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A b s t r a c t  

Model checking has been widely successful in validating and 
debugging designs in the hardware and protocol domains. 
However, state-space explosion limits the applicability of 
model checking tools, so model checkers typically operate 
on abstractions of systems. 

Recently, there has been significant interest in applying 
model checking to software. For infinite-state systems like 
software, abstraction is even more critical. Techniques for 
abstracting software are a prerequisite to making software 
model checking a reality. 

We present the first algorithm to automatically construct 
a predicate abstraction of programs written in am industrial 
programming language such as C, and its implementation in 
a tool - -  C2BP. The C2BP tool is part of the SLAM toolkit, 
which uses a combination of predicate abstraction, model 
checking, symbolic reasoning, and iterative refinement to 
statically check temporal safety properties of programs. 

Predicate abstraction of software has many applications, 
including detecting program errors, synthesizing program 
invariants, and improving the precision of program analy- 
ses through predicate sensitivity. We discuss our experience 
applying the C2BP predicate abstraction tool to a variety 
of problems, ranging from checking that  list-manipulating 
code preserves heap invariants to finding errors in Windows 
NT device drivers. 

1 I n t r o d u c t i o n  

In the hardware and protocol domains, model checking has 
been used to validate and debug systems by algorithmic ex- 
ploration of their state spaces. State-space explosion is a 
major limitation, and typically model checkers explore the 
state space of an abstracted system. For software, which 
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is typically infinite-state, abstraction is even more critical. 
Any effort to model check software must first construct an 
abstract model of the software. 

A promising approach to construct abstractions auto- 
matically, called predicate abstraction, was first proposed by 
Graf and Sa~di [19]. With predicate abstraction, the con- 
crete states of a system are mapped to abstract states ac- 
cording to their evaluation under a finite set of predicates. 
Automatic predicate abstraction algorithms have been de- 
signed and implemented before for finite-state systems and 
for infinite-state systems specified as guarded commands. 
However, no one has demonstrated automatic predicate ab- 
straction on a programming language such as C. 

We present a tool called C2Br, that  performs automatic 
predicate abstraction of C programs. Given a C program 
P and a set E of predicates (pure C boolean expressions 
containing no function calls), C2BP automatically creates a 
boolean program BP(P, E), which is an abstraction of P. A 
boolean program is essentially a C program in which the only 
type available is boolean (the boolean program language has 
some additional constructs that  will be presented later). The 
boolean program has the same control-flow structure as P 
but contains only IEI boolean variables, each representing a 
predicate in E. For example, if the predicate (x < y) is in 
E, where x and y are integer variables in P, then there is 
a boolean variable in BTa(P, E) whose truth at a program 
point pimplies  that  (x < y) is true at p i n  P.  For each 
statement s of P ,  C2BP automatically constructs the cor- 
responding boolean transfer functions that  conservatively 
represent the effect of s on the predicates in E. The re- 
sulting boolean program can be analyzed precisely using a 
tool called BEBOP [5] that  performs interprocedural dataflow 
analysis [31, 28] using binary decision diagrams. 

We present the details of the C2BP algorithm, as well 
as results from applying C2BP to a variety of problems and 
programs: 

• We have applied C2BP and BEBOP to pointer- 
manipulating programs to identify invariants involving 
pointers. In one example, these invariants lead to more 
precise aliasing information than is possible with a flow- 
sensitive alias analysis. In another example, we show 
that  list-manipulating code preserves various structural 
properties of the heap, as has been done with shape 
analysis [30]. This is noteworthy because our predicate 
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language is a quantifier-free logic, ra ther  than the more 
powerful logic of [30]. 

® We have applied C2BP and BEBOP to examples fi'om 
Necula's work on proof-carrying code [26] to automat i -  
cally identify loop invariants in these examples that  the 
PCC compiler was required to generate. 

We have used C2BP in the SLAM toolkit  to check tem- 
poral  safety propert ies of Windows NT device drivers. 
The SLAM toolkit  uses C2BP and BEBOP to statically 
determine whether or not an assertion violation can 
take place in C code. A unique part  of the toolkit  is its 
use of a demand-driven i terative process to automat i -  
cally find predicates tha t  are relevant to the part icular  
assertion under examination.  When the current set of 
predicates and the boolean program abstract ion tha t  
it  induces are insufficient to show tha t  an assertion 
does /doesn ' t  fail, new predicates are found to refine 
the abstraction. Although the SLAM process may not 
converge in theory, due to the undecidabil i ty of the as- 
sertion violation problem, it has converged on all NT 
device drivers we have analyzed (even though they con- 
tain loops). 

For a detailed proof of soundness of the abstract ion al- 
gori thm presented in this paper,  the interested reader is re- 
ferred to our technical repor t  [3]. In work with Andreas 
Podelski [4] we have used the framework of abstract ion in- 
terpre ta t ion to formalize the precision of the C2BP algo- 
r i thm for single procedure programs with no pointers. Sec- 
t ion 4.6 reviews the soundness theorem for C2BP that  we 
have proved and describes our precision results. 

The rest of this paper  is organized as follows. Sec- 
tion 2 gives an example of applying C2sP to a pointer- 
manipula t ing C procedure. Section 3 lists the challenges in 
performing predicate abstract ion on C programs. Section 4 
describes our predicate abstract ion algori thm in detail. Sec- 
tion 5 describes extensions and optimizations to the  C2BP 
tool. Section 6 presents results on applying the C2BP tool 
to a variety of C programs. Section 7 reviews related work 
and Section 8 concludes the  paper.  

2 E x a m p l e :  Invariant Detec t ion  in P o i n t e r -  
m a n i p u l a t i n g  P r o g r a m s  

This section presents the applicat ion of C2BP and the BE- 
BOP model  checker to a pointer-manipulat ing procedure. 
The combination of the two tools determines program-point-  
specific invariants about  the  procedure, which can be used 
to refine pointer  aliasing information. 

2.1 C 2 b p  

Consider the  p a r t i t i o n  function of Figure l (a) .  This pro- 
cedure takes a pointer  to a list of integers l and an integer 
v and part i t ions the  list into two lists: one containing the 
cells with value greater than  v (returned by the function) 
and the other containing the  cells with value less than or 
equal to v (the original list, destructively updated) .  

We input  the program in Figure l (a )  along with the fol- 
lowing predicate input  file to C2BP: 

partition { 
curt == mULL, 
prev == mULL, 

curr->val > v, 
prev->val > v 

} 

The predicate input  file specifies a set of four predicates, 
local to the procedure p a r t i t i o n .  Figure l (b)  shows the 
boolean program resulting from the abstract ion of the pro- 
cedure p a r t i t i o n  with respect to these predica tesJ  The 
boolean program declares four variables of type  bool  in pro- 
cedure p a r t i t i o n ,  each corresponding to one of the four 
predicates from the predicate input  file. 2 The variables'  ini- 
t ial  values are unconstrained.  

