
Automatic Predicate Abstraction of C Programs

Thomas Ball
tballOmicrosoft, com

Microsoft Research

Rupak Majumdar
rupakOc s. berkeley, edu

U.C. Berkeley

T o d d Mi l l s te in

t o d d O c s , w a s h i n g t o n , e d u

Univ . of W a s h i n g t o n

S r i r a m K. R a j a m a n i

sriram@microsoft, com

Microso f t R e s e a r c h

http://research.microsoft.com/slam/

A b s t r a c t

Model checking has been widely successful in validating and
debugging designs in the hardware and protocol domains.
However, state-space explosion limits the applicability of
model checking tools, so model checkers typically operate
on abstractions of systems.

Recently, there has been significant interest in applying
model checking to software. For infinite-state systems like
software, abstraction is even more critical. Techniques for
abstracting software are a prerequisite to making software
model checking a reality.

We present the first algorithm to automatically construct
a predicate abstraction of programs written in am industrial
programming language such as C, and its implementation in
a tool - - C2BP. The C2BP tool is part of the SLAM toolkit,
which uses a combination of predicate abstraction, model
checking, symbolic reasoning, and iterative refinement to
statically check temporal safety properties of programs.

Predicate abstraction of software has many applications,
including detecting program errors, synthesizing program
invariants, and improving the precision of program analy-
ses through predicate sensitivity. We discuss our experience
applying the C2BP predicate abstraction tool to a variety
of problems, ranging from checking that list-manipulating
code preserves heap invariants to finding errors in Windows
NT device drivers.

1 I n t r o d u c t i o n

In the hardware and protocol domains, model checking has
been used to validate and debug systems by algorithmic ex-
ploration of their state spaces. State-space explosion is a
major limitation, and typically model checkers explore the
state space of an abstracted system. For software, which

Permission to make digital or hard c6pies of all or part of this work for
personal or qlessroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage end that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLD12001 6/01 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113-414-2/01/06..$5.00

is typically infinite-state, abstraction is even more critical.
Any effort to model check software must first construct an
abstract model of the software.

A promising approach to construct abstractions auto-
matically, called predicate abstraction, was first proposed by
Graf and Sa~di [19]. With predicate abstraction, the con-
crete states of a system are mapped to abstract states ac-
cording to their evaluation under a finite set of predicates.
Automatic predicate abstraction algorithms have been de-
signed and implemented before for finite-state systems and
for infinite-state systems specified as guarded commands.
However, no one has demonstrated automatic predicate ab-
straction on a programming language such as C.

We present a tool called C2Br, that performs automatic
predicate abstraction of C programs. Given a C program
P and a set E of predicates (pure C boolean expressions
containing no function calls), C2BP automatically creates a
boolean program BP(P, E), which is an abstraction of P. A
boolean program is essentially a C program in which the only
type available is boolean (the boolean program language has
some additional constructs that will be presented later). The
boolean program has the same control-flow structure as P
but contains only IEI boolean variables, each representing a
predicate in E. For example, if the predicate (x < y) is in
E, where x and y are integer variables in P, then there is
a boolean variable in BTa(P, E) whose truth at a program
point pimplies that (x < y) is true at p i n P. For each
statement s of P , C2BP automatically constructs the cor-
responding boolean transfer functions that conservatively
represent the effect of s on the predicates in E. The re-
sulting boolean program can be analyzed precisely using a
tool called BEBOP [5] that performs interprocedural dataflow
analysis [31, 28] using binary decision diagrams.

We present the details of the C2BP algorithm, as well
as results from applying C2BP to a variety of problems and
programs:

• We have applied C2BP and BEBOP to pointer-
manipulating programs to identify invariants involving
pointers. In one example, these invariants lead to more
precise aliasing information than is possible with a flow-
sensitive alias analysis. In another example, we show
that list-manipulating code preserves various structural
properties of the heap, as has been done with shape
analysis [30]. This is noteworthy because our predicate

203

language is a quantifier-free logic, ra ther than the more
powerful logic of [30].

® We have applied C2BP and BEBOP to examples fi'om
Necula's work on proof-carrying code [26] to automat i -
cally identify loop invariants in these examples that the
PCC compiler was required to generate.

We have used C2BP in the SLAM toolkit to check tem-
poral safety propert ies of Windows NT device drivers.
The SLAM toolkit uses C2BP and BEBOP to statically
determine whether or not an assertion violation can
take place in C code. A unique part of the toolkit is its
use of a demand-driven i terative process to automat i -
cally find predicates tha t are relevant to the part icular
assertion under examination. When the current set of
predicates and the boolean program abstract ion tha t
it induces are insufficient to show tha t an assertion
does /doesn ' t fail, new predicates are found to refine
the abstraction. Although the SLAM process may not
converge in theory, due to the undecidabil i ty of the as-
sertion violation problem, it has converged on all NT
device drivers we have analyzed (even though they con-
tain loops).

For a detailed proof of soundness of the abstract ion al-
gori thm presented in this paper, the interested reader is re-
ferred to our technical repor t [3]. In work with Andreas
Podelski [4] we have used the framework of abstract ion in-
terpre ta t ion to formalize the precision of the C2BP algo-
r i thm for single procedure programs with no pointers. Sec-
t ion 4.6 reviews the soundness theorem for C2BP that we
have proved and describes our precision results.

The rest of this paper is organized as follows. Sec-
tion 2 gives an example of applying C2sP to a pointer-
manipula t ing C procedure. Section 3 lists the challenges in
performing predicate abstract ion on C programs. Section 4
describes our predicate abstract ion algori thm in detail. Sec-
tion 5 describes extensions and optimizations to the C2BP
tool. Section 6 presents results on applying the C2BP tool
to a variety of C programs. Section 7 reviews related work
and Section 8 concludes the paper.

2 E x a m p l e : Invariant Detec t ion in P o i n t e r -
m a n i p u l a t i n g P r o g r a m s

This section presents the applicat ion of C2BP and the BE-
BOP model checker to a pointer-manipulat ing procedure.
The combination of the two tools determines program-point-
specific invariants about the procedure, which can be used
to refine pointer aliasing information.

2.1 C 2 b p

Consider the p a r t i t i o n function of Figure l (a) . This pro-
cedure takes a pointer to a list of integers l and an integer
v and part i t ions the list into two lists: one containing the
cells with value greater than v (returned by the function)
and the other containing the cells with value less than or
equal to v (the original list, destructively updated) .

We input the program in Figure l (a) along with the fol-
lowing predicate input file to C2BP:

partition {
curt == mULL,
prev == mULL,

curr->val > v,
prev->val > v

}

The predicate input file specifies a set of four predicates,
local to the procedure p a r t i t i o n . Figure l (b) shows the
boolean program resulting from the abstract ion of the pro-
cedure p a r t i t i o n with respect to these predica tesJ The
boolean program declares four variables of type bool in pro-
cedure p a r t i t i o n , each corresponding to one of the four
predicates from the predicate input file. 2 The variables' ini-
t ial values are unconstrained.

The boolean program is guaranteed to be an abstraction
of the C program in the following sense: any feasible exe-
cution pa th of the C program is a feasible execution path
of the boolean program. Of course, there may be feasible
execution paths of the boolean program tha t are infeasible
in the C program. Such paths can lead to imprecision in
subsequent model checking.

