IV present our
approach for generating polynomial and array invariants,
respectively. Section V reports experimental results. Sec-
tion VI surveys related work. Section VII concludes the
paper.

II. MOTIVATING EXAMPLE

Invariants are typically placed at the entries and exits of
functions corresponding to pre- and postconditions and/or
the heads of loops corresponding to loop invariants. Given

a location l, the program is instrumented to trace the values
of the variables in scope at l. The instrumented program is
then run against a set of inputs to obtain the traces.

1 int cohendiv(int x, int y){
2 int q = 0; // quotient
3 int r = x; // remainder
4 while (r >= y) {
5 int a = 1;
6 int b = y;
7 while (r >= 2 * b) {
8 // Invariant Location
9 // Invs: b=ya, x=qy+r, r >= 2ya

10 a = 2 * a;
11 b = 2 * b;
12 }
13 r = r - b;
14 q = q + a;
15 }
16 return q;
17 }

Figure 2. Cohen’s integer division algorithm.

The program in Figure 2 implements the well-known
integer division algorithm by Cohen [18], which takes as
input two integers x, y and returns the integer q as the
quotient of x and y. We consider invariants at location l, the
head of the inner while loop on line 9. There are six variables
{a, b, q, r, x, y} in scope at l. Table I consists of five sets of
values representing traces obtained from the variables at l
for inputs {x = 15, y = 2} and {x = 4, y = 1}.

Table I
TRACES OF THE COHEN PROGRAM ON INPUTS

{x = 15, y = 2} AND {x = 4, y = 1}.

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

4 1 1 1 0 4
4 1 2 2 0 4

We want to obtain the polynomial invariants over the vari-
ables {a, b, q, r, x, y} based on such traces. The documented
invariants {b = ya, x = qy + r, r ≥ 2ya}, which cannot be
identified with current dynamic invariant methods, describe
precisely the semantics of the inner while loop in Cohen’s
algorithm.2 The next two sections propose our technique for
generating such invariants from such traces.

III. FINDING POLYNOMIAL INVARIANTS

We take as input the set V of variables at location l, the
associated traces X , and a maximum degree d, and return
possible polynomial relations among the variables in V
whose degree is at most d. Two post-processing techniques

2The invariant x = qy + r asserts that the dividend x equals to the
divisor y times the quotient q plus the remainder r.



are applied to the obtained relations to suppress redundant
relations and to filter out spurious invariants.

A. Polynomial Equations

Figure 3 outlines the procedure for finding equalities of
the form

c1t1 + · · ·+ cntn = 0, (1)

where ci are real-valued and ti are terms in T , the set of
polynomials over the variables in V of degree at most d.

input : set V of variables, set X of traces, maximal degree d
output: set S of polynomial relations of the form (1)

S ← ∅
T ← genTerms(V ,d)
Teq ← genTemplate(T)
Seq ← genEqts(Teq,X)
s← solve(Seq)
if s 6= ∅ then

S ← s

return S

Figure 3. Procedure for finding polynomial equations.

Terms: We first generate the set T of terms over V
that can appear in polynomials with maximum degree d.
For example, when V = {r, y, a} and d = 2, the set
T = {1, r, y, a, ry, ra, ya, r2, y2, a2} has ten terms3 that can
appear in any polynomial of at most degree 2 over variables
{r, y, a}. In general, the number of elements in T is

(|V |+d
d

)
.

The idea of using terms allows us to find nonlinear
equalities using any existing and efficient technique that
solves linear equations. The user can also specify addi-
tional terms to represent other information of interest. Thus,
functions that are specific to a program or that come from
standard libraries (e.g., sqrt, gcd, pow) can also appear in
the discovered invariants.

Solving Equations: Using the terms in T , we create the
equation template Teq : c1 +c2r+c3y+c4a+c5ry+c6ra+
c7ya+c8r

2+c9y
2+c10a

2 = 0. Each trace containing values
of the program variables is then instantiated by Teq to form
an equation of the form (1). For instance, instantiating Teq
with the values r = 15, y = 2, a = 1 from the first trace in
Table I forms the equation c1 + 15c2 + 2c3 + c4 + 30c5 +
15c6+2c7+225c8+4c9+c10 = 0. Repeating this process of
instantiating equations from the traces X gives a system of
linear equations Seq = {e1, . . . , e|X|} over the parameters
ci. Seq can be solved using standard equation solvers for
linear algebra. The nontrivial solutions of Seq, if any, suggest
relations among the terms in T .

In general, to solve for the |T | unknown coefficients ci,
Seq must have at least |T | independent equations. Moreover,
solving a system of n linear equations for k unknown

3Terms of degree 0 are constants, e.g., x0 = 1.

parameters has the complexity of O(n3), assuming n ≥ k.
Thus, the complexity of the procedure in Figure 3 is O(n3),
where n = |T |.

Example: We demonstrate these steps by finding the
nonlinear equalities b = ay, x = qy + r from the Cohen
program. For illustration, we focus on the case where d = 2,
in which the procedure generates quadratic equations.

