
#1

Invariant DetectionInvariant Detection

#2

One-Slide Summary
• An invariant is a logical formula that is always true

at a particular program location.

• Given a program and a program location, invariant
detection learns an invariant that is true whenever
execution reaches that location. Dynamic invariant
detect uses execution traces to learn invariants.

• The Daikon algorithm for dynamic invariant
detection enumerates simple candidate invariants
and retains only those that hold on all traces.

• The Dig algorithm for dynamic invariant detection
generates nonlinear polynomial and linear array
invariants via SMT, polyhedra, and equations.

#3

Motivation

• Backward axiomatic semantics requires
loop invariants for verification conditions.

• Forward axiomatic semantics (symbolic
execution) requires loop invariants for all
backward branch targets.

• Recursive functions may also require pre-
and post-conditions in these frameworks.

• How many have you seen in real life?

#4

Finding Invariants Manually

#5

Finding Invariants Manually

• Hoare's post-condition:

• Some intermediate invariants:

#6

Final Result

#7

“Reading Quiz”

• What is “FIND” all about?
• Why did it take seven

pages?
• What program was Hoare

actually proving?
– Roman à clef

#8

Cunning Plan

• Given a program location, if we could infer an
invariant for that location, we could have …
– Loop invariants (location = loop head)

– Function pre-conditions (location = entry)

– Function post-conditions (location = exit)

• Can we do this automatically?
• Two insights:

– An invariant always holds on all executions

– We can detect spurious false invariants

#9

Dynamic Invariant Detection

• What if we require that the program come
equipped with inputs?
– An indicative workload

– High-coverage test cases

• Since an invariant holds on every execution
(by definition), any candidate invariant that
fails even once can be tossed out!

• Plan: generate many candidate invariants,
filter out the false ones!

#10

I could while away the hours …

• Given:
– while b do c

• Instrument:
– while b do (print Inv1; print Inv2; … ; c)

– Run on all tests, filter out on false

• How many candidate invariants are there?

#11

Invariant Templates

• Given program variables x, y, and z
– x = c constant

– x != 0 non-zero

– x >= c bounds

– y = ax + b linear

– x < y ordering

– (x + y) % b = a math functions

– z = ax + by + c linear

• At most three variables at a time: finite!

#12

Daikon

• The Daikon invariant detection algorithm
– For every program location

• For all triples of in-scope variables
– Instantiate invariant templates to obtain candidate invariants

– Instrument program

– For every test case
• Run instrumented program

• Filter out any falsified candidate invariant

• Running time: cubic in in-scope variables,
linear in test suite, linear in program

#13

Daikon Weaknesses

• What could go wrong?

#14

Daikon Weaknesses

• False Negatives
– If your invariant does not fit a template, Daikon

cannot find it

– Example: l + u – 1 <= 2p <= l + u (bsearch pivot)

– Example:

• Nothing prevents Daikon from finding these
• But each increase in the language of

candidate invariants bloats the runtime

#15

Daikon Weaknesses

• False Positives from limited input
– If you only test your sorting program on one input,

[4;2;3], Daikon will learn output[0] = 2

– But making high-coverage, high-adequacy tests is
easy, no? That's why we're doing formal
verification. Oh, right.

• False Positives from linguistic coincidence
– Ex: ptr % 4 == 0

– Ex: x <= MAX_INT

– Not false, but not related to correctness.

#16

Dynamic Invariant Detection

• Daikon is ill-suited for richer languages of
invariants (e.g., non-linear relations, array
relations, etc.) because all candidate
invariants must be listed and considered.

• Idea:
– Instead of listing invariants, list values, and

induce invariants via constraint solving

– Ex: instead of printing x>y, x<y, x>=y, etc., just
print out x and y and figure out which is true later

#17

Dig

• Apply three techniques we've already learned
to learn rich invariants

• Nonlinear Equalities of Polynomials
– via Equation Solving

• Nonlinear Inequalities of Polynomials
– via Convex Polyhedra

• Linear Equalities of Arrays
– via SMT Solving

#18

Dig Example: Cohen's Division

// quotient

// remainder

// loop invariant

#19

Cohen's Division on input (15,2)

// quotient

// remainder

// loop invariant

#20

Cohen's Division on input (4,1)

// quotient

// remainder

// loop invariant

#21

Cohen's Division Desires

// quotient

// remainder

// loop invariant

#22

Nonlinear Equalities

• Division example: x = qy + r (qy+r-x = 0)
• GCD example: g = iA + jB (iA+jB-g = 0)
• Goal:

• Approach:
– Pick a maximum Degree

– Generate Terms

– Equation Solving (ex: x + y = 2, x – y = 4)

#23

Terms, Equations, Solutions

• Terms and Degrees

• Equation Template

• Systems of Equations

• Solve for coefficients

#24

How?

• Six variables (xyabqr) at deg 2 is 28 terms:

• Use trace values for (xyabqr), find solutions
– 28 terms + 5 traces = underconstrained!