The boolean program is guaranteed to be an abstraction 
of the C program in the following sense: any feasible exe- 
cution pa th  of the C program is a feasible execution path 
of the boolean program. Of course, there may be feasible 
execution paths  of the boolean program tha t  are infeasible 
in the C program. Such paths  can lead to imprecision in 
subsequent model checking. 

We now informally describe how the C2BP tool translates 
each s ta tement  of the C program into a corresponding set of 
s ta tements  in the boolean program. An assignment state- 
ment  in the  C program is t rans la ted  to a set of assignments 
tha t  capture the effect of the  original assignment statement 
on the input  predicates. For example, the assignment state- 
ment  "prey=NULL;" in the C program is t ransla ted to two 
assignment s tatements  in the boolean program. The first, 
"{prev==NULL}=true;", reflects the t ru th  of the predicate 
(prey = N U L L )  after the  assignment. The value of the 
predicate (prey ~ val > v) is undefined after this assign- 
ment  and is thus invalidated by the assignment statement 
"{prev->val>v} = unknown();".  The unknown function is 
defined as: 

bool unknown() { 
if (*) { return true; } 
else { return false; } 

} 

The unknown function uses the control expression "*", which 
non-deterministieally chooses the then or the else branch, 
to return either t r u e  or false. 

The C2BP tool determines tha t  the other two predi- 
cates are unaffected by the  assignment "prey=NULL;", so 
they need not be updated.  The C2BP tool uses a flow- 
insensitive points-to analysis [12] to resolve aliases between 
pointers. In this program, since none of the  pointer variables 
in the set { cu r t ,  p rey ,  nex t ,  newl } has its address taken, 
none of these variables can be aliased by any other expres- 
sion in the procedure. As a result, C2BP resolves that  the 
only predicates tha t  the assignment "prey=NULL;" affects 
are (prey = N U L L )  and (prey ~ val > v). 

As another example, the  assignment "p rey=cur t ; "  is 
also abst racted to assignments to the two predicates in- 
volving prey.  These predicates are assigned the values of 
the corresponding predicates on cur r ,  as expected. Finally, 
C2BP determines tha t  the assignment "newl=NULL;" cannot 
affect any of the four input  predicates, so the assignment 
is t ranslated to the  s k i p  s ta tement ,  the boolean program's 
"no-op". 

In the above examples, most of the input predicates 
are updated accurately. For example, the assignment 

IThe boolean program shown is not the exact output of C2BP-- it 
has been simplified to aid readabili ty.  

2In boolean programs, variable identifiers can be regular C identi- 
fiers or an arbitrary string enclosed between "{" and "}'. 
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typedef struct cell { 
int val; 
struct cell* next; 

} *list; 

list partition(list *l, int v) { 
list curt, prey, newl, nextCurr; 

curr = *i; 
prey = NULL; 
newl = NULL; 
while (curr != NULL) { 

nextCurr = curr->next; 
if (curr->val > v) { 

if (prey != NULL) { 
prev->next = nextCurr; 

} 
if (curr == *l) { 

*l = nextCurr; 
} 
curr->next = newl; 

L: newl = curr; 
} else { 

prey =curr; 
} 
curt = nextCurr; 

} 
return newl; 

void partition() { 

bool {curr==NULL}, {prev==NULL}; 
bool {curr->val>v}, {prev->val>v}; 
{curr==NULL} = unknown(); // curt = *I; 
{curr->val>v} = unknown(); 
{prev==NULL} = true; // prey = NULL; 
{prev->val>v} = unknown(); 
skip; // newl = NULL; 
while(*) { // while(curr!=NULL) 

assume(!{curr==NULL}); // 
skip; // nextCurr = curr->next 
if (*) { // if (curr->val > v) { 

aseume({curr->val>v}); // 
if (*) { // if (prev != NULL) { 

assume(!{prev==NULL}); // 
skip; // prev->next = nextCurr; 

} II } 
if (*) { // if (curr == *i) { 

skip; // *I = nsxtCurr; 
} / /  } 
skip; // curr->next = newl; 

L: skip; // newl = curt 
} else { // } else { 

assume(!{curr->val>v}); // 
{prev==NULL} = {curr==NULL}; // prey = curt; 
{prev->val>v} = {curr->val>v}; // 

} II } 
{curr==NULL} = unknown(); // curr = nextCurr; 
{curr->val>v} = unknown(); 

} 
assume({curr==NULL}); 

(a) (b) 

Figure 1: (a) List par t i t ion example; (b) The boolean program of the list part i t ion example, abs t racted with respect to the 
set of input  predicates { curr==NOLL, prev==NOLL, cu r r ->va l  > v, p r e v - > v a l  > v }. The unknown function is used to 
generate the value t r u e  or fa lse  non-deterministically (see body text  for an explanation).  

"{prev==NULL}={curr==NOLL};" in the boolean program 
exactly represents the effect of the assignment "prev=curr"  
on the predicate (prey = N U L L ) .  However, it is possi- 
ble for such exact information to be unavailable, because 
some of the  necessary predicates have not been input to  
C2BP. In tha t  case, we must replace exact information 
with a conservative approximation. For example, the as- 
signment "cur r=nex tCur r ; "  can affect the  two predicates 
involving curr .  However, because there are no predicates 
about nex tCur r  in the predicate input  file, there is no way 
to deduce the correct t ru th  value of these predicates. This 
represents a worst case of sorts, as the input  predicates pro- 
vide absolutely no information about  the appropriate t ruth 
values for the two predicates to be updated. As a result, the 
two predicates are "invalidated" using the unknown function, 
as defined above. 

The C2BP tool translates conditional statements in the 
C program into non-deterministic conditional statements 
in the boolean program, using the control expression "*" 
However, it  also inserts "assume" statements to capture the 
semantics of conditionals with respect to the input  pred- 
icates. For example, the first s tatement inside the while 
loop is "assume(!{curr==NULL}) ; ' .  The assume acts as a 
filter on the  s ta te  space of the boolean program: in this 
case, it is impossible to reach the program point after the 
assume if the variable {curr==NULL} is true. In this way, we 
faithfully model the  guard of the original while  loop. 

2.2 B e b o p  

The boolean program output  by C2BP is input  to the BE- 
BOP model checker [5], which computes the set of reachable 
states for each s ta tement  of a boolean program using an 
interprocedural datMtow analysis algorithm in the spirit of 
Sharir-Pnueli and Reps-Horwitz-Sagiv [31, 28]. A state of 
a boolean program at a s ta tement  s is simply a valuation 
to the boolean variables tha t  are in scope at s tatement s 
(in other words, a bit vector, with one bit for each variable 
in scope). The set of reachable states (or invariant) of a 
boolean program at s is thus a set of bit vectors (equiva- 
lently, a boolean function over the set of variables in scope 
at  8), 

BEBOr' differs from typical  implementat ions of dataflow 
algorithms in two crucial ways. Firs t ,  it computes over sets 
of bit  vectors at each statement  ra ther  than single bit  vec- 
tors. This is necessary to capture correlations between vari- 
ables. Second, it uses binary decision diagrams [9] (BDDs) 
to implicitly represent the set of reachable states of a pro- 
gram, as well as the transfer functions for each statement  
in a boolean program. However, BEBOP uses an explicit 
control-flow graph representation, as in a compiler, rather 
than encoding the control-flow with BDDs, as done in most 
symbolic model checkers. 

