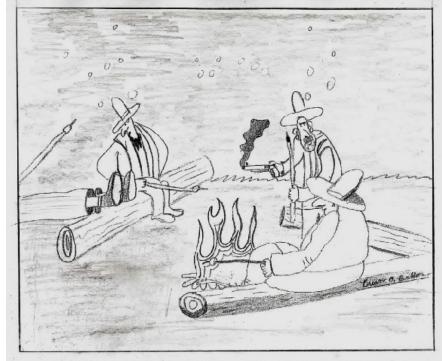
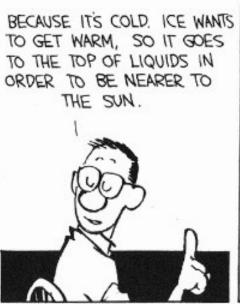
Simply-Typed Lambda Calculus



You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

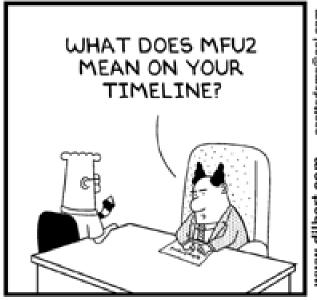
Back to School

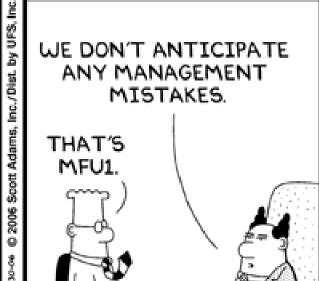
- What is operational semantics? When would you use contextual (small-step) semantics?
- What is satisfiability modulo theories?
- What is axiomatic semantics? What is a verification condition?



Today's (Short?) Cunning Plan

- Type System Overview
- First-Order Type Systems
- Typing Rules
- Typing Derivations
- Type Safety





Types

 A program variable can assume a range of values during the execution of a program

- An upper bound of such a range is called a type of the variable
 - A variable of type "bool" is supposed to assume only boolean values
 - If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program

Typed and Untyped Languages

Untyped languages

- Do *not* restrict the range of values for a given variable
- Operations might be applied to inappropriate arguments.
 The behavior in such cases might be unspecified
- The pure λ -calculus is an extreme case of an untyped language (however, its behavior is completely specified)

(Statically) Typed languages

- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost <u>purpose of types</u> is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment

Execution Errors

- A program is deemed <u>safe</u> if it does <u>not</u> cause untrapped errors
 - Languages in which all programs are safe are safe languages
- For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI '05)
 - prevent insecure information flow (e.g., Li POPL '05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)

Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, before testing
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is undecidable in most languages

Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g. Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)

Why Typed Languages?

Development

- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation

Maintenance

- Types act as checked specifications
- Types can enforce abstraction

Execution

- Static checking reduces the need for dynamic checking
- Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?

- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. 00 programming in a non-00 language, but cf. Ruby, OCaml, etc.)
- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic ⇒ need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)

Safe Languages

 There are typed languages that are not safe ("weakly typed languages")

• All safe languages use types (static or dynamic)

	Typed		Untyped
	Static	Dynamic	
Safe	ML, Java, Ada, C#, Haskell,	Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python,	λ-calculus
Unsafe	C, C++, Pascal,	?	Assembly

We focus on statically typed languages

Properties of Type Systems

- How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
- Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be <u>transparent</u>
 - Should be easy to see why a program is not well-typed

Why Formal Type Systems?

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
- A fair amount of careful analysis is required to avoid false claims of type safety
- A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
- But even informal knowledge of the principles of type systems help

Formalizing a Language

1. Syntax

- Of expressions (programs)
- Of types
- Issues of binding and scoping

2. Static semantics (typing rules)

- Define the typing judgment and its derivation rules
- 3. Dynamic Semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules

4. Type soundness

- Relates the static and dynamic semantics
- State and prove the <u>soundness theorem</u>

Typing Judgments

- <u>Judgment</u> (recall)
 - A statement J about certain formal entities
 - Has a truth value \models J
 - Has a derivation ⊢ J (= "a proof")
- A common form of typing judgment:
 - $\Gamma \vdash e : \tau \overline{x} \overline{x}$ (e is an expression and τ is a type)
- Γ (Gamma) is a set of type assignments for the free variables of e
 - Defined by the grammar $\Gamma ::= \cdot \mid \Gamma, x : \tau$
 - Type assignments for variables not free in e are not relevant
 - e.g, $x : int, y : int \vdash x + y : int$

Typing rules

<u>Typing rules</u> are used to derive typing judgments

• Examples:

$$\Gamma \vdash 1 : \text{int}$$
 $x : \tau \in \Gamma$

$$\Gamma \vdash x : \tau$$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

Typing Derivations

- A <u>typing derivation</u> is a derivation of a typing judgment (big surprise there ...)
- Example:

```
\frac{x : \mathsf{int} \vdash x : \mathsf{int}}{x : \mathsf{int} \vdash x : \mathsf{int}} \frac{x : \mathsf{int} \vdash 1 : \mathsf{int}}{x : \mathsf{int} \vdash x : \mathsf{int}}
x : \mathsf{int} \vdash x + (x + 1) : \mathsf{int}
```

- We say $\Gamma \vdash e : \tau$ to mean there exists a derivation of this typing judgment (= "we can prove it")
- Type checking: given Γ , e and τ find a derivation
- Type inference: given Γ and e, find τ and a derivation

Proving Type Soundness

- A typing judgment is either true or false
- Define what it means for a value to have a type

```
v \in ||\tau|| (e.g. 5 \in ||\inf|| and true \in ||bool||)
```