– c
4
 = -V c

5
 = T c

7
 = c

9
 = V

– c
12

 = -T c
16

 = c
27

 = -U c
21

 = U c
other

 = 0

#25

How Now?

• Solutions:

– c
4
 = -V c

5
 = T c

7
 = c

9
 = V

– c
12

 = -T c
16

 = c
27

 = -U c
21

 = U c
other

 = 0

• Try T=0, U=0, V=1 (V alone related vars)→
• That gives c

4
 = -1 c

7
 = c

9
 = 1

-x + r + qy = 0

aka
x = qy + r

#26

Q: Computer Science

• This American computer scientist graduated with a
BA in Mathematics from the University of Virginia.
He received the Turing award for “developing
Model-Checking into a highly effective verification
technology that is widely adopted in the hardware
and software industries.” He recognized that,
unlike Hoare's annotation-heavy logical approach,
Pnueli's temporal logics could be checked
mechanically. With his student Ken McMillan he
addressed the state space explosion problem via
symbolic model checking (BDDs).

#27

Nonlinear Inequalities

• Sqrt Example: x + err >= y*y >= x – err
• Goal:

• Approach:
– Pick maximum Degree

– Represent trace values as polyhedra points

– Build bounded convex polyhedron

– Deduce new invariants from loop guard

#28

Polyhedra From Trace Points

#29

Polyhedra

#30

Polyhedra Facets

• Facets of polyhedra correspond to inequalities

• Think Simplex!
• Given k points in n dimensions, can build the

enclosing bounded convex polyhedron in kn/2

• First trace from example before gives point:
(1,15,2,1,30,15,2,225,4,1)

• One of the facets: r – 2ya >= 0

#31

Comparison

• Simplex:
– Given more than enough facets (edges,

inequalities), find the convex space and
enumerate the points

• Dig's Polyhedra Approach:
– Given more than enough points, find the convex

space and enumerate the facets (edges,
inequalities)

#32

Dig Deduction

• Given a loop:
– while (r >= 2b) { [L] … }

• Obtain equality relations at location L:
– b = ay qy + r = x

• Add loop guard to each one and simplify:
– r >= 2b && b = ay → r >= 2ay

– r >= 2b && qy + r = x → x – yq >= 2b

#33

Linear Array Relations

• AES Examples
– block2State r[i][j] = t[4i + j]

– keySetupEnc8 r[i][j] = cypherKey[8i + j]

• Goal:

• Approach:
– Flatten array elements into variables

– Learn relations among elements, lift to indices

#34

Array Encoding

• Represent array elements with new variables

• Find relations:

#35

Simple Array Relations

• Hypothesize: A[i] = l B[j] + k
• Find j:

– Write relation between A[i] and B[j] as j=ip+q

– Solve for p and q:

• Find l and k:

#36

Nested Array Relations

• AES Example: invSubBytes R[i][j] = S[T[i][j]]
• Goal:

• Approach:
– Reachability finds possible nesting relations

– Reduce to satisfiability problem, use SMT

#37

Finding Nested Array Relations

• Example. Given (from traces):

• Generate candidate nestings:

• Validate nestings:

• Let's do A[i] = B[C[j]] as an example …

#38

Reachability Analysis Example

#39

Reachability, A[0]=B[5]

#40

Reachability, A[0]=B[C[1]]

#41

Reachability, A[1] = B[C[...]]

#42

Reachability Example

#43

Reachability, A[2] = B[C[5]]

#44

Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q
• Handle all disjunctions

– We'll do “left” first

#45

Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q

• Solve for p, q:
– No solution

• Backtrack, try “right” disjunction

#46

Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q

• Solve for p, q:

#47

Ugh, Backtracking.

• Why should we have to do backtracking to
deal with disjunctions?

• We have SAT and SMT solvers to do that!
• We'll just reduce solving the difficult problem

of invariant generation to solving SAT

#48

SMT Solving
(after reachability)

• Recall: A[i]=B[C[j]] via j = ip + q

• Just ask SMT to solve for p and q!

#49

What about false positives?

• Given candidate invariants …
– Just try to prove them using axiomatic semantics.

– Recall: you can't be fooled by false invariants.

• See subsequent papers
– “Using Dynamic Analysis to Generate Disjunctive

Invariants”, ICSE 2014

#50

"When you have the golden claw, the
solution is in the palm of your hands."

• Why cover invariant detection?
– It is necessary for axiomatic semantics to be

practical.

• Reinforces recurring theme:
– The techniques you are learning are the backbone

of modern PL research.

– Simplex Nonlinear Equalities, Inequalities→
– Model Checking, SMT Solving Array Invariants→
– Invariants Symbolic Execution→

#51

Homework

• HW4 Due
• Reading AI Papers for Monday

	Proof Techniques for Operational Semantics
	Slide 2
	Why Bother?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