For our example, BEBOP outputs  the following invariant 
representing the reachable states a t  label L of the boolean 
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program: 

(curr # N U L L )  A (curr ~ val > v) A 
((prey ~ val < v) V (prey = N U L L ) )  

Because C2BP is sound, this boolean function is also an 
invariant over the state of the C program at label L. 

Such invariants can be used for many different purposes; 
we give several examples in Section 6. One interesting us- 
age of the above invariant is to refine alias information. In 
part icular ,  the invariant implies tha t  *prey and *cur r  are 
never aliases at label L in the  procedure p a r t i t i o n .  In other 
words, variables p rey  and c u r t  never point  to the same 
memory location at label L. This can be seen as follows: 

® If (prey = N U L L ) ,  then (prey ¢ curt) because 
(curr # N U L L ) .  

® If (prey # N U L L ) ,  then since (curt ~ val > v) and 
(prey ~ val < v), it follows tha t  (prey ~ v a l ¢  
curt ~ val), which implies (prey ¢ curt). 3 

This fact can be deduced automatical ly  from the given in- 
variant. In particular,  a decision procedure can determine 
tha t  the invariant implies (prey -~ curr). In this way, we can 
automatical ly  refine an existing alias analysis. Tradit ional  
flow-sensitive alias analyses would not discover tha t  *prey 
and * c u r t  are not aliases at label L, since such analyses do 
not use the  values of fields (such as p r e v - > v a l )  to eliminate 
possible aliasing relationships. 

2.3 S u m m a r y  

We have shown how C2BP is used to compute a boolean 
program tha t  is a sound abstract ion of a C program with 
respect to a set of predicates E.  Subsequent model checking 
of the boolean program can discover strong invariants tha t  
axe expressed as boolean functions over the predicates in E. 

3 T h e  C h a l l e n g e s  o f  P r e d i c a t e  A b s t r a c t i o n  for  C 

The complexities of a programming language like C gives 
rise to several technical challenges in performing predicate 
abstraction: 

® P o i n t e r s .  There are two closely related subprob- 
lems in dealing with pointers: (1) assignments through 
dereferenced pointers in the original C program, and 
(2) pointers and pointer  dereferences in the predicates 
over which the abstract ion is computed.  We handle the 
two cases in a uniform manner  and describe how to use 
points-to analysis [12] to improve the precision of our 
abstraction. 

* P r o c e d u r e s .  Programs with procedures are handled 
by allowing procedural  abstract ion in the target  lan- 
guage [5]. In part icular ,  boolean programs have global 
variables, procedures with local variables, and call-by- 
value parameter  passing. Having explicit  procedures 
allows us to make both  abstract ion and analysis more 
efficient by exploiting procedural  abstract ion present in 
the C program. It  also allows us to handle recursive and 

3Here we use the contrapositive of the rule usually applied in 
unification-based alias analysis: (p = q) ~ (*p = *q). That is, 
(*P # *q) ~ (p # q). 

mutual ly  recursive procedures with no addit ional  mech- 
anism. This differs from most  other approaches to soft- 
ware model checking, which inline procedure calls [10]. 
In the following section, we describe a modular  abstrac- 
tion process for procedures: each procedure can be ab- 
s t racted given only the signatures of the abstractions 
of its callees, and such signatures can be constructed 
for each procedure in isolation. 

P r o c e d u r e  ca l ls .  The abst ract ion process for proce- 
dure calls is challenging, par t icular ly  in the presence of 
pointers. After a call, the caller must  conservatively 
upda te  local s tate tha t  may have been modified by the 
callee. ~¢Ve provide a sound and precise approach to 
abstract ing procedure calls t ha t  takes such side-effects 
into account. 

U n k n o w n  va lues .  It is not always possible to deter- 
mine the effect of a s ta tement  in the C program on a 
predicate,  in terms of the input  predicate set E. We 
deal with such non-determinism directly in the boolean 
program via the non-determinis t ic  control expression 
"*", which allows us to implici t ly express a three-valued 
domain for boolean variables. 

P r e c i s i o n - e f f i c i e n c y  t r a d e o f f .  Comput ing the ab- 
s tract  transfer function for each s ta tement  in the C 
program with respect  to the  set E of predicates may 
require the use of a theorem prover. Obtaining a pre- 
cise abst ract  transfer function requires O(2 IEI) calls to 
the theorem prover, in the worst case. We have ex- 
plored several opt imizat ion techniques to reduce the 
number  of calls made to the  theorem prover. Some of 
these techniques result in an equivalent boolean pro- 
gram, while others t rade  off precision for computation 
speed. 

4 P r e d i c a t e  A b s t r a c t i o n  

This section describes the  design and implementat ion of 
C2BP in detail. Given a C program P and a set E = 
{~a,~o2,.. .  ,¢p~} of pure boolean C expressions over the 
variables of P and constants  of the  C language, C2BP au- 
tomat ical ly  constructs an abstract ion of P with respect 
to E [19]. This abstract ion is represented as a boolean 
program 1379(P,E), which is a program tha t  has identi- 
cal control s t ructure to P but  contains only boolean vari- 
ables. In part icular ,  1379(P, E) contains n boolean variables 
V = {bl,b2,... ,b~}, where each boolean variable bi repre- 
sents the predicate qoi (1 < i < n). As described in Sec- 
t ion 4.6, BT)(P, E) is guaranteed to be an abstract ion of P 
in that  the  set of execution traces of BP(P, E) is a superset 
of the set of execution traces of P.  

Our tool handles all syntact ic  constructs of the  C lan- 
guage, including pointers,  s tructures,  and procedures. Its 
main l imitat ion is tha t  i t  uses a logical model of memory 
when analyzing C programs. Tha t  is, it  models the expres- 
sion p+i, where p is a pointer  and i is an integer, as yielding 
a pointer value tha t  points to the  object  pointed to by p. 

In the sequel, we assume tha t  the  C program has been 
converted into a simple in termedia te  form in which: (1) all 
in t raprocedural  control-flow is accomplished with i f - then-  
e l se  s tatements  and go tos ;  (2) all expressions are free of 
side-effects and short-circuit  evaluation and do not contain 
multiple dereferences of a pointer  (e.g., **p); (3) a function 
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call only occurs at  the top-most  level of an expression (for 
example, "z=x+f (y) ;" is replaced by " t=f  (y) ; z=x+t ;"). 

