4% ‘
..vm\ { :

I.nvar1ant Detection

One-Slide Summary
An invariant is a logical formula that is always true
at a particular program location.

Given a program and a program location, invariant
detection learns an invariant that is true whenever
execution reaches that location. Dynamic invariant
detect uses execution traces to learn invariants.

The Daikon algorithm for dynamic invariant
detection enumerates simple candidate invariants
and retains only those that hold on all traces.

The Dig algorithm for dynamic invariant detection
generates nonlinear polynomial and linear array
invariants via SMT, polyhedra, and equations.

#2

Motivation

e Backward axiomatic semantics requires

loop invariants for verification conditions.

e Forward axiomatic semantics (symbolic
execution) requires loop invariants for all
backward branch targets.

e Recursive functions may also require pre-
and post-conditions in these frameworks.

« How many have you seen in real life?

#3

Frogramming Languages

Finding Invariants Manually

DGR, Eder

Proof of a Program: FIND

C. A. R. Hoare
Queen’s University,* Belfast, Ireland

A proof is given of the correciness of the algorithm “Find.”
First, an informal description is given of the purpose of the
program and the method used. A systematic technique is de-
scribed for constucting the program proof during the process
of coding it, in such 0 way as to prevent the intrusion of
logical errors. The proof of termination is treated as a sep-
crate exercise. Finally, some conclusions relating to general
programming methodology are drawn.

KEY WORDS AND PHRASES: proohs of programs, progromming method-

clogy, prog ' , prog o theery of programming
CR CATEGORIES: 4.0, 4.22, 5.21, 5.23, 5.24

1. Introduction

In a number of papers (1, 2, 3] the desirability of proving
the correctness of programs has been suggested and this
has been illustrated by proofs of simple example programs.
In this paper the construction of the proof of a useful,
efficient, and nontrivial program, using a method based on
invariants, is shown, It is suggested that if a proof is con-
structed as part of the coding process for an algorithm, it
is hardly more laborious than the traditional practice of
program testing.

: and
tion ocience

vneuce L niversity
sort the whole array. If the array js small, thinwould be a
good method; but if the array is large, the time taliih ¢o
sort it will also be large. The Find program is designed to
take advantage of the weaker requirements to save much
of the time which would be involved in a full sort.

The usefulness of the Find program arises from its
application to the problem of finding the median or other
quantiles of a set of observations stored in a computer
array. For example, if N is odd and f is set to (N + 1)/2,
the effect of the Find program will be to place an observa-
tion with value equal to the median in A[f]. Similarly the
first quartile may be found by setting f to (N + 1)/4,
and =0 on.

The method used is based on the principle that the
desired effect of Find is to move lower valued elements of
the array to one end—the “left-hand” end—and higher
valued elements of the array to the other end—the “right-
hand” end. (See Table I(a)). This suggests that the array
be scanned, starting at the left-hand end and moving right-
ward. Any element encountered which is small will re-
main where it is, but any element which is large should be
moved up to the right-hand end of the array, in exchange
for a small one. In order to find such a small element, a
separate scan is made, starting at the right-hand end and
moving leftward. In this scan, any large element encoun-
tered remains where it is; the first small element encoun-
tered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward
scan. Then both scans ean be resumed until the next ex-
change is necessarv. The process is repeated until the
scans meet somewhere in the middle of the array. It is
then known that all elements to the left of this meeting
point will be small, and all elements to the right will be

lomema T hne wbLio o ¢ LR

#4

Finding Invariants Manua

e Hoare's post-condition:

The required result is:

Ly

Vp, el < p < f<q < NDAp] < Alf] £ Alg)

e Some intermediate invariants:

m<f&V¥pq(l <p<m<q<NDA[p| < Aly)
[m-invariant)

Similarly, n is intended to point to the rightmost element
of the middle part; it must never be less than f, and there
will always be a split just to the nght of it:

JE€<n&Vp gl <p<n<qg<NDAP < Alg)
[n-invariant]