We now informally describe how the C2BP tool translates
each s ta tement of the C program into a corresponding set of
s ta tements in the boolean program. An assignment state-
ment in the C program is t rans la ted to a set of assignments
tha t capture the effect of the original assignment statement
on the input predicates. For example, the assignment state-
ment "prey=NULL;" in the C program is t ransla ted to two
assignment s tatements in the boolean program. The first,
"{prev==NULL}=true;", reflects the t ru th of the predicate
(prey = N U L L) after the assignment. The value of the
predicate (prey ~ val > v) is undefined after this assign-
ment and is thus invalidated by the assignment statement
"{prev->val>v} = unknown();". The unknown function is
defined as:

bool unknown() {
if (*) { return true; }
else { return false; }

}

The unknown function uses the control expression "*", which
non-deterministieally chooses the then or the else branch,
to return either t r u e or false.

The C2BP tool determines tha t the other two predi-
cates are unaffected by the assignment "prey=NULL;", so
they need not be updated. The C2BP tool uses a flow-
insensitive points-to analysis [12] to resolve aliases between
pointers. In this program, since none of the pointer variables
in the set { cu r t , p rey , nex t , newl } has its address taken,
none of these variables can be aliased by any other expres-
sion in the procedure. As a result, C2BP resolves that the
only predicates tha t the assignment "prey=NULL;" affects
are (prey = N U L L) and (prey ~ val > v).

As another example, the assignment "p rey=cur t ; " is
also abst racted to assignments to the two predicates in-
volving prey. These predicates are assigned the values of
the corresponding predicates on cur r , as expected. Finally,
C2BP determines tha t the assignment "newl=NULL;" cannot
affect any of the four input predicates, so the assignment
is t ranslated to the s k i p s ta tement , the boolean program's
"no-op".

In the above examples, most of the input predicates
are updated accurately. For example, the assignment

IThe boolean program shown is not the exact output of C2BP-- it
has been simplified to aid readabili ty.

2In boolean programs, variable identifiers can be regular C identi-
fiers or an arbitrary string enclosed between "{" and "}'.

204

typedef struct cell {
int val;
struct cell* next;

} *list;

list partition(list *l, int v) {
list curt, prey, newl, nextCurr;

curr = *i;
prey = NULL;
newl = NULL;
while (curr != NULL) {

nextCurr = curr->next;
if (curr->val > v) {

if (prey != NULL) {
prev->next = nextCurr;

}
if (curr == *l) {

*l = nextCurr;
}
curr->next = newl;

L: newl = curr;
} else {

prey =curr;
}
curt = nextCurr;

}
return newl;

void partition() {

bool {curr==NULL}, {prev==NULL};
bool {curr->val>v}, {prev->val>v};
{curr==NULL} = unknown(); // curt = *I;
{curr->val>v} = unknown();
{prev==NULL} = true; // prey = NULL;
{prev->val>v} = unknown();
skip; // newl = NULL;
while(*) { // while(curr!=NULL)

assume(!{curr==NULL}); //
skip; // nextCurr = curr->next
if (*) { // if (curr->val > v) {

aseume({curr->val>v}); //
if (*) { // if (prev != NULL) {

assume(!{prev==NULL}); //
skip; // prev->next = nextCurr;

} II }
if (*) { // if (curr == *i) {

skip; // *I = nsxtCurr;
} / / }
skip; // curr->next = newl;

L: skip; // newl = curt
} else { // } else {

assume(!{curr->val>v}); //
{prev==NULL} = {curr==NULL}; // prey = curt;
{prev->val>v} = {curr->val>v}; //

} II }
{curr==NULL} = unknown(); // curr = nextCurr;
{curr->val>v} = unknown();

}
assume({curr==NULL});

(a) (b)

Figure 1: (a) List par t i t ion example; (b) The boolean program of the list part i t ion example, abs t racted with respect to the
set of input predicates { curr==NOLL, prev==NOLL, cu r r ->va l > v, p r e v - > v a l > v }. The unknown function is used to
generate the value t r u e or fa lse non-deterministically (see body text for an explanation).

"{prev==NULL}={curr==NOLL};" in the boolean program
exactly represents the effect of the assignment "prev=curr"
on the predicate (prey = N U L L) . However, it is possi-
ble for such exact information to be unavailable, because
some of the necessary predicates have not been input to
C2BP. In tha t case, we must replace exact information
with a conservative approximation. For example, the as-
signment "cur r=nex tCur r ; " can affect the two predicates
involving curr . However, because there are no predicates
about nex tCur r in the predicate input file, there is no way
to deduce the correct t ru th value of these predicates. This
represents a worst case of sorts, as the input predicates pro-
vide absolutely no information about the appropriate t ruth
values for the two predicates to be updated. As a result, the
two predicates are "invalidated" using the unknown function,
as defined above.

The C2BP tool translates conditional statements in the
C program into non-deterministic conditional statements
in the boolean program, using the control expression "*"
However, it also inserts "assume" statements to capture the
semantics of conditionals with respect to the input pred-
icates. For example, the first s tatement inside the while
loop is "assume(!{curr==NULL}) ; ' . The assume acts as a
filter on the s ta te space of the boolean program: in this
case, it is impossible to reach the program point after the
assume if the variable {curr==NULL} is true. In this way, we
faithfully model the guard of the original while loop.

2.2 B e b o p

The boolean program output by C2BP is input to the BE-
BOP model checker [5], which computes the set of reachable
states for each s ta tement of a boolean program using an
interprocedural datMtow analysis algorithm in the spirit of
Sharir-Pnueli and Reps-Horwitz-Sagiv [31, 28]. A state of
a boolean program at a s ta tement s is simply a valuation
to the boolean variables tha t are in scope at s tatement s
(in other words, a bit vector, with one bit for each variable
in scope). The set of reachable states (or invariant) of a
boolean program at s is thus a set of bit vectors (equiva-
lently, a boolean function over the set of variables in scope
at 8),

BEBOr' differs from typical implementat ions of dataflow
algorithms in two crucial ways. Firs t , it computes over sets
of bit vectors at each statement ra ther than single bit vec-
tors. This is necessary to capture correlations between vari-
ables. Second, it uses binary decision diagrams [9] (BDDs)
to implicitly represent the set of reachable states of a pro-
gram, as well as the transfer functions for each statement
in a boolean program. However, BEBOP uses an explicit
control-flow graph representation, as in a compiler, rather
than encoding the control-flow with BDDs, as done in most
symbolic model checkers.

For our example, BEBOP outputs the following invariant
representing the reachable states a t label L of the boolean

205

program:

(curr # N U L L) A (curr ~ val > v) A
((prey ~ val < v) V (prey = N U L L))

Because C2BP is sound, this boolean function is also an
invariant over the state of the C program at label L.

Such invariants can be used for many different purposes;
we give several examples in Section 6. One interesting us-
age of the above invariant is to refine alias information. In
part icular , the invariant implies tha t *prey and *cur r are
never aliases at label L in the procedure p a r t i t i o n . In other
words, variables p rey and c u r t never point to the same
memory location at label L. This can be seen as follows:

® If (prey = N U L L) , then (prey ¢ curt) because
(curr # N U L L) .