4.1 W e a k e s t  P r e c o n d i t i o n s  a n d  Cubes 

For a s ta tement  s and a predicate ~o, let WP(s,  ~o) denote 
the weakest liberal precondition [16, 20] of ~o with respect to 
s ta tement  s. WP(s ,  ~o) is defined as the weakest predicate 
whose t ru th  before s entails the t ru th  of ~o after s terminates 
(if it  terminates) .  Let "x = e" be an assignment, where x 
is a scalar variable and e is an expression of the appropriate 
type. Let  ~ be a predicate. By definition WP(x = ,, 7~) is 
~p with all occurrences of x replaced with e, denoted ~o[e/x]. 
For example: 

WP(x=x+l ,x<5)  = ( x + l ) < 5  = ( x < 4 )  

The weakest precondition computat ion is central to the 
predicate abstract ion process. Suppose statement s occurs 
between program points p and p' .  If ~o is a predicate in 
E with corresponding boolean variable b then it is safe to 
assign b the value t r u e  in BT~(P, E) between program points 
p and p' if the boolean variable b ~ corresponding to WP(s,  ~o) 
is t r u e  at  program point  p. However, no such variable b ~ 
may exist if WP(s ,  ~o) is not in E. For example, suppose 
E = {(x < 5), (x = 2)}. We have seen that  WP(x=x+l ,  x < 
5) = (x < 4), bu t  the predicate (x < 4) is not in E. In this 
case, C2BP uses decision procedures (i.e., a theorem prover) 
to strengthen the weakest precondition to an expression over 
the predicates in E.  In our example, we can show that  
(x = 2) =~ (x < 4). Therefore if (x = 2) is t r u e  before 
"x=x+l;" ,  then (x < 5) is t r u e  afterwards. 

We formalize this strengthening of a predicate as follows. 
A cube over V is a conjunction cq A . . .  A ci~, where each 
c~j E {b~,-~b~} for some b~ E V. For a variable bl 6 
V, let £(bi) denote the corresponding predicate ~o~, and let 
g(-~bi) denote the  predicate -~oi. Extend g to cubes and 
disjunctions of cubes in the natural  way. For any predicate ~o 
and set of boolean variables V, let .7"v (¢p) denote the largest 
disjunction of cubes c over V such that  £(c) implies ~o. The 
predicate E(.T'v(~p)) represents the  weakest predicate over 
g(V) that  implies ~o. In our example, g(.Y'v(x < 4)) = (x = 
2). 

It  will also be useful to define a corresponding weakening 
of a predicate. Define gv(~o) as -~Srv(-~o). The predicate 
g(Gy(~p)) represents the strongest predicate over £(V) that  
is implied by ~o. 

For each cube, the implication check involves a call to 
a theorem prover implementing the required decision pro- 
cedures. Our implementat ion of C2BP uses two theorem 
provers: Simplify [15] and Vampyre [7], both Nelson-Oppen 
style provers [27]. A naive computation of 9Vy(.) and ~y( ' )  
requires exponentially many calls to the theorem prover in 
the worst case. Section 5 describes several optimizations 
that  make the .Y'v and ~v computations practical. 

4.2 Pointers and aliasing 

In the presence of pointers, WP(xffie, ~o) is not necessarily 
role~x]. As an example, WP(x = 3, *p > 5) is not (*p > 5) 
because if x and *p are aliases, then (*p > 5) cannot be 
true after the assignment to x. A similar problem occurs 
when a pointer  dereference is on the left-hand side of the 
assignment. 

To handle these problems, we adapt  Morris'  general ax- 
iom of assignment [25]. A location is either a variable, a 

int bar(int* q, int y) { bar { 

ink ii, 12; y >= O, 
• .. *q <= y, 

return ii; y == ii, 

} y > 12 
} 

void  f o o ( i n t *  p,  i n t  x) { foo { 
ink r; *p <= 0, 
if (*p <= X) X == O, 

*p = X; r == 0 

else } 

*p = *p + x; 

r = bar(p, x) ;  

Figure 2: An example input  to C2BP. On the left are two 
simple C procedures (bar  is not shown in its entirety). On 
the right is the set of predicates to model. 

structure field access from a location, or a dereference of a 
location. Consider the computat ion of WP(x=e,~o), where 
x is a location, and let y be a location mentioned in the 
predicate 7~. Then there are two cases to consider: either x 
and y are aliases, and hence the assignment of e to x will 
cause the value of y to become e; or they are not aliases, 
and the assignment to x leaves y unchanged. Define 

&x = &y A ~o[e/y])V 
~[x, e, y] = I &x # &y A ~) 

Let yl ,y2, . . .  ,y~ be the locations mentioned in 7~. Then 
WP(x=e, ~) is defined to be ~o[x, e, yl][x, e, y2]... [x, e, yn]. 
In the example above, we have 

w P ( x  = 3, *v > 5) = 
( & x = p A 3 > 5 )  V ( & x t p A * p > 5 )  

In the absence of alias information, if the predicate ~o has k 
locations occurring in it, the  weakest precondition will have 
2 k syntactic disjuncts, each disjunct considering a possible 
alias scenario of the k locations with x. C2BP uses a pointer 
analysis to improve the precision of the weakest precondi- 
t ion computation.  If the pointer analysis says tha t  x and 
y cannot be aliased at the program point before x=e, then 
we can prune the disjuncts representing a scenario where x 
is aliased to y, and we can part ial ly evaluate the disjuncts 
representing a scenario where x is not  aliased to y. This has 
the  effect of improving the precision of the resulting boolean 
program BP(P, E) produced by C2Bp. Our implementation 
uses Dee's points-to algorithm [12] to obtain flow-insensitive, 
context-insensitive may-alias information. 

4.3 Predicate Abstract ion of  Ass ignments  

Consider an assignment s ta tement  "x = e ;"  at  label g in 
P .  The boolean program BT~(P, E) produced by C2BP will 
contain at label g a parallel assignment to the boolean vari- 
ables in scope at g. A boolean variable bi in BTP(P, E) can 
have the value t r u e  after g if .7"w(WP(x = e,~oi)) holds 
before g. Similarly, bi can have the value false after g if 
Uv(WP(x  = e,-~ol))  holds before ~. Note that  these two 
predicates cannot be simultaneously true. Finally, if nei- 
ther of these predicates holds before g, then bl should be set 
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non-deterministically. This can happen because the predi- 
cates in E are not strong enough to provide the appropriate 
information, or because the theorem prover is incomplete. 
Therefore, BP(P,  E)  contains the following parallel assign- 
me.at at label ~: 

b l , . . .  ,b~ = 
choose (JC'v (WP(x=e,  ~1) ), .T'v (W P(x=e, -~1 ))), 

choose (.~v (WP(x=e,  ~n)), Iv (WP(x=e, ~ ) ) )  

where the choose function is always part of B P ( P , E )  and 
is defined as follows: 

heel  choose(bool  pos,  heel  neg) ( 
if (pos) { return true; } 
if (neg) { return false; } 
return unknown() ; 

