Programming Languages
“Topic of Ultimate Mastery”

Wes Weimer
EECS 590

http://web.eecs.umich.edu/~weimerw/590

http://web.eecs.umich.edu/~weimerw/590

Reasonable Initial Skepticism

il
¥

Today’s Class

e Vague Historical Context

e Goals For This Course

e Requirements and Grading
e Course Summary

e Convince you that PL is useful

Meta-Level Information

o Please interrupt at any time!

o Completely cromulent queries:
- | don’t understand: please say it another way.
- Slow down, you talk too fast!
- Wait, | want to read that!
- 1 didn’t get joke X, please explain.

i
' ' THESE.
I'VE MISSED \ YOu SHOULDNT LOOK, T DONT THINK GO AHEAD, | I HANE AW
HALF OF MY | BE PLANNING TS TOO MUCH To ASK DAD. I GREAT GgNES.
TV SHOW NOW. | YOUR LIFE .} THAT WE S\T TOGETHER BELIEVE | BUT me\%l RE
I HOPE YOU'RE /| AROUND THE FOR 40 MINUTES WITH- Y&)\{ mEGRE %EM%'SS‘_H i‘s; :
. ISTRACTIONS
HAPPN . TN ANYWAY QT D | SN
Z
o »
=3 X B
Ef'{‘ﬁ‘ :"{hv 1\\ \
AR\

What Have You Done For Us Lately?

e Isn’t PL a solved problem?
- PL is an old field within Computer Science
- 1920’s: “computer” = “person”
- 1936: Church’s Lambda Calculus (= PL!)
- 1937: Shannon’s digital circuit design
- 1940’s: first digital computers

- 1950°s: FORTRAN (= PL!) “_. a prestigious line of

- 1958: LISP (= PL!) work with a long and

- 1960’s: Unix glorious tradition.” - Vizzini
- 1972: C Programming Language

- 1981: TCP/IP

- 1985: Microsoft Windows
- 1992: Ultima Underworld / Wolfenstein 3D

A Brief Tour

e ... of PL research impact at companies

e« Themes:
- Multiple types of companies make languages
- PL tools apply to many domains

- PL research is embedded in other hardware
and software

- PL is interdisciplinary

Google

e Go, Dart, etc.

. Da rt CET STARTED ~ FUNDAMENTALS + ‘WEE ~ SERVER MORE ~ Search

Code Samples
Synonyms with Other Languages
Dart by Example

Scalable, productivegms opment

Language Specification
Dart is an open-source, scalable programming language, with robus
Who Uses Dart

FAQ

Logos and Colors

2

The Go Programming Language

Tryl Go Pop-out e

// You can edit this code!
// Click here and start typing.
package main

import "fmt"
func main() {

fmt.Println{"Hello, tHFE")
'} w

[Hello, world! ~|

‘ Run ‘ | Share ‘ ‘ Tour

Documents Packages The Project

b, server, and mobile apps.

Go is an open source programming language
that makes it easy to build simple, reliable, and
efficient software.

L)

Download Go

Binary distributions available for
Linux, Mac OS X, Windows, and more.

Oracle

o Java Compiler, Java Virtual Machine

Sign In/fRegister Help Country ~ Communities ~ lama.. v |wantto.

Q

Search

ORACLE

Products Solutio

Overview

Cracle and Java =

Java Software

Create the Future

Java is the world's #1 programming lan

Java Developer
Database Administrator /
Developer

System Admin / Developer
Architect

C-Level Executive

Chief Financial Officer
Chief Human Rescources Officer
Chief Information Officer

Other Roles

Analyst

Inwestor

Job Seekar
Partner

Student

Midsize Company

Java for Developers ¥ Java for Cons

Java Embedded for loT (2:51) >

I Overview

Roles

Technologies

mers | W |

(OTN|

Support

Training Partners About

Get Started

o [CC

Intel

Join Today » Login

i@ Developer Zone

owered by Google
Development » Tools » Resources » P b 9

Intel® C++ Compilers

Leadership Application Performance

» Boost C++ application performance
» Future-proof code by making code that scales

« Plugs right into your development environment

If you are here, you are looking for ways to make your application run faster. Boost performance by augmenting your development process
with the Intel® C++ Compiler. The Intel C++ Compiler plugs right into popular development environments like Visual Studio®, Eclipse®, XCode®,
and Android Studio®; The Intel C++ Compiler is compatible with popular compilers including Visual C++* (Windows") and GCC (Linux*, OS X*
and Android*).

The Intel C++ Compiler is available in four products based on your application development needs:

PARALLEL § SYSTEM

STUDIOXE [STUDIO

A

Intel® C++ Compiler in Intel® Intel® C++ Compiler in Intel® Intel® C++ Compilers in Intel® Intel® Bi-Endian Compiler
Parallel Studio XE System Studio INDE (support only)

Types without hassle

Powerful, safe type inference
means you rarely have to
annotate types, but everything
gets checked for you.

Facebook

Quick Start Try Guide APl Community Blog GitHub

Iason

Reason lets you write simple, fast and quality
type safe code while leveraging both the
JavaScript & OCaml ecosystems.