For the six variables {a, b, q, r, x, y}, together with degree
d = 2, the set T contains 28 terms. T is then used to form
the template Teq with 28 unknown parameters ci to be solved
for:

c1 + c2y + c3q + c4x + c5b + c6a + c7r + c8y
2

+ c9qy + c10xy + c11by + c12ay + c13ry

+ c14q
2 + c15qx + c16bq + c17aq + c18qr

+ c19x
2 + c20bx + c21ax + c22rx + c23b

2

+ c24ab + c25br + c26a
2 + c27ar + c28r

2 = 0.

Teq is instantiated with the elements in X to form Seq.
The nontrivial solutions of Seq for the unknown parameters
ci are of the form c4 = −v3, c5 = v1, c7 = v3, c9 =
v3, c12 = −v1, c16 = −v2, c21 = v2, c27 = −v2 and all
other ci = 0. The values vi are free variables that range over
the reals. The terms in Teq that have zero-valued coefficients
are not related; because the only way to satisfy equations
in Seq is by setting the coefficients of these terms to zero.
In contrast, terms that have coefficients sharing some free
variable v are related through v. To find the relation among
the terms x, r, qy whose respective coefficients c4, c7, c9
share the value v3, we set v3 = 1 and v1 = v2 = 0 (since
the terms x, r, qy are not related by v1, v2). The template
Teq, when being instantiated with {v1 = 0, v2 = 0, v3 = 1},
gives the relation qy + r− x = 0. Similarly, the assignment
{v1 = 1, v2 = 0, v3 = 0} gives b − ay = 0 and
{v1 = 0, v2 = 1, v3 = 0} gives ax− ar − bq = 0.

Observe that the equation ax− ar− bq = 0 is redundant
because we can obtain it from the other two equations
b − ay = 0 and qy + r − x = 0 by substitution. This
happens because each term in T is treated as though it were
independent of other terms, even though there is a relation
among terms such as a, ax, a2. Section III-C provides a
refinement technique to suppress redundant invariants. The
resulting set of equations for the running example after
refinement is {b− ay = 0, qy + r − x = 0}.

B. Polynomial Inequalities

Figure 4 outlines the procedure for finding inequalities
with two methods: one uses polyhedra and an alternative
one uses deduction when additional information is available.
Both methods give sound relations with respect to input
traces; however the deduction method, with the help of
additional information, runs much faster. We continue to use
the Cohen program to show how the nonlinear inequality
r ≥ 2ay can be obtained with both methods.



input : set V of variables, set X of traces, maximal degree d
input : (optional) set ieqs of inequalities from additional

information such as loop conditions
output: set S of polynomial relations of the form (2)

S ← ∅
if ieqs = ∅ then

T ← genTerms(V ,d)
Sp ← genPoints(T ,X)
P ← createPolyhedron(Sp)
S ← extractFacets(P)

else
// if additional information is given
eqts ← genInvsEqts(V ,X ,d)
S ← deduceieqs(eqts,ieqs)

return S

Figure 4. Procedure for finding polynomial inequalities.

1) Using Polyhedra: This method also consists of creat-
ing terms from variables as described previously. However,
instead of solving equations, the method constructs points
from traces and builds a bounded convex polyhedron that
covers all the trace points. The facets or boundaries of the
polyhedron represent possible inequalities among program
variables of the form

c1t1 + · · ·+ cntn ≥ 0, (2)

where ci are real-valued and ti are terms.
After the set T of terms is created, the traces X are used

to generate points in |T |-dimensional Euclidean space, and
a convex polyhedron P is computed to enclose all these
points. A bounded convex polyhedron P can be described
by a system of linear inequalities of the form (2). This is
called the half-space representation of a polyhedron. The
facets of P , corresponding to the solutions of the system of
linear inequalities, are the inequalities among the terms in
T . Figure 5 depicts a 2D polyhedron that has seven facets.

Figure 5. A bounded convex polyhedron with seven facets representing
inequalities that constraint the points pi.

The complexity of building P in n dimensions from
k points has a theoretical exponential upper bound
Θ(kb

n
2 c) [19]. In our case, n is the size of T . For the Cohen

program, while solving equations for 28 unknown parame-
ters is relatively efficient, building a convex polyhedron in 28

dimensions is not feasible. Consequently, several heuristics
are employed to identify possible inequality relations.

We first observe that a program invariant often involves
just a small subset of all possible program variables. The
previously found invariant b−ay = 0 involves only {y, a, b}
even though all six variables in scope were considered.
To exploit this experience, we have experimented with
heuristics, such as iteratively looking for invariants involving
all possible combinations of a small, fixed number of vari-
ables. Being able to determine which variables are needed
greatly speeds up the process and is further discussed in
Section V-C.

Example: The Cohen program has six variables
{a, b, q, r, x, y}. As a first step, we generate possible in-
equality relations in which at most three of these variables
appear. There are

(
6
3

)
= 20 combinations containing three

variables, one of which is {r, y, a}. To find nonlinear
inequalities, terms of degree d are built on the variables
under consideration. With d = 2, we generate the set
T = {1, r, y, a, ry, ra, ya, r2, y2, a2} of terms.