} 

For example, consider abstracting the statement "*p=*p+x" 
in procedure foo of Figure 2 with respect to the three 
predicates declared to be local to foo. Let us call this 
statement s. In this example, a may-alias analysis reveals 
that ,p cannot alias x or r. The weakest precondition 
WP(s,*p _< 0) is (*p + x) _< 0, since *p cannot alias x. 
We have $(~y(*p + x _< 0)) = (*p _< O) A (x = 0). 
Similarly, WP(s,-~(*p < 0)) is ~((*p + x) _< 0), and 
$(.Tv(-~(*p+x _< 0))) = -~(*p < 0 )A  (x = 0). The 
weakest preconditions of s with respect to the predicates 
(x = 0) and (r = 0) are the respective predicates them- 
selves, since ,p  cannot alias x or r. Thus, I3P(P,E) will 
contain the following statement in place of the given assign- 
ment statement, where we use {e} to denote the boolean 
variable representing predicate e: 

{*p<=O}, {x==0}, {r==0} = 
choose({*p<=0} ~& {x==0}, !{*p<=0} && {x==0}), 
choose ({x==0} , ! {x==O}), 
choose({r==0} , !{r==0}) ; 

Note that the abstraction process for assignment state- 
ments is based on weakest precondition computations that 
are local to each assignment and can be computed by & 
purely syntactic manipulation of predicates. C2BP does not 
compute compositions of weakest preconditions over paths 
with complex control flow. In particular, C2BP does not re- 
quire programs to be annotated with function pre- or post- 
conditions, or with loop invariants. 

4.4 P r e d i c a t e  A b s t r a c t i o n  o f  G o t o s  a n d  C o n d i t i o n -  
als 

Every g o t o  statement in the C program is simply copied to 
the boolean program. 

Translating conditionals is more involved. Consider some 
conditional i f  (eft) { . . . }  e l s e  { . . .  } in program P.  At the 
beginning of the then branch in P ,  the predicate ~ holds. 
Therefore, at the beginning of the then branch in the cor- 
responding conditional in BP(P, E),  the condition Gy(~o) is 
known to hold. Similarly, at the beginning of the else branch 
in P ,  we know that  ~ holds, so ~ y ( ' ~ )  is known to hold at 
that  program point in BTo(P, E). Therefore, 137)(P, E) will 
contain the following abstraction of the above conditional: 

i~ ( , ){  
assume (QV (~o)) 

assumo(~v(-~))  

) 

Note that the test in the abstracted conditional is *, so both 
paths through the conditional are possible. Within the then 
and else branches, we use the assume statement to retain 
the semantics of the original conditional test. The assume 
statement is the dual of a s s e r t :  assume(g) never fails. Exe- 
cutions on which ~, does not hold at the point of the assume 
are simply ignored [16]. 

As an example, consider the conditional in procedure foe 
of Figure 2. The abstraction of this conditional with respect 
to the three predicates local to foe  is: 

i f  (*) { / /  i f  (*p <= x) 
assume ({x == O} ~ {*p <= 0}); 

} else { 
a s s = e  ({x :=  0} ~ !{*p <: 0});  

} 

4.5 P r e d i c a t e  A b s t r a c t i o n  o f  P r o c e d u r e  Calls  

We now describe how C2BP handles multi-procedure pro- 
grams. 

4.5.1 N o t a t i o n  

Recall that  the input to C2BP is the program P and a set E 
of predicates. Let Gp be the global variables of the program 
P. Each predicate in E is annotated as being either global 
to BP(P, E) or local to a particular procedure in BP(P, E) 
(see Figure 2, in which predicates are local to bar  or foe 
- there are no global predicates in this example), thereby 
determining the scope of the corresponding boolean vari- 
able in B'P(P, E). A global predicate can refer only to vari- 
ables in Gp. Let E ~  denote the global predicates of E and 
let Vc denote the corresponding global boolean variables of 
BP (P, E). 

For a procedure R, let ER denote the subset of predicates 
in E that  are local to R, and let VR denote the corresponding 
local boolean variables of R in B'P(P, E). In the following, 
we do not distinguish between a boolean variable b and its 
corresponding predicate £(b) when unambiguous from the 
context (that is, in the context of B79(P, E) we always mean 
b and in the context of P we always mean £(b)). Let FR 
be the formal parameters of R, and let LR be the local 
variables of R. Let r E LR t3 FR be the return variable of R 
(we assume, without loss of generality, that  there is only one 
return statement in R, and it has the form " re tu rn  r"). 

Let vats (e) be the set of variables referenced in expres- 
sion e. Let drfs(e) be the set of variables dereferenced in 
expression e. 

4 .5 .2  D e t e r m i n i n g  s i g n a t u r e s  

A key feature of our approach is modularity: each proce- 
dure can be abstracted by C2BP given only the signatures 
of procedures that  it calls. The signature of procedure R 
can be determined in isolation from the rest of the program, 
given ER. C2BP operates in two passes. In the first pass 
it determines the signature of each procedure. It uses these 
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signatures to abst ract  procedure calls (along with all other 
statements) in the second pass. 

Let R be a procedure in P and let R ~ be its abstraction 
in BoP(P, E). The signature of procedure ~R is a four-tuple 
(FR, r, E / ,  E~), where: 

* Fn  is the set of formal parameters  of R, 

, r is the return variable of R, 

® El is the  set of formal parameter  predicates of R' ,  de- 
fined as {e 6 ER ] pars(e) n LR = @}, and 

* E~ is the set of re turn predicates of R', defined as: 

{e E ER I (r e pars(e) A (pars(e) \ {r} n L~ = @))V 
(e 6 E/A (pars(e) n Gp # $ 

Vdrfs(e) n F,  # O))}. 

E l is the set of formal parameter  predicates of R'. This 
is the subset of predicates in ER that  do not refer to any lo- 
cal variables of R. All predicates in ER - E / w i l l  be locals of 
R ~. E~ is the set of predicates to be returned by R'  (boolean 
programs allow procedures to have multiple return values). 
Such return predicates serve two purposes. One is to pro- 
vide callers with information about r,  the return value of 
R. The other purpose is to provide callers with information 
about any global variables and call-by-reference parameters, 
so that  local predicates of callers can be updated precisely. 
To handle the  first concern, E~ contains those predicates in 
ER tha t  mention r but  do not mention any (other) locals 
of R in P,  as callers will not know about these locals. To 
handle the second concern, E~ contains those predicates in 
Ef  tha t  reference a global variable or dereference a formal 
parameter  of R. 

As an example, consider procedure bar  in Figure 2. In 
the signature of bar ,  E/ is {*q <_ y, y _> 0) and Er is {y = 
l l ,  *q _< y}. 

