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One-Slide Summary
• An invariant is a logical formula that is always true 

at a particular program location. 

• Given a program and a program location, invariant 
detection learns an invariant that is true whenever 
execution reaches that location. Dynamic invariant 
detect uses execution traces to learn invariants.

• The Daikon algorithm for dynamic invariant 
detection enumerates simple candidate invariants 
and retains only those that hold on all traces.

• The Dig algorithm for dynamic invariant detection 
generates nonlinear polynomial and linear array 
invariants via SMT, polyhedra, and equations.
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Motivation

• Backward axiomatic semantics requires 
loop invariants for verification conditions.

• Forward axiomatic semantics (symbolic 
execution) requires loop invariants for all 
backward branch targets.

• Recursive functions may also require pre- 
and post-conditions in these frameworks.

• How many have you seen in real life?



#4

Finding Invariants Manually



#5

Finding Invariants Manually

• Hoare's post-condition:

• Some intermediate invariants: 
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Final Result



#7

“Reading Quiz”

• What is “FIND” all about? 
• Why did it take seven 

pages? 
• What program was Hoare 

actually proving?
– Roman à clef 



#8

Cunning Plan

• Given a program location, if we could infer an 
invariant for that location, we could have … 
– Loop invariants (location = loop head) 

– Function pre-conditions (location = entry)

– Function post-conditions (location = exit)

• Can we do this automatically?
• Two insights:

– An invariant always holds on all executions

– We can detect spurious false invariants



#9

Dynamic Invariant Detection

• What if we require that the program come 
equipped with inputs?
– An indicative workload

– High-coverage test cases

• Since an invariant holds on every execution 
(by definition), any candidate invariant that 
fails even once can be tossed out!

• Plan: generate many candidate invariants, 
filter out the false ones!
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I could while away the hours … 

• Given: 
– while b do c

• Instrument:
– while b do (print Inv1; print Inv2; … ; c) 

– Run on all tests, filter out on false

• How many candidate invariants are there?
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Invariant Templates

• Given program variables x, y, and z
– x = c constant

– x != 0 non-zero

– x >= c bounds

– y = ax + b linear

– x < y ordering

– (x + y) % b = a math functions

– z = ax + by + c linear

• At most three variables at a time: finite!
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Daikon

• The Daikon invariant detection algorithm
– For every program location

• For all triples of in-scope variables
– Instantiate invariant templates to obtain candidate invariants

– Instrument program

– For every test case
• Run instrumented program

• Filter out any falsified candidate invariant

• Running time: cubic in in-scope variables, 
linear in test suite, linear in program
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Daikon Weaknesses

• What could go wrong?
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Daikon Weaknesses

• False Negatives
– If your invariant does not fit a template, Daikon 

cannot find it

– Example: l + u – 1 <= 2p <= l + u  (bsearch pivot)

– Example: 

• Nothing prevents Daikon from finding these
• But each increase in the language of 

candidate invariants bloats the runtime 
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Daikon Weaknesses

• False Positives from limited input
– If you only test your sorting program on one input, 

[4;2;3], Daikon will learn output[0] = 2

– But making high-coverage, high-adequacy tests is 
easy, no? That's why we're doing formal 
verification. Oh, right. 

• False Positives from linguistic coincidence
– Ex: ptr % 4 == 0 

– Ex: x <= MAX_INT

– Not false, but not related to correctness. 
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Dynamic Invariant Detection

• Daikon is ill-suited for richer languages of 
invariants (e.g., non-linear relations, array 
relations, etc.) because all candidate 
invariants must be listed and considered.

• Idea:
– Instead of listing invariants, list values, and 

induce invariants via constraint solving

– Ex: instead of printing x>y, x<y, x>=y, etc., just 
print out x and y and figure out which is true later
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Dig

• Apply three techniques we've already learned 
to learn rich invariants

• Nonlinear Equalities of Polynomials
– via Equation Solving

• Nonlinear Inequalities of Polynomials
– via Convex Polyhedra

• Linear Equalities of Arrays
– via SMT Solving
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Dig Example: Cohen's Division

// quotient

// remainder

// loop invariant
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Cohen's Division on input (15,2)

// quotient

// remainder

// loop invariant
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Cohen's Division on input (4,1)

// quotient

// remainder

// loop invariant
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Cohen's Division Desires

// quotient

// remainder

// loop invariant
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Nonlinear Equalities

• Division example: x = qy + r (qy+r-x = 0)
• GCD example: g = iA + jB (iA+jB-g = 0)
• Goal:

• Approach:
– Pick a maximum Degree

– Generate Terms

– Equation Solving (ex: x + y = 2, x – y = 4)
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Terms, Equations, Solutions 

• Terms and Degrees

• Equation Template

• Systems of Equations

• Solve for coefficients
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How?