The elements of T are instantiated with the traces X
to form a set Sp of points. For instance, the first trace
in Table I gives the point [1, 15, 2, 1, 30, 15, 2, 225, 4, 1] in
10-dimensional Euclidean space corresponding to the terms
in T . The convex polyhedron P is then constructed to
enclose the points in Sp. One of the facets enclosing P
corresponds to the documented invariant r − 2ya ≥ 0.
The inequalities represented by other facets are also valid
with respect to the input traces, although they might not
be program invariants that hold for every run. The filtering
technique in Section III-D helps remove spurious invariants.

2) Deduction From Loop Conditions: Using convex poly-
hedra to find inequalities works well but does not scale
to large numbers of terms. Consequently, we developed an
alternative technique using deduction to find inequalities
if additional information is available. More specifically,
if some inequalities are asserted at location l, then we
can use them together with the discovered equalities from
Section III-A to deduce new nontrivial inequalities. For
instance, if the location l is the head of a loop L, then
l can be reached if and only if the loop conditions of L
are met. Such loop conditions are an example of additional
information, which can be given by the user to facilitate the
process of generating additional invariants.

Example: We demonstrate how deduction is applied to
the Cohen example. First, the set of equations {b − ay =
0, qy+r−x = 0} representing possible invariants at location
l is obtained as described in Section III-A. The head of the
inner loop at location l is reached only when the condition
of that loop r ≥ 2b is met, thus r − 2b ≥ 0 is also
an invariant at l. New and nontrivial inequalities can be
deduced from this additional information using deduction,
term rewriting, and substitution. In the current implemen-



tation, we pair inequalities from the loop conditions with
the obtained equations to deduce new inequalities. For the
running example, r − 2ay ≥ 0 is deduced from the pair
(r − 2b ≥ 0, b − ay = 0) and x − qy − 2b ≥ 0 is deduced
from (r − 2b ≥ 0, qy + r − x = 0). Hence, the deduction
technique finds the set of possible inequalities {r − 2ya ≥
0, x − qy − 2b ≥ 0} among variables {a, b, q, r, x, y} at
location l. We note that even though x − qy − 2b ≥ 0 is
not a documented invariant, it is indeed one of the loop
invariants of the inner while loop in the Cohen program.

In contrast to finding inequalities by constructing convex
polyhedra, using deduction requires additional information
and is incomplete in the sense that it only deduces properties
from the resulting equations and the supplied loop condi-
tions. However, it has a low complexity of O(n3), where
n = |T | (the cost of running an equation solver). In our
evaluation, this hybrid method efficiently discovers all the
documented inequalities of the benchmark programs.

We now discuss two post-processing techniques that help
remove redundant and spurious invariants. These techniques
are useful because the obtained set of relations may contain
redundant information (e.g., two relations may imply a third)
or may contain spurious invariants (relations drawn from
limited data sample that do not hold for additional inputs).

C. Implication

To reduce the size of the invariant set, we remove invari-
ants that are logically implied by others. For instance, we
suppress the invariant x2 = y2 if another invariant x = y is
also found because the latter implies the former. Redundant
invariants can often occur in our approach, as seen in the
Cohen example in Section III-A, because we treat each term
as an independent variable for the purposes of nonlinear
polynomials discovery. For example, if t1 = x, t2 = y, t3 =
x2, t4 = y2 then x = y implies x2 = y2; however, their
corresponding term relations, t1 = t2 and t3 = t4, have no
direct relation. To verify an implication, we use an off-the-
self SMT solver to show the negation of that implication is
unsatisfiable. Note that we apply this technique before using
the deduction method discussed in Section III-B2.

D. Filtering

Dynamic invariant analysis finds invariants that hold only
for specific traces. If additional traces become available,
such as by running the program on a different input set,
they can be used to check the set of proposed relations in
linear time. The obtained relations are verified against the
new traces and are removed if they do not satisfy the new
data.4 This step allows us to increase our confidence about
the obtained results and to remove those that do not hold
for all available traces.

4We note this idea of filtering is also used in existing dynamic invariant
detectors such as Daikon; however we apply it on our generated results
whereas Daikon uses the technique on its predefined templates.

IV. FINDING ARRAY INVARIANTS

We take as input the set V of (possibly multi-dimensional)
array variables at location l and the associated traces X , and
return possible relations among the elements of arrays in V .
The filtering technique given in Section III-D is also applied
to the obtained relations to help remove spurious invariants.5

A. Simple Array Relations

Figure 6 outlines the procedure for finding linear simple
(non-nested) relations among array elements of the form

A1 + c2A2 + · · ·+ cnAn + c0 = 0, (3)

where Ai are distinct (possibly multi-dimensional) arrays
whose elements are real-valued. The array A1 (with unit
coefficient), called the pivot array, is privileged in our
approach because the coefficients ci and indices of other
arrays A2, . . . , An are hypothesized as linear expressions
ranging over the indices of A1. An example invariant of
this form is A[i][j]− 1

2jB[2i + j] + 2C[7i][3] + 5 = 0.

input : set V of array variables, set X of traces
output: set S of array relations of the form (3)

S ← ∅
// obtain linear relations among array elements
V ′ ← genNewVars (V )
eqts ← genInvsEqts(V

′,X ,d = 1)
Rs← group(prune(eqts))
if Rs 6= ∅ then

foreach R ∈ Rs do
pivot ← genPivot (R)
exps ← genLinExps (pivot)
s← solve(exps,R)
S ← S + {s}

return S

Figure 6. Procedure for finding simple array relations.

