
#1

SymbolicSymbolic
ExecutionExecution

#2

One-Slide Summary
• Verification Conditions make axiomatic

semantics practical. We can compute
verification conditions forward for use on
unstructured code (= assembly language).
This is sometimes called symbolic
execution.

• We can add extra invariants or drop paths
(dropping is unsound) to help verification
condition generation scale.

• We can model exceptions, memory
operations and data structures using
verification condition generation.

#3

Symbolic ExecutionSymbolic Execution

#4

Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true)

strong weak
Pre(s, B)

weakest
precondition: WP(c, B)A

verification
condition: VC(c, B)

• Construct a verification condition: VC(c, B)
– Our loops will be annotated with loop invariants!

– VC is guaranteed to be stronger than WP

– But still weaker than A: A) VC(c, B)) WP(c, B)

#5

Groundwork

• Factor out the hard work
– Loop invariants
– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway
– Requiring annotations = Kiss of Death?

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is

evaluated

• A process for computing VC(annotated_command,
post_condition) is called VCGen

#6

Verification Condition Generation

• Mostly follows the definition of the wp
function:
VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) =

b) VC(c1, B) Æ :b) VC(c2, B)

VC(x := e, B) = [e/x] B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(whileInv b do c, B) = ?

#7

 VC(whileInv e do c, B) =

Inv Æ (8x1…xn. Inv) (e) VC(c, Inv) Æ : e) B))

• Inv is the loop invariant (provided externally)
• x1, …, xn are all the variables modified in c
• The 8 is similar to the 8 in mathematical

induction:
P(0) Æ 8n 2 N. P(n)) P(n+1)

VCGen for WHILE

Inv holds
on entry

Inv is preserved in
an arbitrary iteration

B holds when the
loop terminates

in an arbitrary iteration

#8

Example VCGen Problem
• Let’s compute the VC of this program with

respect to post-condition x  0

x = 0;
y = 2;
whilex+y=2 y > 0 do

 y := y - 1;
 x := x + 1

First, what do we
expect? What pre-
condition do we
need to ensure
x0 after this?

#9

Example of VC
• By the sequencing rule, first we do the while loop

(call it w):
whilex+y=2 y > 0 do

 y := y - 1;
 x := x + 1

• VCGen(w, x  0) = x+y=2 Æ
8x,y. x+y=2) (y>0) VC(c, x+y=2) Æ y·0) x  0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =
 (x+1) + (y-1) = 2

• w Result: x+y=2 Æ
8x,y. x+y=2) (y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

Pr
es

e r
ve

 l
oo

p
in

va
ri

an
t

En
su

r e
 p

os
t

on

ex
it

#10

Example of VC (2)

• VC(w, x  0) = x+y=2 Æ

8x,y. x+y=2)

(y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

• VC(x := 0; y := 2 ; w, x  0) = 0+2=2 Æ

8x,y. x+y=2)

(y>0) (x+1)+(y-1)=2 Æ y·0) x  0)

• So now we ask an automated theorem prover
to prove it.

#11

Thoreau, Thoreau, Thoreau

$./Simplify
> (AND (EQ (+ 0 2) 2)
(FORALL (x y) (IMPLIES (EQ (+ x y) 2)

(AND (IMPLIES (> y 0)
 (EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))
1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
• Z3 is 15+ megabytes

#12

Can We Mess Up VCGen?
• The invariant is from the user (= the

adversary, the untrusted code base)
• Let’s use a loop invariant that is too weak,

like “true”.
• VC = true Æ 8x,y. true)

 (y>0) true Æ y·0) x  0)

• Let’s use a loop invariant that is false, like
“x  0”.

• VC = 0  0 Æ 8x,y. x  0)
 (y>0) x+1  0 Æ y·0) x  0)

#13

Emerson, Emerson, Emerson
$./Simplify
> (AND TRUE
 (FORALL (x y) (IMPLIES TRUE
 (AND (IMPLIES (> y 0) TRUE)
 (IMPLIES (<= y 0) (NEQ x 0))))))
Counterexample: context:
 (AND
 (EQ x 0)
 (<= y 0)
)
1: Invalid.

• OK, so we won’t be fooled.