• Six variables (xyabqr) at deg 2 is 28 terms:

• Use trace values for (xyabqr), find solutions
– 28 terms + 5 traces = underconstrained!

– c
4
 = -V c

5
 = T c

7
 = c

9
 = V

– c
12

 = -T c
16

 = c
27

 = -U c
21

 = U c
other

 = 0
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How Now?

• Solutions:

– c
4
 = -V c

5
 = T c

7
 = c

9
 = V

– c
12

 = -T c
16

 = c
27

 = -U c
21

 = U c
other

 = 0

• Try T=0, U=0, V=1 (V alone  related vars)→
• That gives c

4
 = -1 c

7
 = c

9
 = 1

-x + r + qy = 0

aka
x = qy + r
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Q: Computer Science

• This American computer scientist graduated with a 
BA in Mathematics from the University of Virginia. 
He received the Turing award for “developing 
Model-Checking into a highly effective verification 
technology that is widely adopted in the hardware 
and software industries.” He recognized that, 
unlike Hoare's annotation-heavy logical approach, 
Pnueli's temporal logics could be checked 
mechanically. With his student Ken McMillan he 
addressed the state space explosion problem via 
symbolic model checking (BDDs). 
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Nonlinear Inequalities

• Sqrt Example: x + err >= y*y >= x – err
• Goal:

• Approach:
– Pick maximum Degree

– Represent trace values as polyhedra points

– Build bounded convex polyhedron

– Deduce new invariants from loop guard
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Polyhedra From Trace Points
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Polyhedra
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Polyhedra Facets

• Facets of polyhedra correspond to inequalities

• Think Simplex!
• Given k points in n dimensions, can build the 

enclosing bounded convex polyhedron in kn/2

• First trace from example before gives point: 
(1,15,2,1,30,15,2,225,4,1)

• One of the facets: r – 2ya >= 0 
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Comparison

• Simplex:
– Given more than enough facets (edges, 

inequalities), find the convex space and 
enumerate the points

• Dig's Polyhedra Approach:
– Given more than enough points, find the convex 

space and enumerate the facets (edges, 
inequalities)
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Dig Deduction

• Given a loop:
– while (r >= 2b) { [L] … } 

• Obtain equality relations at location L:
– b = ay qy + r = x

• Add loop guard to each one and simplify:
– r >= 2b && b = ay  → r >= 2ay

– r >= 2b && qy + r = x  → x – yq >= 2b 
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Linear Array Relations

• AES Examples
– block2State r[i][j] = t[4i + j]

– keySetupEnc8 r[i][j] = cypherKey[8i + j]

• Goal:

• Approach:
– Flatten array elements into variables

– Learn relations among elements, lift to indices
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Array Encoding

• Represent array elements with new variables

• Find relations:
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Simple Array Relations

• Hypothesize: A[i] = l B[j] + k
• Find j:

– Write relation between A[i] and B[j] as j=ip+q

– Solve for p and q:

• Find l and k:
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Nested Array Relations

• AES Example: invSubBytes   R[i][j] = S[T[i][j]]
• Goal:

• Approach:
– Reachability finds possible nesting relations

– Reduce to satisfiability problem, use SMT
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Finding Nested Array Relations

• Example. Given (from traces):

• Generate candidate nestings:

• Validate nestings:

• Let's do A[i] = B[C[j]] as an example … 
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Reachability Analysis Example
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Reachability, A[0]=B[5]
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Reachability, A[0]=B[C[1]]
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Reachability, A[1] = B[C[...]]
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Reachability Example
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Reachability, A[2] = B[C[5]]
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Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q
• Handle all disjunctions

– We'll do “left” first
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Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q

• Solve for p, q:
– No solution

• Backtrack, try “right” disjunction
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Equation Solving

• Express relation A[i]=B[C[j]] via j = ip + q

• Solve for p, q:
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Ugh, Backtracking.

• Why should we have to do backtracking to 
deal with disjunctions?

• We have SAT and SMT solvers to do that!
• We'll just reduce solving the difficult problem 

of invariant generation to solving SAT
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SMT Solving
(after reachability)

• Recall: A[i]=B[C[j]] via j = ip + q

• Just ask SMT to solve for p and q!
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What about false positives?

• Given candidate invariants …
– Just try to prove them using axiomatic semantics.

– Recall: you can't be fooled by false invariants.

• See subsequent papers
– “Using Dynamic Analysis to Generate Disjunctive 

Invariants”, ICSE 2014
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"When you have the golden claw, the 
solution is in the palm of your hands."

• Why cover invariant detection?
– It is necessary for axiomatic semantics to be 

practical.

• Reinforces recurring theme:
– The techniques you are learning are the backbone 

of modern PL research.

– Simplex  Nonlinear Equalities, Inequalities→
– Model Checking, SMT Solving  Array Invariants→
– Invariants  Symbolic Execution→
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Homework

• HW4 Due 
• Reading AI Papers for Monday
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