® If (prey # N U L L) , then since (curt ~ val > v) and
(prey ~ val < v), it follows tha t (prey ~ v a l ¢
curt ~ val), which implies (prey ¢ curt). 3

This fact can be deduced automatical ly from the given in-
variant. In particular, a decision procedure can determine
tha t the invariant implies (prey -~ curr). In this way, we can
automatical ly refine an existing alias analysis. Tradit ional
flow-sensitive alias analyses would not discover tha t *prey
and * c u r t are not aliases at label L, since such analyses do
not use the values of fields (such as p r e v - > v a l) to eliminate
possible aliasing relationships.

2.3 S u m m a r y

We have shown how C2BP is used to compute a boolean
program tha t is a sound abstract ion of a C program with
respect to a set of predicates E. Subsequent model checking
of the boolean program can discover strong invariants tha t
axe expressed as boolean functions over the predicates in E.

3 T h e C h a l l e n g e s o f P r e d i c a t e A b s t r a c t i o n for C

The complexities of a programming language like C gives
rise to several technical challenges in performing predicate
abstraction:

® P o i n t e r s . There are two closely related subprob-
lems in dealing with pointers: (1) assignments through
dereferenced pointers in the original C program, and
(2) pointers and pointer dereferences in the predicates
over which the abstract ion is computed. We handle the
two cases in a uniform manner and describe how to use
points-to analysis [12] to improve the precision of our
abstraction.

* P r o c e d u r e s . Programs with procedures are handled
by allowing procedural abstract ion in the target lan-
guage [5]. In part icular , boolean programs have global
variables, procedures with local variables, and call-by-
value parameter passing. Having explicit procedures
allows us to make both abstract ion and analysis more
efficient by exploiting procedural abstract ion present in
the C program. It also allows us to handle recursive and

3Here we use the contrapositive of the rule usually applied in
unification-based alias analysis: (p = q) ~ (*p = *q). That is,
(*P # *q) ~ (p # q).

mutual ly recursive procedures with no addit ional mech-
anism. This differs from most other approaches to soft-
ware model checking, which inline procedure calls [10].
In the following section, we describe a modular abstrac-
tion process for procedures: each procedure can be ab-
s t racted given only the signatures of the abstractions
of its callees, and such signatures can be constructed
for each procedure in isolation.

P r o c e d u r e ca l ls . The abst ract ion process for proce-
dure calls is challenging, par t icular ly in the presence of
pointers. After a call, the caller must conservatively
upda te local s tate tha t may have been modified by the
callee. ~¢Ve provide a sound and precise approach to
abstract ing procedure calls t ha t takes such side-effects
into account.

U n k n o w n va lues . It is not always possible to deter-
mine the effect of a s ta tement in the C program on a
predicate, in terms of the input predicate set E. We
deal with such non-determinism directly in the boolean
program via the non-determinis t ic control expression
"*", which allows us to implici t ly express a three-valued
domain for boolean variables.

P r e c i s i o n - e f f i c i e n c y t r a d e o f f . Comput ing the ab-
s tract transfer function for each s ta tement in the C
program with respect to the set E of predicates may
require the use of a theorem prover. Obtaining a pre-
cise abst ract transfer function requires O(2 IEI) calls to
the theorem prover, in the worst case. We have ex-
plored several opt imizat ion techniques to reduce the
number of calls made to the theorem prover. Some of
these techniques result in an equivalent boolean pro-
gram, while others t rade off precision for computation
speed.

4 P r e d i c a t e A b s t r a c t i o n

This section describes the design and implementat ion of
C2BP in detail. Given a C program P and a set E =
{~a,~o2,.. . ,¢p~} of pure boolean C expressions over the
variables of P and constants of the C language, C2BP au-
tomat ical ly constructs an abstract ion of P with respect
to E [19]. This abstract ion is represented as a boolean
program 1379(P,E), which is a program tha t has identi-
cal control s t ructure to P but contains only boolean vari-
ables. In part icular , 1379(P, E) contains n boolean variables
V = {bl,b2,... ,b~}, where each boolean variable bi repre-
sents the predicate qoi (1 < i < n). As described in Sec-
t ion 4.6, BT)(P, E) is guaranteed to be an abstract ion of P
in that the set of execution traces of BP(P, E) is a superset
of the set of execution traces of P.

Our tool handles all syntact ic constructs of the C lan-
guage, including pointers, s tructures, and procedures. Its
main l imitat ion is tha t i t uses a logical model of memory
when analyzing C programs. Tha t is, it models the expres-
sion p+i, where p is a pointer and i is an integer, as yielding
a pointer value tha t points to the object pointed to by p.

In the sequel, we assume tha t the C program has been
converted into a simple in termedia te form in which: (1) all
in t raprocedural control-flow is accomplished with i f - then-
e l se s tatements and go tos ; (2) all expressions are free of
side-effects and short-circuit evaluation and do not contain
multiple dereferences of a pointer (e.g., **p); (3) a function

206 206

call only occurs at the top-most level of an expression (for
example, "z=x+f (y) ;" is replaced by " t=f (y) ; z=x+t ;").

4.1 W e a k e s t P r e c o n d i t i o n s a n d Cubes

For a s ta tement s and a predicate ~o, let WP(s, ~o) denote
the weakest liberal precondition [16, 20] of ~o with respect to
s ta tement s. WP(s , ~o) is defined as the weakest predicate
whose t ru th before s entails the t ru th of ~o after s terminates
(if it terminates) . Let "x = e" be an assignment, where x
is a scalar variable and e is an expression of the appropriate
type. Let ~ be a predicate. By definition WP(x = ,, 7~) is
~p with all occurrences of x replaced with e, denoted ~o[e/x].
For example:

WP(x=x+l ,x<5) = (x + l) < 5 = (x < 4)

The weakest precondition computat ion is central to the
predicate abstract ion process. Suppose statement s occurs
between program points p and p' . If ~o is a predicate in
E with corresponding boolean variable b then it is safe to
assign b the value t r u e in BT~(P, E) between program points
p and p' if the boolean variable b ~ corresponding to WP(s, ~o)
is t r u e at program point p. However, no such variable b ~
may exist if WP(s , ~o) is not in E. For example, suppose
E = {(x < 5), (x = 2)}. We have seen that WP(x=x+l , x <
5) = (x < 4), bu t the predicate (x < 4) is not in E. In this
case, C2BP uses decision procedures (i.e., a theorem prover)
to strengthen the weakest precondition to an expression over
the predicates in E. In our example, we can show that
(x = 2) =~ (x < 4). Therefore if (x = 2) is t r u e before
"x=x+l;" , then (x < 5) is t r u e afterwards.

We formalize this strengthening of a predicate as follows.
A cube over V is a conjunction cq A . . . A ci~, where each
c~j E {b~,-~b~} for some b~ E V. For a variable bl 6
V, let £(bi) denote the corresponding predicate ~o~, and let
g(-~bi) denote the predicate -~oi. Extend g to cubes and
disjunctions of cubes in the natural way. For any predicate ~o
and set of boolean variables V, let .7"v (¢p) denote the largest
disjunction of cubes c over V such that £(c) implies ~o. The
predicate E(.T'v(~p)) represents the weakest predicate over
g(V) that implies ~o. In our example, g(.Y'v(x < 4)) = (x =
2).