4.5.3 H a n d l i n g  p r o c e d u r e  calls  

Consider a call v = R(al, ... , a j )  to procedure R at label 
of some procedure S in P.  The abstraction BP(P, E) 

contains a call to R'  at  label g. Let the signature of R be 
(FR, r, Ey, E~). For each formal parameter  predicate e 6 E / ,  
C2BP computes an actual  value to pass into the call. Let 

e' = e[all f,, a21f2, . . . , a~ I fj] 

where FR = {f l ,  f2 . . . . .  f j  }. The expression e' represents 
the predicate e t ranslated to the  calling context. The actual 
parameter  computed for the formal e is 

caoos~(.rvs ~v~ (e'), :rv~v~ (-~e')). 
We now explain how C2BP handles the return values 

from the call to R'. Assume Er  = { e l , . . .  ,ep}. C2BP cre- 
ates p fresh local variables T = { t l , . . .  , tp} in procedure S' 
and assigns to them, in parallel, the return values of R': 

t l , . . .  ,tp = R ' ( . . . ) ;  

The final step is to update  each local predicate of S whose 
value may have changed as a result of the call. Any predi- 
cate in Es  tha t  mentions v must  be updated. In addition, 
we must update  any predicate in Es that  mentions a global 
variable, a (possibly transitive) dereference of an actual pa- 
rameter  to the  call, or an alias of either of these kinds of 

locations. C2BP uses the pointer alias analysis to determine 
a conservative over-approximation E~ to this set of predi- 
cates to update.  

Let E '  = (EsUEG)-Eu. The predicates in E '  along with 
the predicates in Er are used to update  the predicates in 
E~. Let V' C Vs U VG be the boolean variables in BP(P, E) 
corresponding to E ' .  

First  C2BP translates the predicates in E~ to the calling 
context. In particular,  for each ei E E~, let 

~ = ~i[vlr,  a l l / l ,  a ~ l : ~ , . . .  , a~l / j ]  

and let E'~ = {e~, . . .  ' 4 ,ep}. Define £( t i )  = ei, for each 
ti fi T. For each e 6 E~, the corresponding boolean variable 
b E Vs is assigned the following value: 

choose (,T'V, uT (e), .,T'V,uT(~e)). 

For example, consider the call " b a r ( p , x ) "  in Figure 2. 
Recall that  in the signature of bar ,  the formal parameter  
predicates (El) are {,q _< y , y  >_ 0} and the return predi- 
cates (Er) are {y = l l ,  ,g  < y}. The abstraction of this call 
in the boolean program is as follows: 

prml = choose({*p<=O}~{x==O}, // for formal {*q<=y} 
! {*p<=O}~{x==O}) ; 

prm2 = choose({x==O}, false); // for formal {y>=O} 

tl, t2 = bar(prml, prm2); // tl for {*q<=y} 
// t2 for {y==ll} 

{*p<=O} = choose(tla&{x==O}, !tl&&{x==O}); 
{r==O} = choose(t2~&{x==O}, !t2~&{x==O}; 

4.6 F o r m a l  p r o p e r t i e s  

We give two properties that  relate P and BT~(P, E). The 
first property, soundness, states that  B is an abstraction 
of P - - eve ry  feasible pa th  in P is feasible in B as well. 
Since a boolean program that  allows all paths to be feasible 
is sound as well, we also need to state the sense in which 
B is precise. We do tha t  via the terminology of abstract  
interpretat ion [11]. 
S o u n d n e s s .  For any pa th  p feasible in P, it  is guaranteed 
that  p is feasible in BP(P, E) as well. Further,  if ~ is the 
state of the C program P after executing path  p, then there 
exists an execution of p in the boolean program B ending in 
a state F such tha t  for every 1 < i < n, ~i holds in fl iff bi 
is true in F. A proof of the soundness of C2BP can be found 
in [3]. 
P r e c i s i o n .  The  framework of abstract  interpretat ion can 
be used to specify abstractions declaratively. A boolean ab- 
straction maps concrete states to abstract  states according 
to their evaluation under a finite set of predicates. A carte- 
sian abstraction maps a set of boolean vectors to a three- 
valued vector obtained by ignoring dependencies between 
the components of the vectors (see, for example, the work 
on set-based analysis [21]). For example, the set of boolean 
vectors {(0, 1), (1, 0)} is mapped  by the cartesian abstrac- 
tion to the three-valued vector (?, ?), where ? represents the 
"don't  know" value. For single procedures without pointers, 

4For simplicity, we assume that each formal still refers to the same 
value as its corresponding actual at the end of the call. This can be 
checked using a standard modification side-effect analysis [24]. If a 
formal cannot be proven to refer to the same value as its correspond- 
ing actual at the end of the call, then any predicates that mention 
the formal must be removed from Er in the signature of R. 
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the abstraction computed by C2BP is equivalent to a com- 
position of the boolean and cartesian abstractions [4]. We 
improve precision by using disjunctive completion and focus 
operations, both of which are implemented in BEBOP using 
BDDs [4]. 

5 E x t e n s i o n s  

This section describes various techniques we have applied to 
increase the precision and efficiency of C2BP. 

5.1 T h e  enforce  construct 

Often the predicates in E are correlated in some way. For 
example, consider the predicates (x = 1) and (x = 2). The 
semantics associated with these predicates forbids the pred- 
icates from being simultaneously t rue.  However, when we 
use uninterpreted boolean variables bl and b2 for the pred- 
icates in BT~(P, E), we do not preclude an execution of the 
boolean program in which both variables evaluate t r u e  in 
some state. In order to rule out abstract executions contain- 
ing such spurious situations, we add an enforce  construct to 
boolean programs: the statement enforce  0 in a procedure 
has the effect of putting assume 0 between every statement 
in the procedure. This ensures that  0 is a data invariant 
maintained throughout the procedure's execution. We com- 
pute 0 for each procedure R simply as YvRova (false). For 
example, given only predicates (x = 1) and (x = 2), g(O) is 
-~((~ = i) A (~ = 2)). 

5.2 Optimizations 

The method described above for constructing abstract mod- 
els of C programs is impractical without several important  
optimizations. Profiling shows that the running time of 
C2BP is dominated by the cost of theorem proving, as we are 
making an exponential number of calls to the prover at each 
program point. Therefore, our optimization efforts have fo- 
cused on cutting down the number of calls to the theorem 
prover. 

First, when computing jrv (~o), cubes are considered in 
increasing order by length. If a cube c is shown to imply ~o, 
then we know that  any cube that  contains c as a subset will 
also imply qp, is redundant with c, and can therefore be safely 
pruned. In this way, the .T computation actually produces 
a disjunction of only the prime implicants of 5ry(~o). If a 
cube c does not imply ~ but it implies - ~ ,  then any cube 
that contains c as a subset also will not imply ~, and can 
therefore be safely pruned. 

Second, for every assignment statement, rather than up- 
dating the values of every boolean variable in scope, we do 
not update those variables whose t ruth  value will definitely 
not change as a result of the assignment. The truth value 
of a variable b will definitely not change as a result of an 
assignment x=e if WP(x=e,  g(b)) = g(b). 

Third, for each computation .Ty(~o), we perform an anal- 
ysis to produce a set V'  C V, such that  £(V') contains all 
predicates from g(V) tha t  can possibly be part of a cube 
that  implies ~. Therefore, ~v  (~o) can safely be replaced by 
~ y '  (9o), reducing the number of cubes to explore. This set 
V'  is determined by a syntactic cone-of-influence computa- 
tion. Starting with an empty set E '  we find predicates in 
g(V) that  mention a location or an alias of a location in cp, 
add these predicates to E ' ,  determine the set of locations 
mentioned in these predicates, and iterate until reaching a 

p r o g r a m  i i n e ~  predicates 

floppy 6500 23 
ioctl 1250 5 
openclos 544 5 
srdriver 350 30 
log 236-- 6 

thm. prover 
cNls 

5509 
500 
132 
3034 
98 

(s__e.conds 2 
g g ~  

-/5- 

- Z - - - - - - -  

Table 1: The device drivers run through C2BP. 

fixpoint. V' C. V is the set of boolean variables such that 
£(V')  = E ' .  