For simplicity, the following explains the procedure for
two single-dimensional arrays, i.e., V = {A,B}, although
the method generalizes to multi-dimensional arrays.

Relations Among Array Elements: We first generate a
set V ′ of new variables representing elements of the arrays
in V . Next, we find linear equalities (Section III-A) over
the variables in V ′ from the input traces X . The obtained
equations represent relations among array elements. Because
only relations among different arrays are of interest, we keep
only those that express relations among array elements of
different arrays. The remaining relations are then grouped
based on the arrays whose elements are appearing in those
relations; for example, relations among elements of arrays
A,B,C belong to one group and relations among elements
of arrays D,E, F belong to another group.

5The implication technique in Section III-C is not necessary because
polynomial terms are not used to find array relations.



The complexity of the procedure in Figure 6 is dominated
by this step, because we invoke an equation solver to find
relations among all array elements. The time complexity of
the solver on this problem is O(n3), where n = |V ′|, the
number of elements of the arrays in V .

Relations Among Array Indices: Among the obtained
groups of relations, we only consider ones having the set
R of relations of the form:

A0 + b0Bj0 + c0 = 0,

A1 + b1Bj1 + c1 = 0,

A2 + b2Bj2 + c2 = 0,

...
Am + bmBjm + c3 = 0,

where m is |A| − 1, bi, ci are real-valued, ji are integers,
and Ai, Bji are the variables in V ′ representing A[i], B[ji].

In such a group of relations, A is chosen as the pivot array
because elements of other arrays are related to elements
of A. We hypothesize that the coefficients bi, ci and the
indices ji of array B are linear expressions ranging over the
indices of A. For instance, we represent the relation between
B[j] and A[i] through the parameterized linear expression
j = p1i+q1, where p1 and q1 are unknown coefficients to be
solved for. This expression is then instantiated with the infor-
mation from R: j = p1i+ q1 instantiated with i = 0, j = j0
(the first relation in R) gives j0 = q1, with i = 1, j = j1
gives j1 = p1 + q1, with i = 2, j = j2 gives j2 = 2p1 + q1,
and so forth. Any solution of this system of equations gives a
relation of the form A[i] = (p0i+q0)B[p1i+q1]+(p2i+q2).

Example: We illustrate the method by finding the relation
A[i] = 7B[2i]+3i between arrays A,B, where |A| = 3 and
|B| = 5, using traces X that exhibit such a relation. An ex-
ample trace in X contains the values A = [−546,−641, 34]
and B = [−78, 3,−92,−34, 4].

We generate a set of eight variables to represent the
elements of A and B. Based on the given trace, the set
R = {A0−7B0 = 0, A1−7B2−3 = 0, A2−7B4−6 = 0}
is obtained. A is designated as the pivot because all of its
elements have relations with elements of B. The relation
between B[j] and A[i] is expressed as j = p1i + q1. We
then instantiate j = p1i + q1 with the information from R
and obtain the set of equations {0 = q1, 2 = p1 + q1, 4 =
2p1 + q1}. The unique solution {q1 = 0, p1 = 2} of these
equations yields j = 2i, i.e., A[i] = biB[2i] + ci. Similarly,
we instantiate the analogous equations for bi and ci. After
solving these, the array relation A[i] = 7B[2i] + 3i is
obtained.

B. Nested Array Relations

Figure 7 outlines the procedure for finding linear nested
relations among array elements of the grammar

A[i] · · · [i]→ e (4)
e→ c | f(i, . . . , i) | B[e] · · · [e],

where A,B are distinct (possibly multi-dimensional) arrays,
A is the pivot array, c is real-valued, and f is a linear expres-
sion ranging over the indices i of A. An example relation of
this form is A[i][j][k] = F [B[2i + 3]][C[D[3]][E[4j + k]]].

input : set V of array variables, set X of traces
output: set S of array relations of the form (4)

S ← ∅
// generate nestings
// e.g., A[i] = B[. . . ], A[i] = C[. . . ], B[i] = C[. . . ], . . .
nestings ← genNestings (V )
foreach nesting ∈ nestings do

R← analyzeReachability(nesting,X)
if R 6= ∅ then

f ← genFormula (R)
s← SMT (f )
if s 6= ∅ then

S ← S + {s}

return S

Figure 7. Procedure for finding nested array relations.

For simplicity, the following explains the procedure for
three single-dimensional arrays, i.e., V = {A,B,C}, al-
though the method generalizes to multi-dimensional arrays.

Reachability Analysis: When the procedure in Sec-
tion IV-A cannot find simple relations among the arrays in
V , we hypothesize that arrays may be related through some
nested structure. For instance, the relation A[i] = B[C[k]]
implies that the elements of A are related to the elements
of B using the elements of C as indices into B.