It will also be useful to define a corresponding weakening
of a predicate. Define gv(~o) as -~Srv(-~o). The predicate
g(Gy(~p)) represents the strongest predicate over £(V) that
is implied by ~o.

For each cube, the implication check involves a call to
a theorem prover implementing the required decision pro-
cedures. Our implementat ion of C2BP uses two theorem
provers: Simplify [15] and Vampyre [7], both Nelson-Oppen
style provers [27]. A naive computation of 9Vy(.) and ~y(')
requires exponentially many calls to the theorem prover in
the worst case. Section 5 describes several optimizations
that make the .Y'v and ~v computations practical.

4.2 Pointers and aliasing

In the presence of pointers, WP(xffie, ~o) is not necessarily
role~x]. As an example, WP(x = 3, *p > 5) is not (*p > 5)
because if x and *p are aliases, then (*p > 5) cannot be
true after the assignment to x. A similar problem occurs
when a pointer dereference is on the left-hand side of the
assignment.

To handle these problems, we adapt Morris' general ax-
iom of assignment [25]. A location is either a variable, a

int bar(int* q, int y) { bar {

ink ii, 12; y >= O,
• .. *q <= y,

return ii; y == ii,

} y > 12
}

void f o o (i n t * p, i n t x) { foo {
ink r; *p <= 0,
if (*p <= X) X == O,

*p = X; r == 0

else }

*p = *p + x;

r = bar(p, x) ;

Figure 2: An example input to C2BP. On the left are two
simple C procedures (bar is not shown in its entirety). On
the right is the set of predicates to model.

structure field access from a location, or a dereference of a
location. Consider the computat ion of WP(x=e,~o), where
x is a location, and let y be a location mentioned in the
predicate 7~. Then there are two cases to consider: either x
and y are aliases, and hence the assignment of e to x will
cause the value of y to become e; or they are not aliases,
and the assignment to x leaves y unchanged. Define

&x = &y A ~o[e/y])V
~[x, e, y] = I &x # &y A ~)

Let yl ,y2, . . . ,y~ be the locations mentioned in 7~. Then
WP(x=e, ~) is defined to be ~o[x, e, yl][x, e, y2]... [x, e, yn].
In the example above, we have

w P (x = 3, *v > 5) =
(& x = p A 3 > 5) V (& x t p A * p > 5)

In the absence of alias information, if the predicate ~o has k
locations occurring in it, the weakest precondition will have
2 k syntactic disjuncts, each disjunct considering a possible
alias scenario of the k locations with x. C2BP uses a pointer
analysis to improve the precision of the weakest precondi-
t ion computation. If the pointer analysis says tha t x and
y cannot be aliased at the program point before x=e, then
we can prune the disjuncts representing a scenario where x
is aliased to y, and we can part ial ly evaluate the disjuncts
representing a scenario where x is not aliased to y. This has
the effect of improving the precision of the resulting boolean
program BP(P, E) produced by C2Bp. Our implementation
uses Dee's points-to algorithm [12] to obtain flow-insensitive,
context-insensitive may-alias information.

4.3 Predicate Abstract ion of Ass ignments

Consider an assignment s ta tement "x = e ;" at label g in
P . The boolean program BT~(P, E) produced by C2BP will
contain at label g a parallel assignment to the boolean vari-
ables in scope at g. A boolean variable bi in BTP(P, E) can
have the value t r u e after g if .7"w(WP(x = e,~oi)) holds
before g. Similarly, bi can have the value false after g if
Uv(WP(x = e,-~ol)) holds before ~. Note that these two
predicates cannot be simultaneously true. Finally, if nei-
ther of these predicates holds before g, then bl should be set

............... 207

non-deterministically. This can happen because the predi-
cates in E are not strong enough to provide the appropriate
information, or because the theorem prover is incomplete.
Therefore, BP(P, E) contains the following parallel assign-
me.at at label ~:

b l , . . . ,b~ =
choose (JC'v (WP(x=e, ~1)), .T'v (W P(x=e, -~1))),

choose (.~v (WP(x=e, ~n)), Iv (WP(x=e, ~)))

where the choose function is always part of B P (P , E) and
is defined as follows:

heel choose(bool pos, heel neg) (
if (pos) { return true; }
if (neg) { return false; }
return unknown() ;

}

For example, consider abstracting the statement "*p=*p+x"
in procedure foo of Figure 2 with respect to the three
predicates declared to be local to foo. Let us call this
statement s. In this example, a may-alias analysis reveals
that ,p cannot alias x or r. The weakest precondition
WP(s,*p _< 0) is (*p + x) _< 0, since *p cannot alias x.
We have $(~y(*p + x _< 0)) = (*p _< O) A (x = 0).
Similarly, WP(s,-~(*p < 0)) is ~((*p + x) _< 0), and
$(.Tv(-~(*p+x _< 0))) = -~(*p < 0)A (x = 0). The
weakest preconditions of s with respect to the predicates
(x = 0) and (r = 0) are the respective predicates them-
selves, since ,p cannot alias x or r. Thus, I3P(P,E) will
contain the following statement in place of the given assign-
ment statement, where we use {e} to denote the boolean
variable representing predicate e:

{*p<=O}, {x==0}, {r==0} =
choose({*p<=0} ~& {x==0}, !{*p<=0} && {x==0}),
choose ({x==0} , ! {x==O}),
choose({r==0} , !{r==0}) ;

Note that the abstraction process for assignment state-
ments is based on weakest precondition computations that
are local to each assignment and can be computed by &
purely syntactic manipulation of predicates. C2BP does not
compute compositions of weakest preconditions over paths
with complex control flow. In particular, C2BP does not re-
quire programs to be annotated with function pre- or post-
conditions, or with loop invariants.

4.4 P r e d i c a t e A b s t r a c t i o n o f G o t o s a n d C o n d i t i o n -
als

Every g o t o statement in the C program is simply copied to
the boolean program.

Translating conditionals is more involved. Consider some
conditional i f (eft) { . . . } e l s e { . . . } in program P. At the
beginning of the then branch in P , the predicate ~ holds.
Therefore, at the beginning of the then branch in the cor-
responding conditional in BP(P, E), the condition Gy(~o) is
known to hold. Similarly, at the beginning of the else branch
in P , we know that ~ holds, so ~ y (' ~) is known to hold at
that program point in BTo(P, E). Therefore, 137)(P, E) will
contain the following abstraction of the above conditional:

i~ (,){
assume (QV (~o))

assumo(~v(-~))

)

Note that the test in the abstracted conditional is *, so both
paths through the conditional are possible. Within the then
and else branches, we use the assume statement to retain
the semantics of the original conditional test. The assume
statement is the dual of a s s e r t : assume(g) never fails. Exe-
cutions on which ~, does not hold at the point of the assume
are simply ignored [16].