Fourth, we t ry several syntactic heuristics to construct 
9Cy(~o) directly from 7~. As a simple example, if there exists 
a boolean variable b such that  g(b) = ~, then we return b, 
without requiring any calls to the theorem prover. Fifth, we 
cache all computations by the theorem prover and the alias 
analysis, so that  work is not repeated. 

While the worst-case complexity of computing the ab- 
straction is exponential in the number of predicates, the 
above optimizations dramatically reduce the number of calls 
made to the theorem prover in most examples. More- 
over, the above optimizations all have the property that 
they leave the resulting I37~(P, E) semantically equivalent to 
the boolean program produced without these optimizations. 
Some of the optimizations described rely on the existence of 
the enforce  data invariant for soundness. 

If we are willing to sacrifice some precision, there are 
other optimization opportunities. For example, we can limit 
the length of cubes considered in the .T" computation to some 
constant k, lowering the 9 v function's complexity from expo- 
nential to O(nk). In practice, we have found that  setting k 
to 3 provides the needed precision in most cases. As another 
optimization, we can compute the Y function only on atomic 
predicates. That  is, we recursively convert .T'(~i A 7~2) to 
.?'(7~0 A 5c(~2) and Y(~ol V ~2) to f ( ~ l )  V ~(~2).  This 
allows us to make use of all of the existing optimizations 
of the Y function described above in a finer-grained man- 
ner. Distribution of .T" through A loses no precision, while 
distribution of .T" through V can lose precision. 

6 Experience 

We have implemented C2BP in OCaml, on top of the AST 
toolkit (a modified version of Microsoft's C / C + +  compiler 
that  exports an abstract syntax tree interface to clients), 
the Simplify [15, 27] and Vampyre [7] theorem provers, and 
Das's points-to analysis [12]. 

We have applied C2BP to two problem areas: (1) check- 
ing safety properties of Windows NT device drivers, in the 
context of the SLAM project and the SLAM toolkit; (2) 
discovering invariants regarding array bounds checking and 
list-manipulating code. 

6.1 T h e  S L A M  Toolk i t  a n d  its Application to  N T  
D e v i c e  D r i v e r s  

The goal of the SLAM project is to automatically check 
that  a program respects a set of temporal safety properties 
of the interfaces it uses. Safety properties are the class of 
properties that state that  "something bad does not happen". 
An example is requiring that  a lock is never released without 
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first being acquired (see [23] for a formal definition). Given 
a program and a safety property, we wish to either validate 
that  the code respects the property, or find an execution 
path tha t  shows how the code violates the property. 

Given a safety property to check on a C program, the 
SLAM process has the following phases: (1) abstraction, 
(2) model  checking, and (3) predicate discovery. We have 
developed the SLAM toolkit  to support  each of these phases: 

• C2BP, which is the topic of this paper; 

o BEBOP, a tool for model checking boolean programs [5]; 

o NEWTON, a tool tha t  discovers additional predicates to 
refine the boolean program, by analyzing the feasibil- 
i ty of paths  in the C program (the subject of a future 
paper).  

The SLAM toolkit  provides a fully automatic way of check- 
ing temporal  safety properties of system software. Viola- 
tions are reported by the SLAM toolkit as paths over the 
program P. The  toolkit  never reports spurious error paths. 
Instead, it  detects such paths and uses them to automati-  
cally refine the boolean program abstraction (to eliminate 
these paths from consideration). Since property checking is 
undecidable, the  SLAM refinement algorithm may not con- 
verge. In addition~ it may terminate with a "don't  know" 
answer due to the incompleteness of the underlying theorem 
provers. However, in our experience, it usually converges in 
a few iterations with a definite answer. One reason for this 
is that  the properties we checked are very control-intensive, 
and have relatively simple dependencies on data. 

We ran the SLAM toolkit  on four drivers from the Win- 
dows 2000 Driver Development Kit  5, as well as an internally 
developed floppy device driver, to check for proper usage 
of locks and proper  handling of interrupt request packets 
(see [6] for the details of the properties checked). The de- 
vice drivers in the  DDK are supposed to be exemplars for 
others to base their  device drivers on. For the two properties 
we checked, the SLAM toolkit validated these drivers (i.e., 
found no errors). For the floppy driver under development, 
the SLAM toolkit  found an error in how interrupt request 
packets are handled. 

Table 1 shows the sizes of these drivers, the number of 
predicates in the predicate input  file, the number of theorem 
prover queries tha t  C2BP made, and the run time for C2BP. 
For all these examples (and those of the next section), BE- 
BOP ran in under 10 seconds on the boolean program output  
by C2BP. 

6.2 Array  B o u n d s  Checking  and Heap Invarlants 

Table 2 shows the results of running C2Bp on a set of toy 
il lustrative examples. The program Imp is a Knuth-Morris- 
P ra t t  string matcher  and q s o r t  is an array implementation 
of quicksort, both  examples used by Necula [26]. The pro- 
gram p a r t i t i o n  is the list part i t ion example from Figure 1, 
l i s t f i n d  is a list search example, and r e v e r s e  is an exam- 
ple tha t  reverses a list twice. In most cases, the cone-of- 
influence heuristics in C2BP were able to reduce the  number 
of theorem prover calls to a manageable number. In the 
case of the r e v e r s e  example, every pair of pointers could 
potential ly alias, and the cone-of-influence heuristics could 
not avoid the exponential  number of calls to the  theorem 
prover. 

5freely available from http://www.microsoft, com/ddk/ 

program lines predicates 

kmp [ 75 
qsort 45 
parti t ion 55 
listfind 37 
reverse 73 

thm. prover runtime 
calls (seconds) 
286 7 
199 
263 9 
4412 172 
26769 747 

Table 2: The array and heap intensive programs analyzed 
with C2BP. 

s t r u c t  node { 
i n t  mark; 
s truct  node *next; 

}; 
vo id  m a r k ( s t r u c t  node * l i s t )  { 

s t r u c t  node * t h i s ,  *tmp, *prey;  
prey  = O; 
this = list; 
/* traverse list and mark, setting back pointers */ 
while( this != 0 ) { 

if(this->mark==l) 
break; 

this->mark = 1; 
imp = prey; 
prey = this; 
this = this->next; 
prev->next = tmp; 

} 

/*  traverse back, resetting the pointers */  
while( prev!=O ){ 

imp = this; 
this = prey; 
prev= prev->next; 
this->next = trap; 

} 
} 

Figure 3: List traversal using back pointers 

In our experiments,  we were able to construct useful in- 
variants in the code by modeling only a few predicates that  
occurred in the program. For example, in the array bounds 
checking examples (kmp and q so r t ) ,  where an array a was 
indexed in a loop by a variable index, we simply had to 
model the  bounds index > 0 and index < length(a) in or- 
der to produce the appropriate  loop invariant. We found 
that  in most cases, the component  predicates of the  invari- 
ant were easy to guess by looking at the conditionals in the 
programs. 