Online playground Easy JavaScript interop Flexible & Fun
Play with Reason in-browser, Use packages from NPM/Yarn Make websites, animations,
take a look at the produced with minimum hassle, or even games, servers, cli tools, and
OCaml and JavaScript, and try drop in a snippet of raw morel Take a look at these
out code samples JavaScript while you're learning! examples to get inspired.

Try it now Learn more See examples

10

Apple
e LLVM. Objective-C (phones).

Mac Developer Library @& Developer

LLVM Compiler Overview

LLVM Compiler Overview

The LLVM compiler is the next-generation compiler, introduced in Xcode 3.2 for Snow Leopard, based on the open source LLVM.org project. The
LLVM.org project employs a unique approach of building compiler technologies as a set of libraries. Capable of working together or independently, these

libraries enable rapid innovation and the ability to attack problems never before solved by compilers. Multiple technology groups within Apple are active
contributors within the LLVM.org community, and they use LLVM technology to make Apple platforms faster and more secure.
In Xcode, the LLVM compiler uses the Clang front end (a C-based languages project on LLVM.org) to parse source code and turn it into an interim format.
Then the LLVM code generation layer (back end) turns that interim format into final machine code. Xcode also includes the LLVM GCC compiler, which
uses the GCC compiler front end for maximum compatibility, and the LLVM back end, which takes advantage of LLVM's advanced code generator. This

shows the flexibility of a library-based approach to compiler development. There are many other features, such as link-time optimization, more detailed
diagnostic information, and even static analysis, that are made available to Xcode due to the adoption of LLVM.

About Objective-C

Objective-C is the primary programming language you use when writing software for OS X and iOS. It's a superset

of the C programming language and provides object-oriented capabilities and a dynamic runtime. Objective-C

inherits the syntax, primitive types, and flow control statements of C and adds syntax for defining classes and

methods. It also adds language-level support for object graph management and object literals while providing

dynamic typing and binding, deferring many responsibilities until runtime. 11

OW O ~NOO WUV DH WIN -~

Microsoft FlashFill

Our programming by example work (POPL 2011), also recognized as CACM Research Highlights (CACM 2012), ships People
as part of the Flash Fill feature in Excel in Office 2013. Here's a small video illustrating this feature. Here's another

small video illustrating potential extensions.

Here's the inside story of how it came about: Flash Fill Gives Excel a Smart Charge

Here are some other videos on FlashFill

® You-tube: Excel 2013 Flash Fill: 23 Amazing Examples, Excel 2013- Flash Fill, Meet new Excel's Flash Fill, Dutch Sumit Gulwani
Partner Research Manager|

video, French Video, German video, Japanese video, Polish video, Romanian video, Urdu video, Musical

® Microsoft: Rick Rashid on FlashFill (in conversation with John Markoff of New York Times), Office Blog, Customer
Preview Video (See the video segment from 0:35-0:40), Peter Lee on FlashFill (in his Keynote Speech on the 14th
Computing in the 21st Century Conference — See the video segment from 22:22-27:20)

® CNet: Microsoft gives new Office a Windows 8 look (This video is at the bottom of the page. See the video
segment from 2:00-3:01)

Here is what popular media says about this feature

o PC Magazine: My favorite new feature, because it saves a tremendous amount of time-wasting effort, is called

Flash Fill, and it's one of many features where Excel acts as it it's using its brain, not just its raw number-crunching
VIEW QUICK CODE

ower. With some experimentation, you may find that Flash Fill is smarter than you expect.

B B - B

542368978 542-36-8978 . Ctrl-E 2 |542368978 - |542-36-8978 |
123145542 3 123145542 123-14-5542 =
121247543 4 121247543 B 121-24-7543
454545465 5 454545465 454-54-5465
642548745 6 642548745 642-54-8745
514852145 7 514852145 514-85-2145
152358834 8 152358834 152-35-8834
642974682 Q CAYQTALCQD CADY QT ACQ)

Janus Manager

“Fixing Bugs in Your Sleep: How Genetic Improvement Became an Overnight Success”

yANU,

... Janus endurhezefing

2

“,..w¢ Skulagata 19, 101 Reykjavik

Hoas

Leeknisfreedileg starfs- og a ABSTR ACT

We present a bespoke live system in commercial use with self-
Forsiba | Janus endumz=iing — Namsl yjmproving capability. During daytime business hours it provides
an overview and control for many specialists to simultaneously
schedule and observe the rehabilitation process for multiple clients.
However in the evening, after the last user logs out, it starts a
self-analysis based on the day’s recorded interactions. It generates

& test data from the recorded interactions for Genetic Improvement
== to fix any recorded bugs that have raised exceptions. The system

has already been under test for over 6 months and has in that time
identified, located, and fixed 22 bugs. No other bugs have been
identified by other methods during that time. It demonstrates the
effectiveness of simple test data generation and the ability of GI for
improving live code.