#14

Soundness of VCGen

• Simple form
² { VC(c,B) } c { B }

• Or equivalently that
² VC(c, B)) wp(c, B)

• Proof is by induction on the structure of c
– Try it!

• Soundness holds for any choice of invariant!
• Next: extensions to Symbolic Execution

#15

Where Are We?

• Axiomatic Semantics: the meaning of a
program is what is true after it executes

• Hoare Triples: {A} c {B}
• Weakest Precondition: { WP(c,B) } c {B}
• Verification Condition: A)VC(c,B))WP(c,b)

– Requires Loop Invariants

– Backward VC works for structured programs

– Here we are today …

– Forward VC (Symbolic Exec) works for assembly

#16

Today’s Cunning Plan

• Symbolic Execution & Forward VCGen
• Handling Exponential Blowup

– Invariants

– Dropping Paths

• VCGen For Exceptions (double trouble)
• VCGen For Memory (McCarthyism)
• VCGen For Structures (have a field day)
• VCGen For “Dictator For Life”

#17

VC and Invariants

• Consider the Hoare triple:
{x  0} whileI(x) x  5 do x := x + 1 {x = 6}

• The VC for this is:
x  0  I(x)  x. (I(x)  (x > 5  x = 6 
 x  5  I(x+1)))

• Requirements on the invariant:
– Holds on entry x. x  0  I(x)

– Preserved by the body x. I(x)  x  5  I(x+1)

– Useful x. I(x)  x > 5  x = 6

• Check that I(x) = x  6 satisfies all constraints

#18

Forward VCGen
• Traditionally the VC is computed backwards

– That’s how we’ve been doing it in class

– Backwards works well for structured code

• But it can also be computed forward
– Works even for un-structured languages (e.g.,

assembly language)

– Uses symbolic execution, a technique that has
broad applications in program analysis
• e.g., the PREfix tool (Intrinsa, Microsoft) does this

• Test input generation, document generation,
specification mining, security analyses, ...

#19

Forward VC Gen Intuition
• Consider the sequence of assignments

x1 := e1; x2 := e2

• The VC(c, B) = [e1/x1]([e2/x2]B)

 = [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions

– Initially, 0 = { }

– After x1 := e1, 1 = { x1 ! e1 }

– After x2 := e2, 2 = {x1 ! e1, x2 ! e2[e1/x1] }

– Note that we have applied 1 as a substitution to right-
hand side of assignment x2 := e2

#20

Simple Assembly Language

• Consider the language of instructions:
I ::= x := e | f() | if e goto L | goto L |

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e is true at that

point

• Each function f() comes with Pref and Postf
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at
address k

#21

Symex States

• We set up a symbolic execution state:

  : Var ! SymbolicExpressions

 (x) = the symbolic value of x in state 
 [x:=e] = a new state in which x’s value is e
• We use states as substitutions:

(e) - obtained from e by replacing x with (x)
• Much like the opsem so far …

#22

Symex Invariants
• The symbolic executor tracks invariants

passed
• A new part of symex state: Inv µ {1…n}

• If k 2 Inv then Ik is an invariant instruction
that we have already executed

• Basic idea: execute an inv instruction only
twice:
– The first time it is encountered

– Once more time around an arbitrary iteration

#23

Symex Rules
• Define a VC function as an interpreter:

VC : Address £ SymbolicState £ InvariantState ! Assertion

if Ik = return(Postcurrent-function)

if Ik = x := eVC(k+1, [x:=(e)], Inv)

VC(k, , Inv) =

if Ik = f()

(Pref) Æ

8a1..am.’(Postf))

 VC(k+1, ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and ’ = [y1 := a1, …, ym := am]

if Ik = if e goto L
 e) VC(L, , Inv) Æ

: e) VC(k+1, , Inv)

if Ik = goto L VC(L, , Inv)

Recall: Inv =
“invariants
visited so far”

#24

Symex Invariants (2a)
Two cases when seeing an invariant instruction:

1. We see the invariant for the first time
– Ik = inv e

– k  Inv (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on
a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, , Inv) =

 (e) Æ 8a1…am. ’(e)) VC(k+1, ’, Inv [{k}])

 with ’ = [y1 := a1, …, ym := am]

 (like a function call)