For such a relation to hold, the elements of A must
be in B, i.e., the contents of A are some subset of B:
{A[0] = B[j0], A[1] = B[j1], . . . , A[m] = B[jm]}. More-
over, the indices ji of B occur as elements of C, i.e., the
indices ji of B are some subset of C: {j0 = C[k0], j1 =
C[k1], . . . , jm = C[km]}. A set R of relations of the
form {A[0] = B[C[k0]], A[1] = B[C[k1]], . . . , A[m] =
B[C[km]]}, specifies that elements of A reach elements of
C through elements of B. This suggests the possible nested
array relation A[i] = B[C[k]].

The complexity of the procedure in Figure 7 is dominated
by this step, because if the nesting depth is d and a value is
found at n locations at each nesting level, then the number of
relations generated by the reachability analysis is nd. Thus,
the time complexity of reachability analysis is exponential
in the nesting depth.



Relations Among Array Indices: This step is conceptually
similar to that of Section IV-A in which the relation between
C[k] and A[i] is represented by the parameterized linear
expression k = pi + q.

Instantiating k = pi+q, where i, k represent the respective
indices of A,C, with the information from R, we get the
set of equations {k0 = q, k1 = p + q, . . . , km = mp + q}.
Any solution of this system of equations gives a relation of
the form A[i] = B[C[pi + q]].
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Figure 8. Reachability analysis showing A[0] = B[C[1]] (dotted), A[1] =
B[C[2]], A[1] = B[C[3]] (solid), and A[2] = B[C[5]] (dashed).

Example: Figure 8 illustrates the method by finding
the relation A[i] = B[C[2i + 1]] from the trace A =
[7, 1,−3], B = [1,−3, 5, 1, 0, 7, 1], C = [8, 5, 6, 6, 2, 1, 4].

Nestings such as B[i] = C[. . . ] can be ruled out imme-
diately because the element −3 of B is not in C. Note the
use of traces is essential here as it allows us to quickly filter
out invalid nestings. Reachability analysis shows that the
contents of A are in B, namely A[0] = B[5], A[1] = B[0] =
B[3] = B[6], A[2] = B[1], thus suggesting a relation of the
form A[i] = B[. . . ]. Next, since the index value 5 of B
appear in C as C[1], we obtain the relation A[0] = B[C[1]].
The index values 0 and 3 of B do not occur in C, however
the index value 6 of B appears twice in C as C[2] and C[3].
This results in A[1] = B[C[2]] or A[1] = B[C[3]]. Finally,
the analysis yields A[2] = B[C[5]] because the index value
1 of B appears in C as C[5].

We hypothesize the possibility of the nested relation
A[i] = B[C[k]], where k is the parameterized linear ex-
pression k = pi + q, because elements of A are related to
elements of B using elements of C as indices into B as given
by either the set of relations R1 : {A[0] = B[C[1]], A[1] =
B[C[2]], A[2] = B[C[5]]} or R2 : {A[0] = B[C[1]], A[1] =
B[C[3]], A[2] = B[C[5]]}.

Instantiating k = pi + q with the information from R1

gives the set of equations {1 = q, 2 = p + q, 5 = 2p + q}.
This has no solution, thus no relation of the form A[i] =
B[C[k]] is derived. Next, we instantiate k = pi + q with
the information from R2 and obtain the set of equations
{1 = q, 3 = p + q, 5 = 2p + q}. The unique solution {p =
2, q = 1} for this implies the relation A[i] = B[C[2i + 1]].

We now present techniques to include functions into
invariant forms and improve the performance of invariant

generation with an SMT solver. The following demonstrates
these techniques on nested array relations even though they
can also be applied to invariant of other forms.

C. Functions

Array invariants involving user-defined functions, e.g.,
A[i] = f(C[i], g(D[i])), require special treatment. We view
a function f with n arguments as an n-dimensional array
F , where the element F [i1] . . . [in] contains the output
of f(i1, . . . , in). Thus, if f is the mult function, then
F [4][7] = F [7][4] = 28. For efficiency, F is represented as a
partial array that stores only observed values. For example,
if A = [4, 7] and B = [5] are considered, then F contains
just the elements F [4][4], F [4][5], F [4][7], . . . , F [7][7]. Our
approach extends to invariants involving function composi-
tion, such as g(f(A[. . . ], B[. . . ])). For instance, if g is mod2
which maps even and odd inputs to 0 and 1 respectively,
then the corresponding array G has its indices as elements
of A,B, F , e.g., G[4] = G[28] = 0, G[5] = G[7] = 1.
Currently, we enforce finite depth in nested array relations
by disallowing a function to appear in the scope of one of
its arguments, e.g., g(f(g(. . . ), f(. . . ))).

The inclusion of functions thus allows us to generate
invariants involving functions, such as the nested array in-
variant R[i] = T (mod255(add(L(A[i]), L(B[i])))) required
for the multWord operation in AES.