Define what it means for an <u>expression</u> to have a type

```
e \in |\tau| iff \forall v. (e \lor v \Rightarrow v \in ||\tau||)
```

Prove <u>type soundness</u>

```
\begin{array}{ll} \text{If } \cdot \vdash e : \tau & \text{then } e \in \mid \tau \mid \\ \text{or equivalently} \\ \text{If } \cdot \vdash e : \tau \text{ and } e \lor v & \text{then } v \in \mid \tau \mid \\ \end{array}
```

• This implies safe execution (since the result of a unsafe execution is not in $\parallel \tau \parallel$ for any τ)

Upcoming Exciting Episodes

- We will give formal description of first-order type systems (no type variables)
 - Function types (simply typed λ -calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types (linked lists and trees)
- The type systems of most common languages are first-order
- Then we move to second-order type systems
 - Polymorphism and abstract types

Q: Movies (378 / 842)

 This 1988 animated movie written and directed by Isao Takahata for Studio Ghibli was considered by Roger Ebert to be one of the most powerful anti-war films ever made. It features Seita and

his sister Setsuko and their efforts to survive outside of society during the firebombing of Tokyo.

Computer Science

 This American-Canadian Turing-award winner is known for major contributions to the fields of complexity theory and proof complexity. He is known for formalizing the polynomial-time reduction, NP-completeness, P vs. NP, and showing that SAT is NP-complete. This was all done in the seminal 1971 paper "The Complexity of Theorem Proving Procedures."

Q: Student

 This piece of diving equipment with an air-inflatable bladder changes its average density for use in SCUBA diving. It typically requires manual adjustment throughout the dive and can be augmented by breath control.

Q: Games (504 / 842)

 This 1985 falling-blocks computer game was invented by Alexey Pajitnov (Алексей Пажитнов) and inspired by pentominoes.

Simply-Typed Lambda Calculus

- $\tau_1 \rightarrow \tau_2$ is the function type
- \rightarrow associates to the right
- Arguments have typing annotations :τ
- This language is also called F₁

Static Semantics of F₁

The typing judgment

$$\Gamma \vdash e : \tau$$

• Some (simpler) typing rules:

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x : \tau . e : \tau \to \tau'}$$

$$\frac{\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau}$$

More Static Semantics of F₁

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash n : \text{int}} \qquad \frac{\Gamma \vdash e_1 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

Why do we have this mysterious gap? I don't know either!

Typing Derivation in F₁

Consider the term

```
\lambda x: int. \lambda b: bool. if b then f x else x
- With the initial typing assignment f: int \rightarrow Int
```

- Where Γ = f : int \rightarrow int, x : int, b : bool

```
\frac{\Gamma \vdash f : \mathtt{int} \to \mathtt{int} \quad \Gamma \vdash x : \mathtt{int}}{\Gamma \vdash b : \mathtt{bool} \quad \Gamma \vdash f \ x : \mathtt{int}} \frac{\Gamma \vdash b : \mathtt{bool}}{f : \mathtt{int} \to \mathtt{int}, x : \mathtt{int}, b : \mathtt{bool} \vdash \mathtt{if} \ b \ \mathtt{then} \ f \ x \ \mathtt{else} \ x : \mathtt{int}}{f : \mathtt{int} \to \mathtt{int}, x : \mathtt{int} \vdash \lambda b : \mathtt{bool}. \ \mathtt{if} \ b \ \mathtt{then} \ f \ x \ \mathtt{else} \ x : \mathtt{bool} \to \mathtt{int}}
\overline{f : \mathtt{int} \to \mathtt{int}, x : \mathtt{int} \vdash \lambda b : \mathtt{bool}. \ \mathtt{if} \ b \ \mathtt{then} \ f \ x \ \mathtt{else} \ x : \mathtt{int} \to \mathtt{bool} \to \mathtt{int}}
```

Type Checking in F₁

- Type checking is easy because
 - Typing rules are syntax directed

- Typing rules are compositional (what does this mean?)
- All local variables are annotated with types
- In fact, type inference is also easy for F₁
- Without type annotations an expression may have no unique type
 - $\cdot \vdash \lambda x. \ x : int \rightarrow int$
 - $\cdot \vdash \lambda x. \ x : bool \rightarrow bool$

Operational Semantics of F₁

Judgment:

Values:

```
v := n \mid true \mid false \mid \lambda x : \tau. e
```

- The evaluation rules ...
 - Audience participation time: raise your hand and give me an evaluation rule.

Opsem of F₁ (Cont.)

Call-by-value evaluation rules (sample)

$$\frac{\lambda x : \tau.e \Downarrow \lambda x : \tau.e}{\underbrace{e_1 \Downarrow \lambda x : \tau.e'_1 \quad e_2 \Downarrow v_2 \quad [v_2/x]e'_1 \Downarrow v}_{e_1 \ e_2 \Downarrow v} \qquad \begin{array}{c} \text{Where is the Call-By-Value?} \\ \text{How might we change it?} \\ \hline n \Downarrow n \qquad e_1 + e_2 \Downarrow n \end{array}$$

Evaluation is undefined for ill-typed programs!

Type Soundness for F₁

- Thm: If $\cdot \vdash e : \tau$ and $e \lor v$ then $\cdot \vdash v : \tau$
 - Also called, <u>subject reduction</u> theorem, <u>type</u>
 <u>preservation</u> theorem
- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...
- Proof: next time!

Homework

- Read actually-exciting Leroy paper
- Finish Homework 5?
- Work on your projects!
 - Status Update Due