As an example, consider the conditional in procedure foe
of Figure 2. The abstraction of this conditional with respect
to the three predicates local to foe is:

i f (*) { / / i f (*p <= x)
assume ({x == O} ~ {*p <= 0});

} else {
a s s = e ({x := 0} ~ !{*p <: 0});

}

4.5 P r e d i c a t e A b s t r a c t i o n o f P r o c e d u r e Calls

We now describe how C2BP handles multi-procedure pro-
grams.

4.5.1 N o t a t i o n

Recall that the input to C2BP is the program P and a set E
of predicates. Let Gp be the global variables of the program
P. Each predicate in E is annotated as being either global
to BP(P, E) or local to a particular procedure in BP(P, E)
(see Figure 2, in which predicates are local to bar or foe
- there are no global predicates in this example), thereby
determining the scope of the corresponding boolean vari-
able in B'P(P, E). A global predicate can refer only to vari-
ables in Gp. Let E ~ denote the global predicates of E and
let Vc denote the corresponding global boolean variables of
BP (P, E).

For a procedure R, let ER denote the subset of predicates
in E that are local to R, and let VR denote the corresponding
local boolean variables of R in B'P(P, E). In the following,
we do not distinguish between a boolean variable b and its
corresponding predicate £(b) when unambiguous from the
context (that is, in the context of B79(P, E) we always mean
b and in the context of P we always mean £(b)). Let FR
be the formal parameters of R, and let LR be the local
variables of R. Let r E LR t3 FR be the return variable of R
(we assume, without loss of generality, that there is only one
return statement in R, and it has the form " re tu rn r").

Let vats (e) be the set of variables referenced in expres-
sion e. Let drfs(e) be the set of variables dereferenced in
expression e.

4 .5 .2 D e t e r m i n i n g s i g n a t u r e s

A key feature of our approach is modularity: each proce-
dure can be abstracted by C2BP given only the signatures
of procedures that it calls. The signature of procedure R
can be determined in isolation from the rest of the program,
given ER. C2BP operates in two passes. In the first pass
it determines the signature of each procedure. It uses these

208

signatures to abst ract procedure calls (along with all other
statements) in the second pass.

Let R be a procedure in P and let R ~ be its abstraction
in BoP(P, E). The signature of procedure ~R is a four-tuple
(FR, r, E / , E~), where:

* Fn is the set of formal parameters of R,

, r is the return variable of R,

® El is the set of formal parameter predicates of R' , de-
fined as {e 6 ER] pars(e) n LR = @}, and

* E~ is the set of re turn predicates of R', defined as:

{e E ER I (r e pars(e) A (pars(e) \ {r} n L~ = @))V
(e 6 E/A (pars(e) n Gp # $

Vdrfs(e) n F, # O))}.

E l is the set of formal parameter predicates of R'. This
is the subset of predicates in ER that do not refer to any lo-
cal variables of R. All predicates in ER - E / w i l l be locals of
R ~. E~ is the set of predicates to be returned by R' (boolean
programs allow procedures to have multiple return values).
Such return predicates serve two purposes. One is to pro-
vide callers with information about r, the return value of
R. The other purpose is to provide callers with information
about any global variables and call-by-reference parameters,
so that local predicates of callers can be updated precisely.
To handle the first concern, E~ contains those predicates in
ER tha t mention r but do not mention any (other) locals
of R in P, as callers will not know about these locals. To
handle the second concern, E~ contains those predicates in
Ef tha t reference a global variable or dereference a formal
parameter of R.

As an example, consider procedure bar in Figure 2. In
the signature of bar , E/ is {*q <_ y, y _> 0) and Er is {y =
l l , *q _< y}.

4.5.3 H a n d l i n g p r o c e d u r e calls

Consider a call v = R(al, ... , a j) to procedure R at label
of some procedure S in P. The abstraction BP(P, E)

contains a call to R' at label g. Let the signature of R be
(FR, r, Ey, E~). For each formal parameter predicate e 6 E / ,
C2BP computes an actual value to pass into the call. Let

e' = e[all f,, a21f2, . . . , a~ I fj]

where FR = {f l , f2 f j }. The expression e' represents
the predicate e t ranslated to the calling context. The actual
parameter computed for the formal e is

caoos~(.rvs ~v~ (e'), :rv~v~ (-~e')).
We now explain how C2BP handles the return values

from the call to R'. Assume Er = { e l , . . . ,ep}. C2BP cre-
ates p fresh local variables T = { t l , . . . , tp} in procedure S'
and assigns to them, in parallel, the return values of R':

t l , . . . ,tp = R ' (. . .) ;

The final step is to update each local predicate of S whose
value may have changed as a result of the call. Any predi-
cate in Es tha t mentions v must be updated. In addition,
we must update any predicate in Es that mentions a global
variable, a (possibly transitive) dereference of an actual pa-
rameter to the call, or an alias of either of these kinds of

locations. C2BP uses the pointer alias analysis to determine
a conservative over-approximation E~ to this set of predi-
cates to update.

Let E ' = (EsUEG)-Eu. The predicates in E ' along with
the predicates in Er are used to update the predicates in
E~. Let V' C Vs U VG be the boolean variables in BP(P, E)
corresponding to E ' .

First C2BP translates the predicates in E~ to the calling
context. In particular, for each ei E E~, let

~ = ~i[vlr, a l l / l , a ~ l : ~ , . . . , a~l / j]

and let E'~ = {e~, . . . ' 4 ,ep}. Define £(t i) = ei, for each
ti fi T. For each e 6 E~, the corresponding boolean variable
b E Vs is assigned the following value:

choose (,T'V, uT (e), .,T'V,uT(~e)).

For example, consider the call " b a r (p , x) " in Figure 2.
Recall that in the signature of bar , the formal parameter
predicates (El) are {,q _< y , y >_ 0} and the return predi-
cates (Er) are {y = l l , ,g < y}. The abstraction of this call
in the boolean program is as follows:

prml = choose({*p<=O}~{x==O}, // for formal {*q<=y}
! {*p<=O}~{x==O}) ;

prm2 = choose({x==O}, false); // for formal {y>=O}

tl, t2 = bar(prml, prm2); // tl for {*q<=y}
// t2 for {y==ll}

{*p<=O} = choose(tla&{x==O}, !tl&&{x==O});
{r==O} = choose(t2~&{x==O}, !t2~&{x==O};

4.6 F o r m a l p r o p e r t i e s

We give two properties that relate P and BT~(P, E). The
first property, soundness, states that B is an abstraction
of P - - eve ry feasible pa th in P is feasible in B as well.
Since a boolean program that allows all paths to be feasible
is sound as well, we also need to state the sense in which
B is precise. We do tha t via the terminology of abstract
interpretat ion [11].
S o u n d n e s s . For any pa th p feasible in P, it is guaranteed
that p is feasible in BP(P, E) as well. Further, if ~ is the
state of the C program P after executing path p, then there
exists an execution of p in the boolean program B ending in
a state F such tha t for every 1 < i < n, ~i holds in fl iff bi
is true in F. A proof of the soundness of C2BP can be found
in [3].
P r e c i s i o n . The framework of abstract interpretat ion can
be used to specify abstractions declaratively. A boolean ab-
straction maps concrete states to abstract states according
to their evaluation under a finite set of predicates. A carte-
sian abstraction maps a set of boolean vectors to a three-
valued vector obtained by ignoring dependencies between
the components of the vectors (see, for example, the work
on set-based analysis [21]). For example, the set of boolean
vectors {(0, 1), (1, 0)} is mapped by the cartesian abstrac-
tion to the three-valued vector (?, ?), where ? represents the
"don't know" value. For single procedures without pointers,

4For simplicity, we assume that each formal still refers to the same
value as its corresponding actual at the end of the call. This can be
checked using a standard modification side-effect analysis [24]. If a
formal cannot be proven to refer to the same value as its correspond-
ing actual at the end of the call, then any predicates that mention
the formal must be removed from Er in the signature of R.