DARPA Cyber Grand Challenge

The ultimate test of wits in computer security occurs through open competition on the global
Capture the Flag [CTF] tournament circuit. In CTF contests, experts reverse-engineer software,
probe its weaknesses, search for deeply hidden flaws and create securely patched replacements.

What if a purpose-built computer systems could compete against the CTF circuit’'s greatest
experts? DARPA has modeled the Cyber Grand Challenge on today’s CTF tournaments to pave the
way toward that future.

On August 4th, 2016, DARPA will hold the world's first all-computer Capture the Flag tournament
in Las Vegas. Seven prototype systems will square off against each other, competing for nearly $4
million in prizes in a live network competition. The CGC Final Event will take place in conjunction
with DEF CON, home of the longest-running annual CTF competition.

To learn more about the Cyber Grand Challenge, explore this site and visit DARPA's official CGC
homepage, CGC Final Event announcement and CGC news articles.

14

DARPA Cyber Grand Challenge

The ultimate test of wits in computer security occurs through ¢
Capture the Flag [CTF] tournament circuit. In CTF contests, ex
probe its weaknesses, search for deeply hidden flaws and crez

What if a purpose-built computer systems could compete agal
experts? DARPA has modeled the Cyber Grand Challenge on t¢
way toward that future.

On August 4th, 2016, DARPA will hold the world's first all-com
in Las Vegas. Seven prototype systems will square off against
million in prizes in a live network competition. The CGC Final E
with DEF CON, home of the longest-running annual CTF comp

To learn more about the Cyber Grand Challenge, explore this s
homepage, CGC Final Event announcement and CGC news art
- T —

Abstract

The automatic exploit generation challenge is given
a program, automatically find vulnerabilities and gener-
ate exploits for them. In this paper we present AEG, the
[irst end-to-end system for fully automatic exploit gener-
ation. We used AEG to analyze 14 open-source projects
and successfully generated 16 control flow hijacking ex-
ploits. Two of the generated exploits (expect-5.43 and
htget-0.93) are zero-day exploits against unknown vul-
nerabilities. Qur contributions are: 1) we show how
exploit generation for control flow hijack attacks can be
modeled as a formal verification problem, 2) we pro-
pose preconditioned symbolic execution, a novel tech-
nique for targeting symbolic execution, 3) we present a
general approach for generating working exploits once
a bug is found, and 4) we build the first end-to-end sys-
tem that automatically finds vulnerabilities and gener-
ates exploits that produce a shell.

15

DARPA Cyber Grand Challenge

Abstract

AEG searches for bugs at the source code level Jgploit generation challenge is given

. . . cally find vulnerabilities and gener-
by exploring execution paths. Specifically, AEG B, .0 or e present AEG, the

executes iwconfig using symbulic ﬂrguments m for fully automatic exploit gener-

: to analyze 14 open-source projects
and succes s*fully genemzed 16 control flow hijacking ex-
enerated exploits (expect-5.43 and
day exploits against unknown vul-
ntributions are: 1) we show how
r control flow hijack attacks can be
as a formal verification problem, 2) we pro-
mwanandidoasd symbolic execution, a novel tech-
AEG generates the constraints dc&.c,rlbm g the ex- Bymbolic execution, 3) we present a
ploit using the runtime information generated |" seneraiing wor king exploits once
. . ") we build the first end-to-end sys-
Ily finds vulnerabilities and gener-
ates exploits that produce a shell.

ey

AEG performs dynamic analysis on the iwconfig
binary using the concrete input generated in step 2.

16

Microsoft

e Software, Languages, Analysis and Model
Checking

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid
software engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver
Verifier is a tool in the Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of

computer science for many decades but now in some very key areas, for
example, driver verification we're building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.” . |
Bill Gates, April 18, 2002. Keynote address at WinHec 2002 =node->(); | ++ VI¥'pro

en .l'* woue) {

17

Facebook: Infer and Sapienz

Facebook's static analyser is called Infer. The company open-sourced the tool in 2013, and a lot of
big names (Uber, Spotify, Mozilla) use it. There isn't a whole lot to say about it, other than it
seems to be very popular and effective; download it today!

£ SRC/APK

T e e P P L eS| EEC L e e L e LR s SAPIENZ |---

Instrumented APK [<— Multi-level Instrumenter Decompiler | Static Strings
v v '
> Android
L_TC!_E [ﬁ] Device | | States Logger { DB j—> Report Generator
Y

-
-

v

Fitness Extractor

remEsopossEbescnEereanenTs MOTIFCORE} -~ O
| b 7ol 13g| |53
i ' T T @ ed
| Gene Interpreter [<{ Test Replayer *F ez 3% o2

1

|

1
BIZ & IT— :
Facebook’s evolutionary search for Solutions
crashing software bugs Initialiser (Test Suites)

Ars gets the first look at Facebook's fancy new dynamic analysis tool.

SEBASTIAN ANTHONY - 22/8/2017, 02:52

Figure 1: Sapienz workflow.