D. Satisfiability Problem Formulation

Because of the potentially high complexity of reachability
analysis, we encode the steps for finding nested array
relations as a satisfiability problem, which can be solved
efficiently with an SMT solver.6

We show how to encode the procedure for finding nested
array relations into a CNF formula f . Returning to the
example in Section IV-B, once the relation A[0] = B[C[1]]
is obtained, we create the atom 1 = q. Likewise, the
disjunctive formula (2 = p + q ∨ 3 = p + q) consisting
of two atoms is formed to represent A[1] = B[C[2]] or
A[1] = B[C[3]]. Similarly, the atom 5 = 2p + q is created
for A[2] = B[C[5]]. Since the relation should hold for all
elements (i.e., ∀i. A[i] = B[C[pi + q]]), we combine all
atoms into the final CNF formula f : (1 = q) ∧ (2 =
p + q ∨ 3 = p + q) ∧ (5 = 2p + q). Next, we query the
SMT solver to return, if possible, an assignment of integers
(since array indices are integers) to the variables p and q
that satisfies f . In this example, the resulting assignment
{p = 2, q = 1} yields the relation A[i] = B[C[2i + 1]].

SMT solvers improve the performance of our method
considerably, even though the worst-case complexity of the

6Satisfiability modulo theories (SMT) solvers determine the satisfiability
of a formula (that contains variables ranging over domains such as the reals,
the integers, pointers, bit vectors, and so on). In the case of a satisfiable
formula, the SMT solver can also produce a satisfying assignment of values
to variables in the formula.



problem remains exponential. Our original implementation
without the solver took approximately five minutes to find
nested array relations of the multWorld function from AES
due to the large number of generated relations. By encoding
the generated relations directly into an SMT formula, the
problem was solved in under five seconds with an off-the-
self SMT solver.

V. EXPERIMENTAL RESULTS

We have implemented a prototype of our invariant gen-
eration approach in Python using the Sage mathematical
environment [20]. The prototype uses built-in Sage functions
to solve equations and construct polyhedra. It also uses
qepcad [21] to remove redundant invariants and Z3 [22] to
check the satisfiability of SMT formulae. The experiments
reported here were performed on a Unix-based system with
a dual-core 2.3GHz Intel i5 CPU and 8 GB of RAM.

A. Programs

We evaluated our prototype on programs taken from a
test suite which we call NLA (nonlinear arithmetic) and an
implementation of AES. The details of NLA and AES are
given in Tables II and III, respectively.

The NLA test suite consists of 24 programs from var-
ious sources collected by Rodrı́guez-Carbonell and Ka-
pur [23], [24]. These programs implement classic arithmetic
algorithms that are widely used in programming, such as
mult, div, pow,mod, sqrt, gcd, lcm. The programs are rela-
tively small, about 20 lines of C code each. However, they
implement nontrivial mathematical algorithms and are often
used to benchmark static analysis methods. Importantly,
the complexity of our method depends on the size of the
traces, the number of variables of interest, and the type
of relations among program variables—not the size of the
program per se. Among the 24 programs from NLA, there
are 35 documented nonlinear invariants: 33 are equations
and 2 are inequalities.

The second benchmark, AES′, is an annotated AES im-
plementation from Yin et al. [25]. It exemplifies a real-
world security-critical application and contains nontrivial
array invariants. To show that functions in the AES′ im-
plementation conform to the formal AES specification, the
authors of AES′ inspected and documented the invariants
of each function in AES′ and then fully verified the result
using SPARK Ada and PVS. The annotated invariants rep-
resent the manual effort required to fully functionally verify
an AES implementation using axiomatic semantics. AES′

contains 868 lines of Ada code organized into 25 functions
containing 30 invariants: 8 simple array relations, 7 nested
array relations, 2 linear equations, and 13 other relations.

Program Locations and Execution Traces: Our test pro-
grams come with documented invariants at various loca-
tions such as loop heads and function exits. For evaluation
purpose, we manually instrumented the source code of the

programs to trace values of all variables in the scope at
each program location containing a known invariant. Our
goal is to find invariants at those locations automatically
and compare them to the human-documented invariants.

The instrumented programs were run against a set of
randomly selected inputs. The number of obtained traces
is different across programs and program locations. For
example, locations inside loops may be visited many times
while function exits may be visited rarely. From the obtained
traces, we randomly chose a set of 200 as traces input to
the invariant generator and another set of 50 for filtering
as described in Section III-D. Note that our prototype
automatically adjusts the number of traces for optimization
(e.g., 200 traces are not necessary to solve for 10 unknown
coefficients).

B. Result Quality

NLA: Table II lists our experimental results on 24 pro-
grams from NLA, averaged over 20 runs. The Vars column
reports the number of distinct variables in that program’s in-
variants, Deg reports the highest polynomial degree in those
invariants, Invs reports the number of invariants found by
our approach and the total number of documented invariants,
and T reports the average time in seconds to discover the
invariants, including the time to refine the results.

We found all 35 documented nonlinear invariants from
the NLA test suite. In most cases, the results matched the
documented invariants exactly as written. Occasionally, we
achieved results that are mathematically equivalent to the
documented invariants. For example, the sqrt1 program has
two documented equalities 2a + 1 = t and (a + 1)2 = s,
our results give 2a + 1 = t and t2 + 2t + 1 = 4s, which is
equivalent to (a+1)2 = s by substituting t with 2a+1. We
note that current dynamic analysis approaches cannot find
any of these nonlinear relations.

AES7: Table III lists our experimental results on 25 func-
tions from AES, averaged over 20 runs. The Arrs column
reports the number of distinct arrays in that program’s
invariants, Dim reports the highest dimension of the arrays
in those invariants, Inv Types reports the types of invariant:
Simple, Nested, and Others. N(d) specifies that the nesting
depth is d. The driver functions are composed from other
functions in this table.