#25

Symex Invariants (2b)

● We see the invariant for the second time
– Ik = inv E

– k 2 Inv

VC(k, , Inv) = (e)
 (like a function return)

• Some tools take a more simplistic approach
– Do not require invariants

– Iterate through the loop a fixed number of times

– PREfix, versions of ESC (DEC/Compaq/HP SRC)

– Sacrifice completeness for usability

#26

Symex Summary
– Let x1, …, xn be all the variables and a1, …, an fresh

parameters
– Let 0 be the state [x1 := a1, …,xn :=an]
– Let ; be the empty Inv set

• For all functions f in your program, prove:
 8a1…an. 0(Pref)) VC(fentry, 0, )
• If you start the program by invoking any f in a state

that satisfies Pref, then the program will execute
such that
– At all “inv e” the e holds, and
– If the function returns then Postf holds

• Can be proved w.r.t. a real interpreter (op sem)
• Or via a proof technique called co-induction (or,

assume-guarantee)

#27

Forward VCGen Example

• Consider the program
 Precondition: x · 0
Loop: inv x · 6

 if x > 5 goto End
 x := x + 1
 goto Loop

End: return Postconditon: x = 6

#28

Forward VCGen Example (2)
 8x.
 x · 0)
 x · 6 Æ
 8x’.
 (x’ · 6)
 x’ > 5) x’ = 6
 Æ
 x’ · 5) x’ + 1 · 6)

• VC contains both proof obligations and

assumptions about the control flow

#29

VCs Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x  3 then x += 3)

– With the postcondition P(x)

• The VC is
x < 0 Æ -x  3  P(-x + 3) Æ

x < 0 Æ -x > 3  P(-x) Æ

x  0 Æ x  3  P(x + 3) Æ

x  0 Æ x > 3  P(x)

• There is one conjunct for each path
) exponential number of paths!
– Conjuncts for infeasible paths have un-satisfiable guards!

• Try with P(x) = x  3

English Prose
341. Van and Hitomi walked an inaudible

distance from those guy's Van was hanging out
with.

253. However, when he got into his chamber
and sat down with a blank canvas propped up
on its easel, his vision vanished as if it were
nothing but a floating dust moat.

352. "Good evening my league." He picked her
up by the wrist. "I think that you and I have
some talking to do, actually I have a
preposition"

Computer Science

• This American Turing award winner is known
for the “law” that “Adding humans to a late
software project makes it later.” The Turing
Award citation notes landmark contributions
to operating systems, software engineering
and computer architecture. Notable works
include No Silver Bullet: Essence and
Accidents of Software Engineering and The
___ ___ ___.

Q: Theatre (019 / 842)

• Name the composer or the title of
the 1937 musical that includes the
lyrics: "O Fortuna, velut luna statu
variabilis, semper crescis aut
decrescis; vita detestabilis nunc
obdurat et tunc curat ludo mentis
aciem, egestatem, potestatem
dissolvit ut glaciem."

#33

VCs Can Be Exponential
• VCs are exponential in the size of the source

because they attempt relative completeness:
– Perhaps the correctness of the program must be argued

independently for each path

• Unlikely that the programmer wrote a program by
considering an exponential number of cases
– But possible. Any examples? Any solutions?

#34

VCs Can Be Exponential

• VCs are exponential in the size of the source
because they attempt relative completeness:
– Perhaps the correctness of the program must be

argued independently for each path

• Standard Solutions:
– Allow invariants even in straight-line code

– And thus do not consider all paths
independently!

#35

Invariants in Straight-Line Code
• Purpose: modularize the verification task

• Add the command “after c establish Inv”
– Same semantics as c (Inv is only for VC purposes)

 VC(after c establish Inv, P) =def

VC(c,Inv)  xi. Inv  P
• where xi are the ModifiedVars(c)

• Use when c contains many paths
after if x < 0 then x := - x establish x  0;

if x  3 then x += 3 { P(x) }

• VC is now:
(x < 0  - x  0) Æ (x  0  x  0) Æ

x. x  0  (x  3  P(x+3) Æ x > 3  P(x))

#36

Dropping Paths
• In absence of annotations, we can drop some paths
• VC(if E then c1 else c2, P) = choose one of

– E  VC(c1, P)  E  VC(c2, P) (drop no paths)

– E  VC(c1, P) (drops “else” path!)