The list reversal example r e v e r s e  is a simplified version 
of a mark-and-sweep garbage collector. We show the pro- 
gram in Figure 3. In the first while loop, the list is traversed 
in the forward direction, while maintaining back pointers to 
the previous nodes. In the second loop, the pointers are re- 
versed to get the original list. We wish to verify that  the 
procedure mark leaves the  shape of the structure unchanged: 
i.e., for every node h in the list, h ~ next points to the same 
node before and after the procedure mark. To check this, we 
introduced auxil iary variables h and hnext into the  C code. 
The variable h is chosen non-deterministically to point at  
any (non-null) element of the  list, and hnext  is initialized 
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with h->next. We input the following predicates to C2BP 
(along with the program of Figure 3): 

mark { 
h== 0, 
prey == h, 
this == h, 
this->next == hnext, 
prev == this, 
h->next == hnaxt, 
hl%ext->next == h 

} 

With this choice of predicates, C2BP constructs an abstract 
program which is analyzed using BEBOP. BEBOP shows that 
at the end of the mark procedure, h --~ n e x t  - -  h n e x t  holds. 

7 R e l a t e d  W o r k  

Our work is inspired by the predicate abstraction work of 
Gra£ and Saidi [19]. Predicate abstraction has been used in 
the verification of cache coherence protocols [13]. However, 
these efforts work at the specification level, on a language 
with guarded commands. Doing predicate abstraction on 
a general-purpose programming language is the novel as- 
pect of our work. A method for constructing abstract mod- 
els from Java programs has been developed in the Bandera 
project [17]. Their tool requires the user to provide finite- 
domain abstractions of data  types. Predicate abstraction 
as implemented in C2BP is more genera/, as it allows the 
finite partitioning of a variable's possible values and addi- 
tionally allows relationships between variables to be defined. 
Another approach is to use richer type systems to model 
finite-state abstractions of programs [14]. 

Shape analysis [30] also uses a form of predicate abstrac- 
tion, where the predicate language is a first-order logic aug- 
mented with transitive closure. In contrast, our predicates 
are quantifier-free. Shape analysis requires the user to spec- 
ify how each statement affects each predicate of interest, 
whereas the C2BP tool computes the abstract transition sys- 
tem automatically using a theorem prover. 

Predicate abstraction is a general technique that  can be 
used to add predicate (read "path") sensitivity to program 
analyses. Ammons and Larus use code duplication followed 
by a traditional data.flow analysis to achieve path-sensitive 
results [1]. Bodik and Anik use symbolic back-substitution 
(i.e., weakest preconditions) followed by value numbering to 
improve the results of a subsequent three-valued datafiow 
analysis [8]. The combination of predicate abstraction by 
C2BP and path-sensitive dataflow analyses in BEBOP could 
be used to achieve similar results. 

Prior work for generating loop invariants has used sym- 
bolic execution on the concrete semantics, augmented with 
widening heuristics [32, 33]. The Houdini tool guesses 
a candidate set of annotations (invariants) and uses the 
ESC/Java checker to refute inconsistent annotations until 
convergence [18]. In contrast, the tools C2BP and BEBOP use 
a combination of abstraction (from C program to boolean 
program) and iterative analysis of the abstracted C program 
to find loop invariants expressible as boolean functions over 
a given set of predicates. 

8 Conc lu s ions  

We summarize our main contributions: 

o C2BP is the first predicate abstraction tool that works 
on a general-purpose programming language. 

• We have taken efforts to handle features such as pro- 
cedures and pointers in a sound and precise way. 

• We have explored several optimizations to reduce the 
number of calls made to the theorem prover by C2BP. 

• We have demonstrated the use of C2BP on pro- 
grains from varying domains -- device drivers, array- 
manipulating programs, and pointer-manipulating pro- 
grams. 

Though we fully support pointers in C2BP, our predi- 
cates are quantifier-free. Stating certain properties of un- 
bounded data structures may require a more expressive 
logic. For this purpose, it would be interesting to enrich 
the predicate language with dependent types and recursive 
types. Among other things, the aliasing problem becomes 
more complicated in this setting. For example, if T is a type 
tha t  denotes lists of even length, then the predicate (p 6 T) 
is t r u e  if p points to an object of type T. Consider an as- 
signment of the form q->next  = NULL. To update (p 6 T), 
we have to consider the possibility that  q can point any- 
where inside the list pointed to by pfi One way around this 
difficulty is to use linear types to encode that  there are no 
external pointers to the list other than p. It would also be 
interesting to investigate the use of predicates expressible in 
some recent pointer logics [29, 22]. 

We have focused on predicate abstraction of single- 
threaded programs, and it would be interesting to extend 
C2BP to work for multi-threaded code. Several issues need 
to be resolved here. First, one needs to establish an ap- 
propriate notion of atomicity of execution. Next, while ab- 
stracting any statement one has to account for the possibility 
of interference from another thread. Even if such an abstrac- 
tion were possible, model checking boolean programs with 
even two threads is undecidable. One possible solution is to 
further abstract boolean programs to finite-state machines, 
and then use traditional model checking algorithms to ex- 
plore interleaving executions of the finite-state machines. A 
further problem is that  in certain situations, it is not possi- 
ble to know the number of threads in advance. If we were 
to first abstract boolean programs to finite-state machines, 
then it is possible to use parameterized model checking to 
handle an arbitrary number of threads [2]. It is not clear if 
these abstractions can be performed automatically. 

We have chosen C as our source language for predicate 
abstraction. However, our fundamental contribution is a set 
of techniques to handle procedure calls and pointers dur- 
ing predicate abstraction. The techniques in this paper can 
be adapted to construct predicate abstractions of programs 
written in other imperative languages such as Java. 

We plan to improve some inefficiencies we have in the 
implementation. The theorem prover is currently started 
as a separate process each time it is used, which is very 
inefficient. A more fundamental issue is tha t  we currently 
use theorem provers as black boxes. We plan to investigate if 
opening up the internals of the theorem prover can improve 
the efficiency of the abstraction process. 

Generating predicates for a predicate abstraction tool 
like C2BP is another open research problem. We are cur- 
rently building a tool called NEWTON in the SLAM toolkit to 

6We thank Frank Pfenning for this observation. 
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generate predicates h'om the model checker's counterexam- 
ples, using path simulation. We are also exploring predicate 
generation using value flow analysis on the program, with 
respect to the properties of interest. Our current approach 
seems to work as long as the properties of interest have 
relatively simple dependencies on data. For data-intensive 
properties, predicate generation may have to use widening 
heuristics as in [32, 331 . 
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