209

the abstraction computed by C2BP is equivalent to a com-
position of the boolean and cartesian abstractions [4]. We
improve precision by using disjunctive completion and focus
operations, both of which are implemented in BEBOP using
BDDs [4].

5 E x t e n s i o n s

This section describes various techniques we have applied to
increase the precision and efficiency of C2BP.

5.1 T h e enforce construct

Often the predicates in E are correlated in some way. For
example, consider the predicates (x = 1) and (x = 2). The
semantics associated with these predicates forbids the pred-
icates from being simultaneously t rue. However, when we
use uninterpreted boolean variables bl and b2 for the pred-
icates in BT~(P, E), we do not preclude an execution of the
boolean program in which both variables evaluate t r u e in
some state. In order to rule out abstract executions contain-
ing such spurious situations, we add an enforce construct to
boolean programs: the statement enforce 0 in a procedure
has the effect of putting assume 0 between every statement
in the procedure. This ensures that 0 is a data invariant
maintained throughout the procedure's execution. We com-
pute 0 for each procedure R simply as YvRova (false). For
example, given only predicates (x = 1) and (x = 2), g(O) is
-~((~ = i) A (~ = 2)).

5.2 Optimizations

The method described above for constructing abstract mod-
els of C programs is impractical without several important
optimizations. Profiling shows that the running time of
C2BP is dominated by the cost of theorem proving, as we are
making an exponential number of calls to the prover at each
program point. Therefore, our optimization efforts have fo-
cused on cutting down the number of calls to the theorem
prover.

First, when computing jrv (~o), cubes are considered in
increasing order by length. If a cube c is shown to imply ~o,
then we know that any cube that contains c as a subset will
also imply qp, is redundant with c, and can therefore be safely
pruned. In this way, the .T computation actually produces
a disjunction of only the prime implicants of 5ry(~o). If a
cube c does not imply ~ but it implies - ~ , then any cube
that contains c as a subset also will not imply ~, and can
therefore be safely pruned.

Second, for every assignment statement, rather than up-
dating the values of every boolean variable in scope, we do
not update those variables whose t ruth value will definitely
not change as a result of the assignment. The truth value
of a variable b will definitely not change as a result of an
assignment x=e if WP(x=e, g(b)) = g(b).

Third, for each computation .Ty(~o), we perform an anal-
ysis to produce a set V' C V, such that £(V') contains all
predicates from g(V) tha t can possibly be part of a cube
that implies ~. Therefore, ~v (~o) can safely be replaced by
~ y ' (9o), reducing the number of cubes to explore. This set
V' is determined by a syntactic cone-of-influence computa-
tion. Starting with an empty set E ' we find predicates in
g(V) that mention a location or an alias of a location in cp,
add these predicates to E ' , determine the set of locations
mentioned in these predicates, and iterate until reaching a

p r o g r a m i i n e ~ predicates

floppy 6500 23
ioctl 1250 5
openclos 544 5
srdriver 350 30
log 236-- 6

thm. prover
cNls

5509
500
132
3034
98

(s__e.conds 2
g g ~

-/5-

- Z - - - - - - -

Table 1: The device drivers run through C2BP.

fixpoint. V' C. V is the set of boolean variables such that
£(V') = E ' .

Fourth, we t ry several syntactic heuristics to construct
9Cy(~o) directly from 7~. As a simple example, if there exists
a boolean variable b such that g(b) = ~, then we return b,
without requiring any calls to the theorem prover. Fifth, we
cache all computations by the theorem prover and the alias
analysis, so that work is not repeated.

While the worst-case complexity of computing the ab-
straction is exponential in the number of predicates, the
above optimizations dramatically reduce the number of calls
made to the theorem prover in most examples. More-
over, the above optimizations all have the property that
they leave the resulting I37~(P, E) semantically equivalent to
the boolean program produced without these optimizations.
Some of the optimizations described rely on the existence of
the enforce data invariant for soundness.

If we are willing to sacrifice some precision, there are
other optimization opportunities. For example, we can limit
the length of cubes considered in the .T" computation to some
constant k, lowering the 9 v function's complexity from expo-
nential to O(nk). In practice, we have found that setting k
to 3 provides the needed precision in most cases. As another
optimization, we can compute the Y function only on atomic
predicates. That is, we recursively convert .T'(~i A 7~2) to
.?'(7~0 A 5c(~2) and Y(~ol V ~2) to f (~ l) V ~(~2). This
allows us to make use of all of the existing optimizations
of the Y function described above in a finer-grained man-
ner. Distribution of .T" through A loses no precision, while
distribution of .T" through V can lose precision.

6 Experience

We have implemented C2BP in OCaml, on top of the AST
toolkit (a modified version of Microsoft's C / C + + compiler
that exports an abstract syntax tree interface to clients),
the Simplify [15, 27] and Vampyre [7] theorem provers, and
Das's points-to analysis [12].

We have applied C2BP to two problem areas: (1) check-
ing safety properties of Windows NT device drivers, in the
context of the SLAM project and the SLAM toolkit; (2)
discovering invariants regarding array bounds checking and
list-manipulating code.

6.1 T h e S L A M Toolk i t a n d its Application to N T
D e v i c e D r i v e r s

The goal of the SLAM project is to automatically check
that a program respects a set of temporal safety properties
of the interfaces it uses. Safety properties are the class of
properties that state that "something bad does not happen".
An example is requiring that a lock is never released without

210

first being acquired (see [23] for a formal definition). Given
a program and a safety property, we wish to either validate
that the code respects the property, or find an execution
path tha t shows how the code violates the property.

Given a safety property to check on a C program, the
SLAM process has the following phases: (1) abstraction,
(2) model checking, and (3) predicate discovery. We have
developed the SLAM toolkit to support each of these phases:

• C2BP, which is the topic of this paper;

o BEBOP, a tool for model checking boolean programs [5];

o NEWTON, a tool tha t discovers additional predicates to
refine the boolean program, by analyzing the feasibil-
i ty of paths in the C program (the subject of a future
paper).

The SLAM toolkit provides a fully automatic way of check-
ing temporal safety properties of system software. Viola-
tions are reported by the SLAM toolkit as paths over the
program P. The toolkit never reports spurious error paths.
Instead, it detects such paths and uses them to automati-
cally refine the boolean program abstraction (to eliminate
these paths from consideration). Since property checking is
undecidable, the SLAM refinement algorithm may not con-
verge. In addition~ it may terminate with a "don't know"
answer due to the incompleteness of the underlying theorem
provers. However, in our experience, it usually converges in
a few iterations with a definite answer. One reason for this
is that the properties we checked are very control-intensive,
and have relatively simple dependencies on data.