We found all 17 relations that are expressible in our
considered forms. The other 13 invariants do not fall into
categories described above and are left for future work.
These can be grouped into three categories: Others1−3.
Others1 includes nested array invariants such as A[i] =
4B[6C[. . . ]]. We current do not handle such nested invari-
ants when the elements of A are not exactly nested in B.
Others2 includes array invariants such as A[i] = B[. . . ]

7When there is no ambiguity, we refer to the considered AES′ imple-
mentation simply as AES.



Table II
EXPERIMENTAL RESULTS ON 24 PROGRAMS FROM NLA.

Program Desc Inv Types Vars Deg Invs T (s)

divbin div eq 5 2 1/1 0.5
cohendiv div eq, ieq 6 2 2/2 1.3
mannadiv int div eq 5 2 1/1 0.3
hard int div eq 6 2 1/1 0.9
sqrt1 sqr eq, ieq 4 2 2/2 0.7
dijkstra sqr eq 5 2 1/1 0.5
freire1 sqr eq 3 2 1/1 0.2
freire2 cubic root eq 4 3 2/2 3.2
cohencube cube eq 5 3 3/3 12.6
euclidex1 gcd eq 10 2 3/3 6.5
euclidex2 gcd eq 8 2 2/2 2.5
euclidex3 gcd eq 12 2 4/4 10.1
lcm1 gcd, lcm eq 6 2 1/1 0.5
lcm2 gcd, lcm eq 6 2 1/1 0.6
prodbin product eq 5 2 1/1 0.3
prod4br product eq 6 3 1/1 8.1
fermat1 divisor eq 5 2 1/1 0.8
fermat2 divisor eq 5 2 1/1 0.4
knuth divisor eq 8 3 1/1 71.5
geo2 geo series eq 4 2 1/1 0.2
geo3 geo series eq 5 3 1/1 3.1
ps2 pow sum eq 3 2 1/1 0.1
ps3 pow sum eq 3 3 1/1 0.3
ps4 pow sum eq 3 4 1/1 0.8

24 programs 2 types 35/35 126.0s

where i = {0, 4, 8, 12, . . . } and A[i′] = B[. . . ] where
i′ = {1, 2, 3, 5, 6, 7, 9, 10, 11 . . . }. We require that generated
relations such as A[i] = B[. . . ] hold for all i. Others3
includes array invariants involving functions whose inputs
are arrays, such as f([1, 2]). We only consider functions with
scalar inputs such as g(7, 8). We note that existing dynamic
analysis methods cannot find these array relations either.

The manual annotation of AES with sufficient invariants
to admit machine-checked full formal verification was a sig-
nificant undertaking involving hours of tool-assisted manual
effort [25], [26]. Annotating pre- and postconditions and
loop invariants has not been solved in general and is known
to be a key bottleneck in approaches based on axiomatic
semantics [27]. It is not surprising that our approach was
unable to discover all relevant invariants; indeed, we view
reducing the manual verification annotation burden by one-
half as a strong result.

To summarize, we found all of the invariants under
consideration: 100% of the documented nonlinear invariants
in NLA and 17 out of 30 documented invariants in AES. The
other 13 invariants are beyond the scope of this paper and
left for future work. On average, it takes under five seconds
to find the invariants for each program. To the best of our
knowledge, no other dynamic invariant analysis approaches
have analyzed the forms of invariants discussed in this paper.

Table III
EXPERIMENTAL RESULTS ON 25 FUNCTIONS FROM AES.

Function Desc Inv Types Arrs Dim Invs T (s)

multWord mult N(4) 7 2 1/1 3.6
xor2Word xor N(1) 4 2 1/1 0.1
xor3Word xor N(1) 5 3 1/1 0.1
subWord subs N(1) 3 1 1/1 0.4
rotWord shift S 2 1 1/1 0.5
block2State convert S 2 2 1/1 2.0
state2Block convert S 2 2 1/1 11.7
subBytes subs N(1) 3 2 1/1 0.6
invSubByte subs N(1) 3 2 1/1 3.8
shiftRows shift S 2 2 1/1 12.2
invShiftRow shift S 2 2 1/1 8.3
addKey add N(1) 4 2 1/1 0.6
mixCol mult O3 4 2 0/1 -
invMixCol mult O3 4 2 0/1 -
keySetEnc4 driver S,O2 2 2 1/2 4.5
keySetEnc6 driver S,O2 2 2 1/2 6.7
keySetEnc8 driver S,O2 2 2 1/2 10.6
keySetEnc driver O3 4 1 0/1 -
keySetDec driver O3 4 2 0/1 -
keySched1 driver O1 3 2 0/1 -
keySched2 driver O1 3 2 0/1 -
aesKeyEnc driver eq,O3 7 2 1/2 0.1
aesKeyDec driver eq,O3 7 2 1/2 0.1
aesEncrypt driver O3 8 4 0/1 -
aesDecrypt driver O3 8 4 0/1 -

25 functions 6 types 17/30 65.9s

C. Threats to Validity

Two of the operations, namely reachability analysis and
polyhedra construction, have exponential complexity in the
worst case. We address these issues by using existing SMT
solvers and by deducing new inequalities through loop
conditions. Nonetheless, our method may not scale to very
large scenarios.