Wind River, Green Hills

~—e
Green Hills Leading the Embedded World INIEERITY

SOFTWARE

e Embedded! I e e K M I

DIAB COMPILER

For over 25 years, Wind River Diab Compiler has been help
industrial, medical, and aerospace industries. Diab Compile
footprint, and produce high-quality, standards-compliant ¢

The Latest Ind

Diab Compilers unigue optimization technology Due to collabore
generates extremely fast, high-quality object code in Diab Compiler is
the smallest possible footprint, microcontrollers

older processor:
of time to allow
of the compiler 1

Jobs - Opportunities in the USA

Green Hills Software is always looking for qualified Engineering, Sales, and
Marketing staff. Please submit your resume to the Corporate Office where
it will be processed and reviewed by the hiring manager.

Click on a job title below for a complete description of the position:

Corporate Field Applications Engineer (Santa Barbara, CA)
Embedded Software Consultant (Santa Barbara, CA)
Embedded Solutions Test Engineer (Santa Barbara, CA)
Field Engineer {Santa Barbara, CA)

Field Services Engineer (Santa Barbara, CA)

Functional Safety Software Engineer (Santa Barbara, CA)
Product Engineer (Santa Barbara, CA)

Sales Managers (location TBD)

Software Development Engineer (Santa Barbara, CA)
Technical Marketing Engineer (Santa Barbara, CA)

Click here for information on applying.
Green Hills Software is an Equal Opportunity [/ Affirmative Action Employer.

Software Development Engineer (Santa Barbara, CA)
Job description:

A software engineer has complete engineering responsibility for one or more major components of the Green Hills product line. For an
experienced programmer this is a satisfying position in which you have personal responsibility for creating a tool used by thousands of
programmers around the world. Cur engineers are involved in Language Front Ends, Code Generators, Real Time Operating Systems, our
MULTI Development Environment, our Secure Workstation, and Target Systems.

Here are the groups for which we are hiring

« Compiler: Create, update, and maintain a language front end or a target architecture backend for the highly-optimizing family of Green
Hills compilers. A compiler engineer might work on new language extensions, specific cutting-edge optimizations for the latest chips to hit
the market, or on general optimizations that will benefit our entire product line. An ideal candidate understands low level microarchitecture
designs and is comfortable working with assembly code, yet can also develop tools written in high level languages.

Wait, what? Embedded?

e Curiosity Mars Rover,

Cell Phones, Satellites,

Engine Control
Modules, Computed
Radiology, Fighter
Jets, Digital Cameras,
Turbines, Anti-Lock
Brakes, Wii U Game
Console, ...

PLAY VIDEO

Propulsion Laboratory (JPL) first
began its work on the Mars
Science Laboratory rover,
Curiosity. Because of its long
record of success with Wind
River® on more than 20 JPL
missions, NASA chose
VxWorks® for the most
technologically advanced

‘ | Eight years ago, NASA Jet
n -

autonomous robotic spacecraft
and geologist set ever to be
deployed by any space venture.
Wind River WVxWorks powered the
craft's controls from the second the rocket left Earth on November 26, 2011, to its
successful landing in the Gale Crater on Mars on August 5, 2012, and will support
Curiosity's exploratory capability throughout the life of the mission.

Stay tuned for future updates as Wind River VxWorks continues to play a strategic role in
NASA's groundbreaking mission to determine whether Mars is or has ever been capable
of supporting life and to assess the planet's habitability for future human missions.

The Astrée Static Analyzer

« Astree was able to prove, completely automatically,
the absence of any RTE in a C version of the
automatic docking software of the Jules Vernes
Automated Transfer Vehicle (ATV) enabling ESA to
transport payloads to the International Space
Station.

ATV-5
separation seen by “.*
onboard cameras

21

Adobe

e Photoshop contains interpreters ...

p) Photoshop Scripting Basics

This chapter provides an overview of scripting for Photoshop, describes scripting support for the scripting
languages AppleSaipt, VBSaript, and JavaScript, how to execute scripts, and covers the Photoshop object
model. It provides a simple example of how to write your first Photoshop script.

If you are familiar with scripting or programming languages, you most likely will want to skip much of this
chapter. Use the following list to locate information that is most relevant to you.

» Formore information on the Photoshop object model, see "Photoshop Object Model” on page 11.

» Forinformation on selecting a scripting language, refer to the Introduction to Scripting guide.

» For examples of scripts created specifically for use with Photoshop, see Chapter 3, "Scripting
Photoshop” on page 21.

» For detailed information on Photoshop objects and commands, please use the reference information
in the three reference manuals provided with this installation: Adobe Photoshop CC 2015 AppleScript
Scripting Reference, Adobe Photoshop CC 2015 Visual Basic Scripting Reference, and Adobe Photoshop CC
2015 JavaScript Scripting Reference.

NoTE: You can also view information about the Photoshop objects and commands through the object
browsers for each of the three scripting languages. See “Viewing Photoshop Objects, Commands, and
Methods” on page 21.

A scriptis a series of commands that tells Photoshop to perform a set of specified actions, such as applying
different filters to selections in an open document. These actions can be simple and affect only a single
object, or they can be complex and affect many objects in a Photoshop document. The actions can call
Photoshop alone orinvoke other applications.