[Found]

#5

Final Result

begin

comment This program operates on an array A[(l:N], and a
value of f(1 < f € N). Its efiect is to rearrange the elements

of A in such a way that:
vpa(1Sp<fSqSNDA[pISA]S AlQ)); w—
integer m, n; comment
m < f & wp,g1<p<m<g<NDA(pI< Alq]), <€—
f<n &wpg<pSn<gS NDA(pI< Alg); <€—
m:=1; n:=N,;
while m < n do
begin integer r, 1, j, w;
comment
m < i & wp(1<p<iDA[p]<r), @—
S n &ye(G<gSNDOr<Adlg)); €—
r:= Alf]; 1t :=m; j:= n;
while 1 < j do
begin while Afi] < rdo1 :=1 4+ 1;
whiler < Alj]doj := 57— 1
comment A[j] £ r < Ali]; €—
if 1 < then
begin w := A[i]; Ali] := Alj}; Alj] := w;
comment Ali] < r < A[j]; €—
i:=141; ji=3-=1
end
end increase 1 and decrease j;
iff < jthenn :=;
elseif t < fthenm ;=1
else go to L
end reduce middle part;
L:
end Find

#6

“Reading Quiz”

e« What is “FIND” all about?

» Why did it take seven /;5515 LICK
pages?

« What program was Hoare
actually proving?

- Roman a clef

I'have

.......

Cunning Plan

e Given a program location, if we could infer an
invariant for that location, we could have ...

- Loop invariants (location = loop head)
- Function pre-conditions (location = entry)
- Function post-conditions (location = exit)
e Can we do this automatically?
e TWoO insights:
- An invariant always holds on all executions
- We can detect spurious false invariants

#8

Dynamic Invariant Detection

e What if we require that the program come
equipped with inputs?
- An indicative workload
- High-coverage test cases

e Since an invariant holds on every execution

(by definition), any candidate invariant that
fails even once can be tossed out!

e Plan: generate many candidate invariants,
filter out the false ones!

#9

| could while away the hours ...

e Given:
- while b do c

e Instrument:
- while b do (print Inv1; print Inv2; ... ; €)
- Run on all tests, filter out on false

« How many candidate invariants are there?

1. pass time in a leisurely manner.
a diversion to while away the long afternoons
onyms; pass, spend. occupy, use up, fitter, kill

tennis helped to while away the time

#10

Invariant Templates

e Given program variables x, y, and z

- X=C

-x1=0

- X>=C
-y=ax+b

S X<y

- (x+y)%hb=a
-Z=aXx+by+c

constant
non-zero
bounds

linear
ordering

math functions
linear

e« At most three variables at a time: finite!

#11

e The Daikon invariant detection algorith

- For every program location

« For all triples of in-scope variables
- Instantiate invariant templates to obtain candidate invariants
- Instrument program

- For every test case
e Run instrumented program
o Filter out any falsified candidate invariant
e Running time: cubic in in-scope variables,
linear in test suite, linear in program

#12

Daikon Weaknesses

 What could go wrong?

#13

Daikon Weaknesses

e False Negatives

- If your invariant does not fit a template, Daikon

cannot find it
- Example: l+u-1<=2p <=1+ u (bsearch pivot)

The required result is:

- Example: Vp,9(1 < p < f<q<NDAlp] < Al < Alg)

)
[Found]

e Nothing prevents Daikon from finding these

e But each increase in the language of
candidate invariants bloats the runtime

#14

Daikon Weaknesses

e False Positives from limited input

- If you only test your sorting program on one input,
4;2;3], Daikon will learn output[0] = 2

- But making high-coverage, high-adequacy tests is
easy, no? That's why we're doing formal
verification. Oh, right.

e False Positives from linguistic coincidence
- EX: ptr % 4 ==
- Ex: x <= MAX_INT
- Not false, but not related to correctness.