E  VC(c2, P) (drops “then” path!)

• We sacrifice soundness! (we are now unsound)
– No more guarantees
– Possibly still a good debugging aid

• Remarks:
– An established trend is to sacrifice soundness to increase

usability (e.g., Metal, ESP, even ESC)
– The PREfix tool considers only 50 non-cyclic paths

through a function (almost at random)

#37

VCGen for Exceptions

• We extend the source language with
exceptions without arguments (cf. HW2):
– throw throws an exception

– try c1 catch c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control

– What is VC(throw, P) ?

#38

VCGen for Exceptions

• We extend the source language with
exceptions without arguments (cf. HW2):
– throw throws an exception

– try c1 catch c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?

• Standard Solution: use 2 postconditions
– One for normal termination
– One for exceptional termination

#39

VCGen for Exceptions (2)

• VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally
with P or throw an exception with Q

• Rules
VC(skip, P, Q) = P

VC(c1; c2, P, Q) = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

VC(try c1 finally c2, P, Q) = ?

#40

VCGen Finally
• Given these:

VC(c1; c2, P, Q) = VC(c1, VC(c2, P, Q), Q)

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

• Finally is somewhat like “if”:
VC(try c1 finally c2, P, Q) =

VC(c1, VC(c2, P, Q), true) Æ

 VC(c1, true, VC(c2, Q, Q))

• Which reduces to:
VC(c1, VC(c2, P, Q), VC(c2, Q, Q))

#41

Hoare Rules and the Heap
• When is the following Hoare triple valid?

 { A } *x := 5 { *x + *y = 10 }
• A should be “*y = 5 or x = y”
• The Hoare rule for assignment would give us:

– [5/*x](*x + *y = 10) = 5 + *y = 10 =
– *y = 5 (we lost one case)

• Why didn’t this work?

#42

Handling The Heap

• We do not yet have a way to talk about
memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic
mapping from addresses to values:
– If A denotes an address and M is a memory state

then:
– sel(M,A) denotes the contents of the memory cell
– upd(M,A,V) denotes a new memory state

obtained from M by writing V at address A

#43

More on Memory

• We allow variables to range over memory
states
– We can quantify over all possible memory states

• Use the special pseudo-variable  (mu) in
assertions to refer to the current memory

• Example:

i. i  0  i < 5  sel(, A + i) > 0
says that entries 0..4 in array A are positive

#44

Hoare Rules: Side-Effects

• To model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole

• And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

{ B[upd(, A, E)/] } *A := E {B}

if A1  A2V

if A1  A2sel(M, A2)
sel(upd(M, A1, V), A2) =

#45

Memory Aliasing

• Consider again: { A } *x := 5 { *x + *y = 10 }
• We obtain:
 A = [upd(, x, 5)/] (*x + *y = 10)
 = [upd(, x, 5)/] (sel(, x) + sel(, y) = 10)
(1) = sel(upd(, x, 5), x) + sel(upd(, x, 5), y) = 10
 = 5 + sel(upd(, x, 5), y) = 10
 = if x = y then 5 + 5 = 10 else 5 + sel(, y) = 10
(2) = x = y or *y = 5
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving

#46

Alternative Handling for Memory
• Reasoning about aliasing can be expensive

– It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with
the following (approximate) rule:

otherwise (p is a fresh
new parameter)

P

if A1 (obviously) A2V

if A1  (obviously) A2sel(M, A2)sel(upd(M, A1, V), A2) =

• The meaning of “obviously” varies:
• The addresses of two distinct globals are 

• The address of a global and one of a local are 

• PREfix and GCC use such schemes

#47

VCGen Overarching Example

• Consider the program
– Precondition: B : bool  A : array(bool, L)
1: I := 0
 R := B
3: inv I  0  R : bool
 if I  L goto 9
 assert saferd(A + I)
 T := *(A + I)
 I := I + 1
 R := T
 goto 3
9: return R