Mozilla

e SpiderMonkey JavaScript Engine

Sign in with B moz'"-a

MOZILLA
DEVELOPER
m MDN RETWORK WEB PLATFORM ~ MOZILLA DOCS - DEVELOPER TOOLS FEEDBACK ~ Q

MDM » Mozilla » Projects » SpiderMonkey LANGUAGES @ ©DIT & o

SpiderMonkey TEITL

see all contributors

SEE ALSO

EE R SpiderMonkey is Mozilla's JavaScript engine written in C/C++, It is used in various Mozilla products, including
P 4 Firefox, and is available under the MPL2.

References:

¥ |SAPIreference
SpiderMonkey 38 is the most recent standalone source code release. It is largely the same engine that shipped with Firefox 38

» Debugger-API : ;] : :
(ESR). Full source code is available here: = https.//people.mozilla.org/~sstangl/mozjs-38.2.1.rc0.tarbz2

Guides:

b General The next release will be SpiderMonkey 45.

» SpiderMonkey internals

Contributing to SpiderMonkey: GUides Reference

3 ing sl
Getting started Building JSAPI Reference

b Tests SpiderMonkey APl reference.
SpiderMonkey Build Documentation

How to get SpiderMonkey source code, build it, and run
the test suite,

Releases:
JS Debugger API Reference
AP reference for the Debugger object introduced in

. . SpiderMonkey 1.8.6, which corresponds to Gecko 8.0
b Useful lists USIﬂg Sp|de rMon key (Firefox 8.0 / Thunderbird 8.0 / SeaMonkey 2.5),

} Release notes

Documentation:

Epic Games

e Unreal Engine: Blueprints Scripting

QuakeC

QuakeC is an interpreted language developed in 1¢
id Software to program parts of the video game Qua
programmer is able to customize Quake to great ext
weapons, changing game logic and physics, and pr
scenarios. It can be used to control many aspects of
parts of the Al triggers, or changes in the level. The

only game engine to use QuakeC. Following engine _

modules for customization written in C and C++ from id Tech 4 on. Typing

Contents ~

Overview

Limitations

@ Unreal Engine 4 Documentation LG Lﬂ E] WE

Blueprints Visual Scripting

| Unreal Engine 4.9|

The Blueprints Visual Scripting system in Unreal Engine is a complete gameplay scripting system based on the concept of using a
node-based interface to create gameplay elements from within Unreal Editor. This system is extremely flexible and powerful as it provides the

ability for designers to use virtually the full range of concepts and tools generally only available to programmers.

Through the use of Blueprints, designers can prototype, implement, or modify virtually any gameplay element, such as:

L

static, strong
discipline
Major implementations

Quake C Compiler, FastQCC, QCCx, GMQCC

Influenced by

c 24

Surprise: Flash, Postscript.

~ The language

4

. belonging to the concatenative group. Typically, PostScript programs

are not produced by humans. but by other programs. However, it is possible to write computer programs in PostScript just like

any other programming language. 5]

ActionScript

PostScript is an interpreted, stack-based language similar to

those found in Li sp. scoped MeEmaory aﬂd: since lan guage | evActionSeript is an object-oriented programming language originally
developed by Macromedia Inc. (now dissolved into Adobe Systems). ltis a

Polish notation, which makes the order of operations unambderivation of HyperTalk, the scripting language for HyperCard.Fl It is now a

one has to keep the layout of the stack in mind. Most operatcdialect of ECMAScript (meaning it is a superset of the syntax and semantics
of the language more widely known as JavaScript), though it originally

the stack, and place their results onto the stack. Literals (for t,« a sibling, both being influenced by HyperTalk.

en the stack. SDphIStI Gated data structures can be bUI't en thActionScriptis used primarily for the development of websites and software

system, which sees them all an as arrays and dictionaries, tereeting the Adobe Flash Player platform. used on Web pages in the form
N . " of smbedded SWF files.
"types" is left to the code that implements them.
ActionSecript 2 is also used with Adobe AIR system for the development of

desktop and mobile applications. The language itself is open-source in that
its specification is offered free of chargel®! and both an open source compiler
(as part of Apache Flex) and open source virtual machine (Mozilla Tamarin)

are available.

ActionScript is also used with Scaleform GFx for the development of 3D

video game user interfaces and HUD s.

ActionScript

Paradigm Multi-paradigm: object-oriented
(prototype-based). functional,
imperative, scripting

Designed by Gary Grossman

Developer Macromedia (now dissolved
into Adobe Systems)

First appeared 1998

Stable release 3.0/ June 27, 2006

Typing strong, static
discipline
Website adobe s

Major implementations

Adobe Flash Player, Adobe AIR, Apache Flex,
Scaleform GFx

Influenced by

JavaScript, Java

Surprise: Flash, Postscript.