#15

Dynamic Invariant Detection

e Daikon is ill-suited for richer languages of
invariants (e.g., non-linear relations, array
relations, etc.) because all candidate
invariants must be listed and considered.

e |dea:

- Instead of listing invariants, list values, and
induce invariants via constraint solving

- Ex: instead of printing x>y, x<y, x>=y, etc., just

print out x and y and figure out which is true later
#16

Dig

o Apply three techniques we've already learned
to learn rich invariants

e Nonlinear Equalities of Polynomials
- via Equation Solving

e Nonlinear Inequalities of Polynomials
- via Convex Polyhedra

e Linear Equalities of Arrays
- via SMT Solving

#17

O 0 N B O W N =

= = s
b N = D

Dig Example: Cohen's Division

def intdiv(x, y):

q = O // quotient
r = X //remainder
while r > y:
a = 1
b =y
while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = r - b
Q=49 t+ a

return q

#18

Cohen's Division on input (15,2)

def intdiv(x, y):

O 0 N B O W N =

= = s
b N = D

N NN E

- N = =

N = A B -

= O O |8

15
15

q = 0 //quotient A

r = X //remainder 15

while r > y: 15
a = 1 15
b =y

while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = r - b
qQ =9 t+ a

return q

#19

O 00 N O O & W KN =

= = s
b N = D

Cohen's Division on input (4,1)

def intdiv(x, y):
q = O // quotient

r = X //remainder
while r > y:
a = 1
b =y

while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = r - b
qQ =9 t+ a

return q

r yla b q T
15 211 2 0 15
15 212 4 0 15
5 211 2 4 7
4 111 1 0 4
4 12 2 0 4

#20

O 00 N O O & W KN =

N
b = O

13

Cohen'’s Division Desires

def intdiv(x, y):
q = O // quotient
r = X //remainder
while r > y:
a = 1
b =y

while r > 2b:
[L] #100p invariant

a = 2a
b = 2b
r = r - b
Q=49 t+ a

return q

r yla b q T
15 211 2 0 15
15 212 4 0 15
5 211 2 4 7
4 1|1 1 0 4
4 12 2 0 4
{b=ya,z =qy+r,r>2ya}

#21

Nonlinear Equalities

e Division example: x=qy +r (qy+r-x = 0)
e GCD example: g =1iA + jB (1A+jB-g = 0)
e Goal:

Find equations of the form

co+01$+czy+63$y+---+Cn$dyd:0, ¢ €R

e Approach:
- Pick a maximum Degree
- Generate Terms
- Equation Solving (ex: x+y=2,Xx-y=4)

#22

Terms, Equations, Solutions

e« Terms and Degrees
V={ry,a}; deg,,, =2 = T={l,nyaryrayar’,y , a}

e Equation Template
c1 + cor + e3y + caa + esTy + cera + crya + s + coy’ + croa” =0

e Systems of Equations
tracel : {r=15,y=2,a=1}
eql : c1+ 15e2+ 2¢3 + ¢a4 + 30¢s + 15¢6 + 2¢7 + 225¢s + 4eg + c10 = 0

e Solve for coefficients
V ={=z,y,a,b,q,r}; deg,,, =2 = {b=ya,z=qy+r}

#23

How?

e Six variables (xyabqr) at deg 2 is 28 terms:

C1 + Col + C3q + C4T + {35!{'! + Cg@ + C7T + (33?,"2
+ coqy + croxy + c11by + ci2ay + c131y
+ r:qu + c15q9x + c16bg + c17aq + ¢153qr
+ '.'_’519;172 + ﬂgub;’l? + ¢co1ax + Coorx + ngbz

2 2
+ eoqab + cosbr + coga” + corar + cosr” = 0.

e Use trace values for (xyabqr), find solutions
- 28 terms + 5 traces = underconstrained!