– Postcondition: R : bool

#48

VCGen Overarching Example

 8A. 8B. 8L. 8
 B : bool Æ A : array(bool, L))
 0 ¸ 0 Æ B : bool Æ
 8I. 8R.
 I ¸ 0 Æ R : bool)
 I ¸ L) R : bool
 Æ
 I < L) saferd(A + I) Æ
 I + 1 ¸ 0 Æ
 sel(, A + I) : bool

• VC contains both proof obligations and assumptions
about the control flow

#49

Mutable Records - Two Models

• Let r : RECORD { f1 : T1; f2 : T2 } END

• For us, records are reference types

• Method 1: one “memory” for each record
– One index constant for each field

– r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)

• Method 2: one “memory” for each field
– The record address is the index

– r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)

• Only works in strongly-typed languages like Java
– Fails in C where &r.f2 = &r + sizeof(T1)

#50

VC as a “Semantic Checksum”

• Weakest preconditions are an
expression of the program’s semantics:
– Two equivalent programs have logically

equivalent WPs
– No matter how different their syntax is!

• VC are almost as powerful

#51

VC as a “Semantic Checksum” (2)

• Consider the “assembly
language” program to
the right

x := 4

x := (x == 5)

 assert x : bool

x := not x

 assert x

• High-level type checking is not appropriate here

• The VC is: ((4 == 5) : bool)  (not (4 == 5))

• No confusion from reuse of x with different types

#52

Invariance of VC Across
Optimizations

• VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations
– Register allocation, instruction scheduling

– Common subexp elim, constant and copy propagation

– Dead code elimination

• We have identical VCs whether or not an
optimization has been performed
– Preserves syntactic form, not just semantic meaning!

• This can be used to verify correctness of compiler
optimizations (Translation Validation)

#53

VC Characterize a Safe
Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. “safe to read

from this memory addr”, “this is a null-terminated
string”, “I have not already acquired this lock”)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)
– Invariants and pre/postconditions are used to obtain a

finite expression (through induction)

• VC is valid) interpreter never fails
– We enforce same level of “correctness”
– But better (static + more powerful checks)

#54

VC Big Picture
• Verification conditions

– Capture the semantics of code + specifications

– Language independent

– Can be computed backward/forward on
structured/unstructured code

– Make Axiomatic Semantics practical

#55

Invariants Are Not Easy
• Consider the following code from QuickSort

int partition(int *a, int L0, int H0, int pivot) {

 int L = L0, H = H0;

 while(L < H) {
 while(a[L] < pivot) L ++;
 while(a[H] > pivot) H --;
 if(L < H) { swap a[L] and a[H] }
 }
 return L
}

• Consider verifying only memory safety
• What is the loop invariant for the outer loop ?

#56

Done!

• Questions?

	Slide 1
	Slide 2
	Axiomatic Semantics III --- The Verification Crusade
	Not Quite Weakest Preconditions
	Groundwork
	Verification Condition Generation
	VCGen for WHILE
	Example VCGen Problem
	Example of VC
	Example of VC (2)
	Thoreau, Thoreau, Thoreau
	Can We Mess Up VCGen?
	Emerson, Emerson, Emerson
	Soundness of VCGen
	Where Are We?
	Slide 16
	VC and Invariants
	Forward VCGen
	Forward VC Gen Intuition
	Simple Assembly Language
	Symex States
	Symex Invariants
	Symex Rules
	Symex Invariants (2a)
	Symex Invariants (2b)
	Symex Summary
	Forward VCGen Example
	Forward VCGen Example (2)
	VCs Can Be Large
	Slide 30
	Slide 31
	Q: Theatre (019 / 842)
	VCs Can Be Exponential
	Slide 34
	Invariants in Straight-Line Code
	Dropping Paths
	VCGen for Exceptions
	Slide 38
	VCGen for Exceptions (2)
	VCGen Finally
	Hoare Rules and the Heap
	Handling The Heap
	More on Memory
	Hoare Rules: Side-Effects
	Memory Aliasing
	Alternative Handling for Memory
	VCGen Overarching Example
	Slide 48
	Mutable Records - Two Models
	VC as a “Semantic Checksum”
	VC as a “Semantic Checksum” (2)
	Invariance of VC Across Optimizations
	VC Characterize a Safe Interpreter
	VC Big Picture
	Invariants Are Not Easy
	Slide 56