~ The language 4

. belonging to the concatenative group. Typically, PostScript programs

are not produced by humans. but by other programs. However, it is possible to write computer programs in PostScript just like

any other programming language. 5]

L] L]
ActionScript 7
PostScript is an interpreted, stack-based language similar to
those found in Lisp, scoped memeory and, since language |eActionSeript is an object-oriented programming language originally ActionScript
Aavalanad b Macrameadia lns (now dicenlvad intn Adak vetarnel ltie o

Folish notation. wh
one has to keep thg
the stack, and plac
on the stack. Sophi
system, which seej

"types" is left to the

Flash Player, Your Printer,
Your Cell Phone, Acrobat Reader: -
they all contain Interpreters. !

T

are available. Stable release 3.0/June 27, 2006

ActionScript is also used with Scaleform GFx for the development of 3D Typing strong, static
video game user interfaces and HUD s. discipline
Website adobe s

Major implementations

Adobe Flash Player, Adobe AIR, Apache Flex,
Scaleform GFx

k Influenced by

JavaScript, Java

Wait ...

e But weren't most of those examples
mixtures of PL and some other discipline?

- Mars Rover, Intel = PL + Hardware

- Flash Fill = PL + Machine Learning

- Cyber Grand Challenge = PL + Security
- Gaming Languages, PDF = PL + Graphics
- GenProg, Sapienz = PL + Evolutionary

- SLAM = PL + Model Checking

e Yes! That's the point!

27

Parts of Computer Science

e CS = (Math x Logic) + Engineering

- Science (from Latin scientia - knowledge)
refers to a system of acquiring knowledge -
based on empiricism, experimentation, and
methodological naturalism - aimed at finding
out the truth.

 We rarely actually do this in CS
- “CS theory” = Math (logic)
- “Systems” = Engineering (bridge building)

Programming Languages

o Best of both worlds: Theory and Practice!
- Only pure CS theory is more primal

« Touches most other CS areas
- Theory: DFAs, PDAs, TMs, language theory (e.g., LALR)
- Systems: system calls, assembler, memory management
- Arch: compiler targets, optimizations, stack frames
- Numerics: FORTRAN, IEEE FP, Matlab, loop nest optim.
- Al: theorem proving, machine learning, search
- DB: SQL, persistent objects, modern linkers
- Networking: packet filters, protocols, even Ruby on Rails
- Graphics: OpenGL, LaTeX, PostScript, even Logo (= LISP)
- Security: buffer overruns, .net, bytecode, PCC, ...
- Software Engineering: bug finding, refactoring, types, ...

Overarching Theme

e | assert (and shall convince you) that

e PL is one of the most vibrant and active
areas of CS research today

- It has theoretical and practical meatiness
- It intersects most other CS areas

e You will be able to use PL techniques in
your own projects

Goal #1

eLearn to use advanced
PL techniques

Useful Complex Knowledge

e A proof of the fundamental theorem of
calculus

e A proof of the max-flow min-cut theorem

e Nifty tree node insertion (e.g., B-Trees,
AVL, Red-Black)

e The code for the Fast Fourier Transform
e And so on ...

No Useless Memorization

e | will not waste your time with useless
memorization

e This course will cover complex subjects

e | will teach their details to help you
understand them the first time

e But you will never have to memorize
anything low-level

e Rather, learn to apply broad concepts

Goal #2

«When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Story: The Clash of Two Features

« Real story about bad programming
language design

e Cast includes famous scientists

e ML (’82) is a functional language with
polymorphism and monomorphic
references (i.e. pointers)

e Standard ML (’85) innovates by adding
polymorphic reference

e It took 10 years to fix the “innovation”

Polymorphism (Informal)

e Code that works uniformly on various types
of data

e Examples of function signatures:

length : o list — int (takes an argument of type
“list of o, returns an integer, for any type o)

head : a list > o

e Type inference:

- generalize all elements of the input type that
are not used by the computation

References in Standard ML

e Like “updatable pointers” in C
e Type constructor: ptr t
- x : ptrint === “xis a pointer to an integer”
e Expressions:
alloc : 1t > ptrr (allocate a cell to store a 1)
*e : Ttwhen e : ptr t (read through a pointer)
el :=e2 withel :ptrtandel:
(write through a pointer)

 Works just as you might expect ...

Polymorphic References:
A Major Pain

Consider the following program fragment:

Code

fun id(x) = x

val ¢ = alloc id
print (*c) (“hi”)
print (*c) (5)

Polymorphic References:
A Major Pain

Consider the following program fragment:

Code

fun id(x) = x

val ¢ = alloc id
funinc(x) = x + 1
*c :=inc

print (*c) (6)

Polymorphic References:
A Major Pain

Consider the following program fragment:

Code

fun id(x) = x

val ¢ = alloc id
funinc(x) = x + 1
*c :=inc

(*c) (“hi”)

Polymorphic References:
A Major Pain

Consider the following program fragment:

Code

fun id(x) = x

val ¢ = alloc id
funinc(x) = x + 1
*c :=inc

(*c) (“hi”)

Type inference

id: o > a (for any o)
c:ptr (o > a) (for any o)
inc : int — int

Ok, since c : ptr (int — int)
Ok, c : ptr (string — string)

Reconciling Polymorphism
and References

e Type system fails to prevent a type error!

e Common solution:

- value restriction: generalize only the type of
values!

 easy to use, simple proof of soundness

o X Features = X? Complication

e To see what went wrong we needed to
understand semantics, type systems,
polymorphism and references

Story 2: Java Bytecode Subroutines

» Java bytecode programs contain subroutines (jsr)
that run in the caller’s stack frame (why?)
« jsr complicates the formal semantics of bytecodes
- Several verifier bugs were in code implementing jsr
- 30% of typing rules, 50% of soundness proof due to jsr
o It is not worth it:
- In 650K lines of Java code, 230 subroutines, saving 2427
bytes, or 0.02%
- 13 times more space could be saved by renaming the
language back to Oak

e [In 1994], the language was renamed “Java” after a trademark
search revealed that the name “Oak” was used by a
manufacturer of video adapter cards.