We ran the SLAM toolkit on four drivers from the Win-
dows 2000 Driver Development Kit 5, as well as an internally
developed floppy device driver, to check for proper usage
of locks and proper handling of interrupt request packets
(see [6] for the details of the properties checked). The de-
vice drivers in the DDK are supposed to be exemplars for
others to base their device drivers on. For the two properties
we checked, the SLAM toolkit validated these drivers (i.e.,
found no errors). For the floppy driver under development,
the SLAM toolkit found an error in how interrupt request
packets are handled.

Table 1 shows the sizes of these drivers, the number of
predicates in the predicate input file, the number of theorem
prover queries tha t C2BP made, and the run time for C2BP.
For all these examples (and those of the next section), BE-
BOP ran in under 10 seconds on the boolean program output
by C2BP.

6.2 Array B o u n d s Checking and Heap Invarlants

Table 2 shows the results of running C2Bp on a set of toy
il lustrative examples. The program Imp is a Knuth-Morris-
P ra t t string matcher and q s o r t is an array implementation
of quicksort, both examples used by Necula [26]. The pro-
gram p a r t i t i o n is the list part i t ion example from Figure 1,
l i s t f i n d is a list search example, and r e v e r s e is an exam-
ple tha t reverses a list twice. In most cases, the cone-of-
influence heuristics in C2BP were able to reduce the number
of theorem prover calls to a manageable number. In the
case of the r e v e r s e example, every pair of pointers could
potential ly alias, and the cone-of-influence heuristics could
not avoid the exponential number of calls to the theorem
prover.

5freely available from http://www.microsoft, com/ddk/

program lines predicates

kmp [75
qsort 45
parti t ion 55
listfind 37
reverse 73

thm. prover runtime
calls (seconds)
286 7
199
263 9
4412 172
26769 747

Table 2: The array and heap intensive programs analyzed
with C2BP.

s t r u c t node {
i n t mark;
s truct node *next;

};
vo id m a r k (s t r u c t node * l i s t) {

s t r u c t node * t h i s , *tmp, *prey;
prey = O;
this = list;
/* traverse list and mark, setting back pointers */
while(this != 0) {

if(this->mark==l)
break;

this->mark = 1;
imp = prey;
prey = this;
this = this->next;
prev->next = tmp;

}

/* traverse back, resetting the pointers */
while(prev!=O){

imp = this;
this = prey;
prev= prev->next;
this->next = trap;

}
}

Figure 3: List traversal using back pointers

In our experiments, we were able to construct useful in-
variants in the code by modeling only a few predicates that
occurred in the program. For example, in the array bounds
checking examples (kmp and q so r t) , where an array a was
indexed in a loop by a variable index, we simply had to
model the bounds index > 0 and index < length(a) in or-
der to produce the appropriate loop invariant. We found
that in most cases, the component predicates of the invari-
ant were easy to guess by looking at the conditionals in the
programs.

The list reversal example r e v e r s e is a simplified version
of a mark-and-sweep garbage collector. We show the pro-
gram in Figure 3. In the first while loop, the list is traversed
in the forward direction, while maintaining back pointers to
the previous nodes. In the second loop, the pointers are re-
versed to get the original list. We wish to verify that the
procedure mark leaves the shape of the structure unchanged:
i.e., for every node h in the list, h ~ next points to the same
node before and after the procedure mark. To check this, we
introduced auxil iary variables h and hnext into the C code.
The variable h is chosen non-deterministically to point at
any (non-null) element of the list, and hnext is initialized

.............. 211

with h->next. We input the following predicates to C2BP
(along with the program of Figure 3):

mark {
h== 0,
prey == h,
this == h,
this->next == hnext,
prev == this,
h->next == hnaxt,
hl%ext->next == h

}

With this choice of predicates, C2BP constructs an abstract
program which is analyzed using BEBOP. BEBOP shows that
at the end of the mark procedure, h --~ n e x t - - h n e x t holds.

7 R e l a t e d W o r k

Our work is inspired by the predicate abstraction work of
Gra£ and Saidi [19]. Predicate abstraction has been used in
the verification of cache coherence protocols [13]. However,
these efforts work at the specification level, on a language
with guarded commands. Doing predicate abstraction on
a general-purpose programming language is the novel as-
pect of our work. A method for constructing abstract mod-
els from Java programs has been developed in the Bandera
project [17]. Their tool requires the user to provide finite-
domain abstractions of data types. Predicate abstraction
as implemented in C2BP is more genera/, as it allows the
finite partitioning of a variable's possible values and addi-
tionally allows relationships between variables to be defined.
Another approach is to use richer type systems to model
finite-state abstractions of programs [14].

Shape analysis [30] also uses a form of predicate abstrac-
tion, where the predicate language is a first-order logic aug-
mented with transitive closure. In contrast, our predicates
are quantifier-free. Shape analysis requires the user to spec-
ify how each statement affects each predicate of interest,
whereas the C2BP tool computes the abstract transition sys-
tem automatically using a theorem prover.

Predicate abstraction is a general technique that can be
used to add predicate (read "path") sensitivity to program
analyses. Ammons and Larus use code duplication followed
by a traditional data.flow analysis to achieve path-sensitive
results [1]. Bodik and Anik use symbolic back-substitution
(i.e., weakest preconditions) followed by value numbering to
improve the results of a subsequent three-valued datafiow
analysis [8]. The combination of predicate abstraction by
C2BP and path-sensitive dataflow analyses in BEBOP could
be used to achieve similar results.

Prior work for generating loop invariants has used sym-
bolic execution on the concrete semantics, augmented with
widening heuristics [32, 33]. The Houdini tool guesses
a candidate set of annotations (invariants) and uses the
ESC/Java checker to refute inconsistent annotations until
convergence [18]. In contrast, the tools C2BP and BEBOP use
a combination of abstraction (from C program to boolean
program) and iterative analysis of the abstracted C program
to find loop invariants expressible as boolean functions over
a given set of predicates.

8 Conc lu s ions

We summarize our main contributions:

o C2BP is the first predicate abstraction tool that works
on a general-purpose programming language.

• We have taken efforts to handle features such as pro-
cedures and pointers in a sound and precise way.

• We have explored several optimizations to reduce the
number of calls made to the theorem prover by C2BP.

• We have demonstrated the use of C2BP on pro-
grains from varying domains -- device drivers, array-
manipulating programs, and pointer-manipulating pro-
grams.

Though we fully support pointers in C2BP, our predi-
cates are quantifier-free. Stating certain properties of un-
bounded data structures may require a more expressive
logic. For this purpose, it would be interesting to enrich
the predicate language with dependent types and recursive
types. Among other things, the aliasing problem becomes
more complicated in this setting. For example, if T is a type
tha t denotes lists of even length, then the predicate (p 6 T)
is t r u e if p points to an object of type T. Consider an as-
signment of the form q->next = NULL. To update (p 6 T),
we have to consider the possibility that q can point any-
where inside the list pointed to by pfi One way around this
difficulty is to use linear types to encode that there are no
external pointers to the list other than p. It would also be
interesting to investigate the use of predicates expressible in
some recent pointer logics [29, 22].