_c4=-V c5=T c7=c9=V

c12=-T c =c=-U c. =U C =0

16 27 21 other

#24

How Now?

e Solutions:

_c4=-V c5=T c7=c9=V

-C T T Cio = Cp7 = -U Co = U Cother — 0
e Try T=0, U=0, V=1 (V alone —related vars)
o That gives c, = -1 c,=¢, =1

¢1 + C2y + 3q + cax + c5b + cga + cor + csy”
+ coqy + crozy + c11by + cr2ay + ci37y
+ 140 + 159 + c16bg + c17aq + c18qr
+ 1922 + Coob + Co1aX + CooTx + Co3b° aka

= X+r+qy=0

+ eoqab + Cosbr + co6a® + corar + cogr? = 0. X=qy+r
#25

Q: Computer Science

« This American computer scientist graduated with a
BA in Mathematics from the University of Virginia.
He received the Turing award for “developing
Model-Checking into a highly effective verification
technology that is widely adopted in the hardware
and software industries.” He recognized that,
unlike Hoare's annotation-heavy logical approach,
Pnueli's temporal logics could be checked
mechanically. With his student Ken McMillan he
addressed the state space explosion problem via
symbolic model checking (BDDs).

#26

Nonlinear Inequalities

e Sqrt Example: x + err >=y*y >=x - err
e Goal:

Find inequalities of the form

co+ 1z + ey + sy + -+ eyt >0, ¢ €R

/

e Approach:
- Pick maximum Degree
- Represent trace values as polyhedra points
- Build bounded convex polyhedron
- Deduce new invariants from loop guard

#27

Polyhedra From Trace Points

t3

#28

Polyhedra

3

#29

Polyhedra Facets

e Facets of polyhedra correspond to inequalities

- llll
’:’l by
R

Iy
-

e Think Simplex! . "

-
"'I'

e Given k points in n dlmensmns can build the
enclosing bounded convex polyhedron in k"

e First trace from example before gives point:
(1,15,2,1,30,15,2,225,4,1)

e One of the facets: r - 2ya >=0

#30

Comparison

e Simplex:
- Given more than enough facets (edges,

inequalities), find the convex space and
enumerate the points

e Dig's Polyhedra Approach:

- Given more than enough points, find the convex
space and enumerate the facets (edges,
inequalities)

#31

Dig Deduction

e Given a loop:
- while (r >=2b) { [L] ... }

e Obtain equality relations at location L:
- b=ay qy +r =X

e Add loop guard to each one and simplify:
-r>=2b && b = ay — r >= 2ay
-r>=2b&&kqy+r=x —-x-yq>=2b

#32

Linear Array Relations

e AES Examples

- block2State r[i][j] = t[4i + j]

- keySetupEnc8 r[i][j] = cypherKey[8i + j]
e Goal:

Find simple array relations of the form

Al +cAs+ -+ A+ =0, ¢ €R

/

e Approach:
- Flatten array elements into variables
- Learn relations among elements, lift to indices

#33

Array Encoding

» Represent array elements with new variables

trace 1 : {A=[-546,641,34], B = [-78,3, 92, —34,4]}
trace 2 : {A =1[133,-333, —-323], B = [19,96, —48, —80, —47]}
trace 3 .
I

Ao Ay A By B1 Bz Bz DBy

trace 1 | -b46 -641 34 -78 3 92 -34 4

trace 2 | -133 -333 -323 -19 96 -48 -80 -47
trace 3

e Find relations;: 4 -7 = 0
f11—TBg = 3

Ag - TB.r_l — 6
#34

Simple Array Relations

e Hypothesize: A[i] =L B[j] + k
e Find j:
- Write relation between A[i] and B[j] as j=ip+q
Ao —TBy=0 = 0=0p+gq
Al —TB: =3 = 2=1p+gq
A2 —TBs=6 = 4=2p+gq
- Solve forpand q: {¢=0,p=2} = j=2i
= A[i] = IB[2i] + k

e Find | and k: A[i] = 7B[2i] + 3

#35

Nested Array Relations

o AES Example: invSubBytes R[i][j] = S[T[il[jl]
e Goal:

Find nested array relations of the grammar

Alig]---[ig] — e
e — Ble]---|e]

E.g. A[z][5] = B[C[j + 3]|[D[E[2: + j]]

e Approach:
- Reachability finds possible nesting relations
- Reduce to satisfiability problem, use SMT

#36

Finding Nested Array Relations

e Example. Given (from traces):
A=[7,1,-3],B=[1,-3,5,1,0,7,1],C = [8,5,6,6,2,1,4]

e Generate candidate nestings:
Ali] = B[...],Ali{) = C[...],...,Cl[i] = A[...], A[i] = B[C[...]], ...

e Validate nestings:
Discard B[i| = C]...] because B[1] ¢ C

e Let's do A[i] = B[C[]j]] as an example ...

#37

-

1

-3

2

A

.:b-

I I

.m.
.Q.

Reachability Analysis Example

Q

#38

Reachability, A[0]=B[5]
D] 1|-3|A

0l - 1 2

A[0]=B[5]

1(3|/5/1|0|7|1|B

#39

Reachability, A[0]=B[C[1]]

(7)) 1]-3|A
0+"'-+,‘ D
351071

2 4 @

. B[5]=B[C[1]]

2

1

A[0]

B|C[1]]

#40

-

(1)

P,

-3

i
0

1

2

Reachability, A[1] = B[(C]..

A

— <

]

#41

Reachability Example

-

(1)

-3

]
0

1

2

A

— <

A[l]

B|C|2|| v B|C|3|]

#42

Reachability, A[2] = B[C[5]]
7113 A

ol .11 D

A2l = B[CJ]5]

#43

Equation Solving

Alo] = B[C[1]]
All] = B[C[2] v B[C[3]
A2 = BlC[5]

e Express relatib_n A[i]=B[Ctj]] viaj=ip + (
e Handle all disjunctions
- We'll do “left” first

#44

Equation Solving

Alo] = B[C[1]]
Al = BIOPE
A2l = B[C]5|

e Express relatib_n A[i]=B[Ctj]] viaj=ip +(q
{1=0p+q,2=1p+4q,5=2p+ q}

e Solve for p, q:
- No solution

e Backtrack, try “right” disjunction

#45

Equation Solving

Al0
A[L

Al2
e Express relation A[1] B[C[j]] viaj =1ip + @

BIC[1]]
B|C[3]]
B[C[5]]

{1=0p+q,3=1p+q,5=2p+q}

e Solve for p, q:

= A[i] = B[C[2i + 1]

#46

Ugh, Backtracking.

 Why should we have to do backtracking to
deal with disjunctions?

e We have SAT and SMT solvers to do that!

o We'll just reduce solving the difficult problem
of invariant generation to solving SAT

How to draw a horse

#47

SMT Solving
(after reachability)

« Recall: A[i]=B[C[j]] via j

Al0] = B[C[1

All] = B[C

A[2] = B[C[5]
i}

2|

_]..

=1p +q

v B[C[3]]

Op+qgq=1)A(1p+qg=2Vip+q=3)AN(2p+q=>5)

e Just ask SMT to solve for p and ¢!

#48

What about false positives?

e Given candidate invariants ...
- Just try to prove them using axiomatic semantics.
- Recall: you can't be fooled by false invariants.

 See subsequent papers

- “Using Dynamic Analysis to Generate Disjunctive
Invariants”, ICSE 2014

#49

"When you have the golden claw, the
solution is in the palm of your hands." @

« Why cover invariant detection?

- It is necessary for axiomatic semantics to be
practical.

e Reinforces recurring theme:

- The techniques you are learning are the backbone
of modern PL research. <« ITE

- Simplex — Nonlinear Equalities, Inequalits
- Model Checking, SMT Solving — Array Invariants

- Invariants — Symbolic Execution
#50

Homework

e HW4 Due
e Reading Al Papers for Monday

#51

	Proof Techniques for Operational Semantics
	Slide 2
	Why Bother?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