Recall Goal #2

«When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Goal #3

eUnderstand current PL
research (PLDI, POPL,
OOPSLA, TOPLAS, ...) and
technology transfer (MS,
Intel, ...)

Final ol: Fun

gy

Q: Books (730 / 842)

e This 1960 Daniel Keyes sci-fi novel
is told as a “progris riport” from the
point-of-view of Charlie Gordon as
he takes an experimental
intelligence-enhancing treatment.
The treatment is temporary. The
book won the Hugo and Nebula
awards.

Q: Computer Science

« This Sri Lanka-born, British computer scientist is
best known for his development of QuickSort, a logic
for verifying program correctness, the monitor
approach to mutual exclusion, and the formalism of
Communicating Sequential Processes. In 2009 he
apologized for inventing the null reference:

- | call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, | was designing the first comprehensive
type system for references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should be absolutely
safe, with checking performed automatically by the compiler. But |
couldn't resist the temptation to put in a null reference, simply because
it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years.

S~
< | H

Prerequ151tes

. Undergraduate
PL/compilers
course?

- No

e “Mathematical % /
maturity”

Assignments

e Short Homework Assignments (5)

e Long Homework Assignment (1)

e Daily Reading (1-2 papers per class)
e Final Project

I CANT BELIEVE IT/ | I HAVE TOW '
HOME WORK. ALREADY ! PAQAGRA-‘\;\O-\ om%uﬁv %Lwléﬁyﬁﬁﬁ%%! /HON‘S T

ITS NOT AR /7

NOT SO GOQD.
WHAT DID YOU
DO BESIDES
WATCH TV ?

I JUST GOT BACK TO T DID OVER THE SUMMER!

oL 4 WIDLE PRAGRAPY.”
" S

COMING?

Homework Problem Sets

 Some material can be “mathy”
e Much like Calculus, practice is handy
e Short: ~3 theory + 1 coding per HW

e You have one week to do each one
- Usually available in advance ...

e Long: analysis of real C programs

e NB: | will be evaluating your English
prose.

Final Project

e Literature survey, implementation
project, or research project

» Write a 5-page paper (akin to PLDI)

e On the topic of your choice

- | will help you find a topic (many
examples)

- Best: integrate PL with your current
research

Reading Quizzes: Let's Vote!

« A common perception:

- If | never check, graduate students will not do
the reading.

e A related desire:

- Graduate students often wish that someone
would make them do the reading.

e Proposal:
- “One Word” reading quizzes

Piazza Forum

e Ask questions about assighments
« Compare concerns about papers

e https://piazza.com/class/j6zcp05jq6br2ké

https://piazza.com/class/j6zcp05jq6r2k6

How Hard Is This Class?

This Shall Be Avoided

N

In 1930, the Republican-controlled House of Representatives, in an effort to
alleviate the effects of the... Anyone? Anyone? ... the Great Depression,
passed the ... Anyone? Anyone? The tariff bill? The Hawley-Smoot Tariff Act?
Which, anyone? Raised or lowered? ... raised tariffs, in an effort to collect
more revenue for the federal government. Did it work? Anyone? Anyone know

the effects?

Key Features of PL

Now that the NDA Alright, dungeons.

is up, we're seeing a lot
oF people ovt there unhappy
with the DED Online Mjﬂnﬂs & Dmﬂﬂhﬁ
experience we've

delivered. Online kciﬂ Features:
Let's take a look R
at our key Peatures list, =~

see iFf we didn't miss
something.

Where are we at?
-‘-/

Good. Glad
to hear it. And
dragons?

Dragons? Come on,
guys. Don't tell me we
Forgot dragons.

I Ghink...
Jim was on

No,no — I was
on Pungeons.

L]

ik Gt Jﬂﬁgﬂa

Programs and Languages

e Programs
- What are they trying to do?
- Are they doing it?
- Are they making some other mistake?
- Were they hard to write?
- Could we make it easier?
- Should you run them?
- How should you run them?
- How can | run them faster?

Programs and Languages

e Languages
- Why are they annoying?
- How could we make them better?
- What tasks can they make easier?
- What cool features might we add?
- Can we stop mistakes before they happen?
- Do we need new paradigms?
- How can we help out My Favorite Domain?