Our method for deducing new inequalities assumes addi-
tional inputs from the user. We hypothesize that program-
mers may have knowledge about the loop entry conditions
when they want to analyze more general loop and function
invariants. Nonetheless, we emphasize that additional infor-
mation, while useful, is not required to find inequalities.
The use of additional information also allows for hybrid
approaches using static analysis. For example, techniques
such as slicing [28] could be used to find how variables are
likely related to one another, reducing the number of variable
combinations processed by our method.

Floating point values are subject to roundoff errors that
may confound some exact checks. Given an abundance
of available traces, we filter out certain traces containing
rounded float values. Our tool also allows comparison within
ε instead of exact comparisons; e.g., 0.33333 ≈ 1/3 and
0.99998 ≈ 1.0. The use of established techniques from
numerical analysis to handle other corner cases in floating
point arithmetic is left for future work.



The effectiveness of our method depends on program
traces produced by test inputs. We cannot derive properties
that are not exhibited from the traces. For example, if the
relation x + y > 10, but not x + y = 10, is implicated by
the traces, then we cannot find the inequality x + y ≥ 10.
We note the existence of many active research projects on
generating high-coverage test inputs and efficient test suites.
In particular, we can take advantage of an entire body
of work on generating test suites specifically for dynamic
invariant detection [29]–[31].

Spurious invariants, which are common in dynamic invari-
ant analysis, are also present in our work. However, we find
few spurious invariants on our benchmarks after filtering: 2
for equalities over polynomials, 0 for inequalities (using the
deduction method), and 4 for arrays. One source of spurious
invariants is overfitting; i.e. learning behavior from a small
set of traces that does not hold for other runs. However, these
spurious behaviors are mostly pruned during the filtering
step, which checks the candidate invariants against another
set of data. Thus, even with the relatively small number
of runs in our experiments (200 for data gathering, 50 for
filtering), we found the occurrence of spurious invariants to
be rare (6, as above).

We acknowledge, however, that the polyhedral method
could generate many spurious inequalities if the analysis
produces convex polyhedra with multiple overly complicated
facets (e.g., x2+0.123842932 ≥ 0) when run against sample
traces representing data points in higher dimensions. Indeed,
a key motivation for the deduction method presented in
Section III-B2 was to avoid constructing complex polyhedra.

Finally, our work focuses on specialized types of in-
variants. It is unlikely that it will find invariants of other,
unrelated forms, as seen in the AES benchmark. We believe
that our approach strikes a balance between rich expressive
power, allowing it to find many invariants with real-world
uses (e.g., documentation in NLA, verification in AES), and
efficiency, allowing it to complete in seconds per program.

VI. RELATED WORK

The Daikon system [9] is a very popular invariant detector
that uses dynamic analysis to find program invariants. The
method is essentially brute-force: Daikon comes with a large
list of invariant templates and tests them against program
traces. Templates that are violated in any of the test runs are
removed and the remainders are presented as the possible
invariants. By default, the system reports invariants at the
entry and exit points of a function, although it is possible to
extract invariants at other locations, such as inside loops, by
manual instrumentation. In addition, Daikon can check user-
supplied invariants. However, as mentioned earlier, Daikon
can only find linear equations and inequalities over a few
variables and has limited support for relations among arrays.

Other systems also find invariants using dynamic analysis
for specific purposes, such as debugging a certain type of

error. The Diduce [32] tool analyzes what happens when
an error occurs by looking at the difference between the
previous and current values of variables. Statistical Debug-
ging [33] is a fault localization technique that looks for
simple relations (e.g., {<,=, >}) between one variable and
another variable or constant. The Spin model checker [34]
can also find relations over two variables. In general, these
approaches find invariants that are relatively simple com-
pared to those given by Daikon. Thus, they cannot discover
the types of invariants considered in this paper.

VII. CONCLUSION

We present the first dynamic invariant generation tech-
nique that can discover nonlinear polynomial and linear
array invariants. Our method applies mathematical tech-
niques not previously employed to aid dynamic invariant
detection. For nonlinear equality relations, we generate terms
representing nonlinear polynomials among variables and use
an equation solver to find equality relations among the terms;
this yields nonlinear relations among the original variables.
For nonlinear inequality relations, we generate terms and
then build convex polyhedra, obtaining the desired relations
from their facets. When additional information, such as a
loop entry condition, is available, we can efficiently take
advantage of it to deduce new inequalities by combining
discovered equality relations with the provided loop condi-
tion. For simple array relations, we look for relations among
individual array elements and extract from those results the
possible relations among the array indices. For nested array
relations, we build an SMT query using information obtained
from a reachability analysis; the satisfying assignment pro-
vided by the SMT solver yields the desired invariant.

Our evaluation demonstrates the feasibility and potential
of the approach by successfully identifying 100% of the
nonlinear invariants in 24 complex algorithms as well as
60% of the documented array relations necessary for full
formal verification of an AES implementation.
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