We have focused on predicate abstraction of single-
threaded programs, and it would be interesting to extend
C2BP to work for multi-threaded code. Several issues need
to be resolved here. First, one needs to establish an ap-
propriate notion of atomicity of execution. Next, while ab-
stracting any statement one has to account for the possibility
of interference from another thread. Even if such an abstrac-
tion were possible, model checking boolean programs with
even two threads is undecidable. One possible solution is to
further abstract boolean programs to finite-state machines,
and then use traditional model checking algorithms to ex-
plore interleaving executions of the finite-state machines. A
further problem is that in certain situations, it is not possi-
ble to know the number of threads in advance. If we were
to first abstract boolean programs to finite-state machines,
then it is possible to use parameterized model checking to
handle an arbitrary number of threads [2]. It is not clear if
these abstractions can be performed automatically.

We have chosen C as our source language for predicate
abstraction. However, our fundamental contribution is a set
of techniques to handle procedure calls and pointers dur-
ing predicate abstraction. The techniques in this paper can
be adapted to construct predicate abstractions of programs
written in other imperative languages such as Java.

We plan to improve some inefficiencies we have in the
implementation. The theorem prover is currently started
as a separate process each time it is used, which is very
inefficient. A more fundamental issue is tha t we currently
use theorem provers as black boxes. We plan to investigate if
opening up the internals of the theorem prover can improve
the efficiency of the abstraction process.

Generating predicates for a predicate abstraction tool
like C2BP is another open research problem. We are cur-
rently building a tool called NEWTON in the SLAM toolkit to

6We thank Frank Pfenning for this observation.

212

generate predicates h'om the model checker's counterexam-
ples, using path simulation. We are also exploring predicate
generation using value flow analysis on the program, with
respect to the properties of interest. Our current approach
seems to work as long as the properties of interest have
relatively simple dependencies on data. For data-intensive
properties, predicate generation may have to use widening
heuristics as in [32, 331 .

A c k n o w l e d g e m e n t s . We thank Andreas Podelski for help-
ing us describe the C2BP tool in terms of abstract interpre-
tation. We thank Manuvir Das for providing us his one-
level flow analysis tool. We thank the developers of the
AST toolkit at Microsoft Research, and Manuel F/ihndrich
for providing us his OCaml interface to the AST toolkit.
We thank Craig Chambers for several interesting discus-
sions about C2BP. Thanks also to the members of the Soft-
ware Productivity Tools research group at Microsoft Re-
search for many enlightening discussions on program anal-
ysis, programming languages and device drivers, as well as
their numerous contributions to the SLAM toolkit.

Re fe rences

[1] G. Ammons and J. R. Larus. Improving data-flow analysis
with path profiles. In PLDI 98: Programming Language
Design and Implementation, pages 72-84. ACM, 1998.

[2] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized ver-
ification of multithreaded software libraries. In TACAS 01:
Tools and Algorithms/or Construction and Analysis of Sys-
tems, LNCS 2031. Springer-Verlag, 2001.

[3] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic pred-
icate abstraction. Technical Report MSR Technical Report
2001-10, Microsoft Research, 2000.

[4] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and carte-
sian abstractions for model checking C programs. In TA GAS
OI: Tools and Algorithms for Construction and Analysis of
Systems, LNCS 2031. Springer-Verlag, 2001.

[5] T. Ball and S. K. Rajamani. Bebop: A symbolic model
checker for Boolean programs. In SPIN 00: SPIN Workshop,
IJNCS 1885, pages 113-130. Springer-Verlag, 2000.

[6] T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN 2001: SPIN
Workshop, LNCS 2057, May 2001.

[7] D. Blei and et al. Vampyre: A proof generating theorem
prover - - http://www.eecs.berkeley.edu/" rupak/vampyre.

[8] R. Bodik and S. Anik. Path-sensitive value-flow analysis.
in POPL 98: Principles o/Programming Languages, pages
237-251. ACM, 1998.

[9] R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677-
691, 1986.

[10] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera : Extracting finite-
state models from Java source code. In ICSE 00: Software
Engineering, 2000.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construc-
tion or approximation of fixpoints. In POPL 77: Principles
of Programming Languages, pages 238-252. ACM, 1977.

[12] M. Das. Unification-based pointer analysis with directional
assignments. In PLDI 00: Programming Language Design
and Implementation, pages 35-46. ACM, 2000.

[13] S. Das, D. L. Dill, and S. Park. Experience with predicate ab-
straction. In CAV 00: Computer-Aided Verification, LNCS
1633, pages 160-171. Springer-Verlag, 1999.

[14] R. DeLine and M. F~hndrich. Enforcing high-level protocols
in low-level software. In PLDI 01: Programming Language
Design and Implementation. ACM, 2001,

[15] D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover
- http://research.compaq.com/src/esc/simplify.html.

[16] E. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[17] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasare-
anu, Robby, W. Visser, and H. Zheng. Tool-supported pro-
gram abstraction for finite-state verification. In ICSE 01:
Software Engineering (to appear), 2001.

[18] C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation in-
ference for modular checkers. Information Processing Letters
(to appear), 2001.

[19] S. Graf and H. Sa'idi. Construction of abstract state graphs
with PVS. In CA V 97: Computer-aided Verification, LNCS
1254, pages 72-83. Springer-Verlag, 1997.

[20] D. Gries. The Science of Programming. Springer-Verlag,
1981.

[21] N. Heintze. Set-based analysis of ML programs. In LFP 94:
LISP and Functional Programming, pages 306-317. ACM,
1994.

[22] S. Ishtiaq and P. O'Hearn. BI as an assertion language for
mutable data structures. In POPL 01: Principles of Pro-
gramming Languages, pages 14-26. ACM, 2001.

[23] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering, SE-
3(2):125-143, 1977.

[24] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural side
effect analysis with pointer aliasing. In PLDI 93: Program-
ming Language Design and Implementation, pages 56-67.
ACM, 1993.

[25] J. M. Morris. A general axiom of assignment. In Theoretical
Foundations of Programming Methodology, Lecture Notes
of an International Summer School, pages 25-34. D. Reidel
Publishing Company, 1982,

[26] G. Necula. Proof carrying code. In POPL 97: Principles of
Programming Languages, pages 106-119. ACM, 1997.

[27] G. Nelson. Techniques for program verification. Technical
Report CSL81-10, Xerox Palo Alto Research Center, 1981.

[28] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In POPL 95:
Principles of Programming Languages, pages 49-61. ACM,
1995.

[29] J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In Millenial Perspectives in Computer
Science, pages 303-321. Palgrave, 2001.

[30] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. In POPL 99: Principles of Program-
ming Languages, pages 105-118. ACM, 1999.

[31] M. Sharir and A. Pnueli. Two approaches to iaterprocedural
data dalow analysis. In Program Flow Analysis: Theory and
Applications, pages 189-233. Prentice-Hall, 1981.

[32] N. Suzuki and K. Ishihata. Implementation of an array
bound checker. In POPL 77: Principles of Programming
Languages, pages 132-143. ACM, 1977.

[33] Z. Xu, B. P. Miller, and T. Reps. Safety checking of ma-
chine code. In PLDI 00: Programming Language Design
and Implementation, pages 70-82. ACM~ 2000.

.......... 213