Common PL Research Tasks

Design a new language feature

Design a new type system / checker
Design a new program analysis

Find bugs in programs

(Help people to) Fix bugs in programs
Transform programs (source or assembly)
Interpret and execute programs

Prove things about programs

Optimize programs

Grand Unified Theory

e Design a new type system

e Your type-checker becomes a bug-finder
- No type errors = proof that program is safe

- Type error = bug may exist in program
 Fault localization and automated program repair

e Design a new language feature
- To prevent the sort of mistakes you found

e Write a source-to-source transform
- Your new feature now works on existing code

EECS 590 - Core Topics
e Model Checking

e Operational semantics
e Provers and proofs
0 Type theory

e Symbolic Execution

e |nvariant Detection [l
D

» Abstract interpretation M 4

* MaCh]ne Learn]ng “SS";‘PET*/ A)&\/\?TE O\’[ZES o Z WE HAE DECIDED 7o

« Lambda Calculus RO s T Eoreae A ST AN 62

——

Special Topics

« Communications and Concurrency
e Fault Localization, Bug Isolation
e Automated Program Repair

 What do you want to hear about?

Weimer's Research Group

| am looking to pick up a new PhD student
Take Grad PL and do well

Pick an ambitious semester project
Expectations: 1-2 new submissions / year

- Kinga: 1 journal + 5 conf + PhD in 4 years, now professor at GMU

- Ray: 1 journal + 8 conf (1 best paper) + research internship + grant
in 6 years, now at Google

- Pieter: 2 journal + 9 conf (1 best paper) + 3 research internships in 6
years, now at Facebook

- Claire: 4 journal + 7 conf (3 best papers) + research internship in 6
years, now a professor at CMU

First Topic: Model Checking

o Verify critical properties of software or find bugs
o Take an important program (e.g., a device driver)

o Merge it with a property (e.g., no deadlocks, asynchronous
IRP handling, BSD sockets, database transactions, ...)

« Transform the result into a boolean program
- Same control flow, but only boolean variables

o Use a model checker to explore the resulting state space
- Result 1: program provably satisfies property

- Result 2: program violates propertv right here on line 92.376!

HEY DAD, 1L [MM 0K, =R} B Gauy,
EUESS AN IVE GOT (T, | |92, 376,051 7 ITis!
MUMBER YOUTRE
THINLING OF !
G0 AHERD, PICL
A NUMBER!

Example Program

Example () { :
do{ Is this program correct?

lock () ;
old = new;
g = g—>next;

if (g != NULL) {
g->data = new;
unlock () ;
new ++;
}
} while (new != old);
unlock () ;

return;

67

Example Program

Example () .
do{ Is this program correct?
lock () ;
old = new;
1 = dmenext; What does correct
if (g !'= NULL) {
g->data = new; mean?
unlock () ; . .
new ++; Doing no evil?
} , ,
} while (new != o0ld); DO]ng some g00d.
unlock () ;
return;
} How do we determine if

a program is correctg,

Verification by Model Checking

Example () {

Te col 1. (Finite State) Program
lock () 2. State Transition Graph
old = new;

q = g->next; 3. Reachability
2: if (g !'= NULL) {
3: g->data = new;
unlock () ; - Pgm — Finite state model
new ++; .
} - State explosion
4: } while(new != o0ld); °
5: unlock() : + State Exploration
return; + Counterexamples

Precise [SPIN, SMV, Bandera, JPF]
69

For Our Next Exciting Episode
e See webpage under “Lectures”
e Read the two articles
e Peruse the HW and Project pages
") STAR WARS

Fresh tonight at 8/7 c TUESDAY

P Katya, we're rebels. katya... I just got Next week, New Found Glory

I won't have you dating 0P the comlink with Medical guest stars on a very special

You're just a clone killed in a speeder - Star Wars...

il i)
of My dad — I don't have JINE Sccidtle
bo do what you say! And §
Brian and I are going

Y On Corvacant,
\ capital of the
Empire!

	Programming Languages Topic of Ultimate Mastery
	Reasonable Initial Skepticism
	Today’s Class
	Meta-Level Information
	What Have You Done For Us Lately?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Parts of Computer Science
	Programming Languages
	Overarching Theme
	Goal #1
	Useful Complex Knowledge
	No Useless Memorization
	Goal #2
	Story: The Clash of Two Features
	Polymorphism (Informal)
	References in Standard ML
	Polymorphic References: A Major Pain
	Slide 39
	Slide 40
	Slide 41
	Reconciling Polymorphism and References
	Story: Java Bytecode Subroutines
	Recall Goal #2
	Goal #3
	Final Goal: Fun
	Q: Books (730 / 842)
	Slide 48
	Prerequisites
	Assignments
	Homework Problem Sets
	Final Project
	Slide 53
	Slide 54
	How Hard Is This Class?
	This Shall Be Avoided
	Key Features of PL
	Programs and Languages
	Slide 59
	Common PL Research Tasks
	Grand Unified Theory
	CS 615 - Core Topics
	Special Topics
	Slide 64
	Slide 65
	Big Example #X: SLAM
	Verification by Model Checking
	Slide 68
	Slide 69
	For Our Next Exciting Episode

