

Programming Languages
“Topic of Ultimate Mastery”

Wes Weimer
EECS 590

http://web.eecs.umich.edu/~weimerw/590

http://web.eecs.umich.edu/~weimerw/590

Reasonable Initial Skepticism

Today’s Class

•Vague Historical Context
•Goals For This Course
•Requirements and Grading
•Course Summary

•Convince you that PL is useful

Meta-Level Information
• Please interrupt at any time!

• Completely cromulent queries:
– I don’t understand: please say it another way.

– Slow down, you talk too fast!

– Wait, I want to read that!

– I didn’t get joke X, please explain.

What Have You Done For Us Lately?
• Isn’t PL a solved problem?

– PL is an old field within Computer Science
– 1920’s: “computer” = “person”
– 1936: Church’s Lambda Calculus (= PL!)
– 1937: Shannon’s digital circuit design
– 1940’s: first digital computers
– 1950’s: FORTRAN (= PL!)
– 1958: LISP (= PL!)
– 1960’s: Unix
– 1972: C Programming Language
– 1981: TCP/IP
– 1985: Microsoft Windows
– 1992: Ultima Underworld / Wolfenstein 3D

“… a prestigious line of
work with a long and
glorious tradition.” - Vizzini

A Brief Tour

• … of PL research impact at companies

• Themes:
– Multiple types of companies make languages

– PL tools apply to many domains

– PL research is embedded in other hardware
and software

– PL is interdisciplinary

7

Google

• Go, Dart, etc.

8

Oracle

• Java Compiler, Java Virtual Machine

9

Intel

• ICC

10

Facebook

11

Apple
• LLVM. Objective-C (phones).

12

Microsoft FlashFill

Ctrl-E

13

Janus Manager
“Fixing Bugs in Your Sleep: How Genetic Improvement Became an Overnight Success”

14

DARPA Cyber Grand Challenge

15

DARPA Cyber Grand Challenge

16

DARPA Cyber Grand Challenge

17

Microsoft

• Software, Languages, Analysis and Model
Checking

18

Facebook: Infer and Sapienz

19

Wind River, Green Hills

• Embedded!

20

Wait, what? Embedded?

• Curiosity Mars Rover,
Cell Phones, Satellites,
Engine Control
Modules, Computed
Radiology, Fighter
Jets, Digital Cameras,
Turbines, Anti-Lock
Brakes, Wii U Game
Console, ...

21

The Astrée Static Analyzer
• Astrée was able to prove, completely automatically,

the absence of any RTE in a C version of the
automatic docking software of the Jules Vernes
Automated Transfer Vehicle (ATV) enabling ESA to
transport payloads to the International Space
Station.

22

Adobe

• Photoshop contains interpreters ...

23

Mozilla

• SpiderMonkey JavaScript Engine

24

Epic Games

• Unreal Engine: Blueprints Scripting

25

Surprise: Flash, Postscript.

26

Surprise: Flash, Postscript.

Flash Player, Your Printer,
Your Cell Phone, Acrobat Reader:
they all contain Interpreters.

27

Wait …

• But weren't most of those examples
mixtures of PL and some other discipline?
– Mars Rover, Intel = PL + Hardware

– Flash Fill = PL + Machine Learning

– Cyber Grand Challenge = PL + Security

– Gaming Languages, PDF = PL + Graphics

– GenProg, Sapienz = PL + Evolutionary

– SLAM = PL + Model Checking

• Yes! That's the point!

Parts of Computer Science

• CS = (Math £ Logic) + Engineering
– Science (from Latin scientia - knowledge)

refers to a system of acquiring knowledge -
based on empiricism, experimentation, and
methodological naturalism - aimed at finding
out the truth.

• We rarely actually do this in CS
– “CS theory” = Math (logic)

– “Systems” = Engineering (bridge building)

Programming Languages
• Best of both worlds: Theory and Practice!

– Only pure CS theory is more primal

• Touches most other CS areas
– Theory: DFAs, PDAs, TMs, language theory (e.g., LALR)
– Systems: system calls, assembler, memory management
– Arch: compiler targets, optimizations, stack frames
– Numerics: FORTRAN, IEEE FP, Matlab, loop nest optim.
– AI: theorem proving, machine learning, search
– DB: SQL, persistent objects, modern linkers
– Networking: packet filters, protocols, even Ruby on Rails
– Graphics: OpenGL, LaTeX, PostScript, even Logo (= LISP)
– Security: buffer overruns, .net, bytecode, PCC, …
– Software Engineering: bug finding, refactoring, types, ...

Overarching Theme

• I assert (and shall convince you) that

• PL is one of the most vibrant and active
areas of CS research today
– It has theoretical and practical meatiness
– It intersects most other CS areas

• You will be able to use PL techniques in
your own projects

Goal #1
•Learn to use advanced
PL techniques

Useful Complex Knowledge

• A proof of the fundamental theorem of
calculus

• A proof of the max-flow min-cut theorem
• Nifty tree node insertion (e.g., B-Trees,

AVL, Red-Black)
• The code for the Fast Fourier Transform
• And so on …

No Useless Memorization

• I will not waste your time with useless
memorization

• This course will cover complex subjects
• I will teach their details to help you

understand them the first time
• But you will never have to memorize

anything low-level
• Rather, learn to apply broad concepts

Goal #2
•When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Story: The Clash of Two Features

• Real story about bad programming
language design

• Cast includes famous scientists
• ML (’82) is a functional language with

polymorphism and monomorphic
references (i.e. pointers)

• Standard ML (’85) innovates by adding
polymorphic reference

• It took 10 years to fix the “innovation”

Polymorphism (Informal)

• Code that works uniformly on various types
of data

• Examples of function signatures:
length : list int (takes an argument of type

“list of ”, returns an integer, for any type)

head : list

• Type inference:
– generalize all elements of the input type that

are not used by the computation

References in Standard ML
• Like “updatable pointers” in C
• Type constructor: ptr

– x : ptr int === “x is a pointer to an integer”

• Expressions:
alloc : ptr (allocate a cell to store a)
*e : when e : ptr (read through a pointer)

*e1 := e2 with e1 : ptr and e2 :
 (write through a pointer)

• Works just as you might expect ...

Polymorphic References:
A Major Pain

Consider the following program fragment:
 Code

 fun id(x) = x
 val c = alloc id

 print (*c) (“hi”)

 print (*c) (5)

Polymorphic References:
A Major Pain

Consider the following program fragment:
 Code

 fun id(x) = x
 val c = alloc id

 fun inc(x) = x + 1

 *c := inc

 print (*c) (6)

Polymorphic References:
A Major Pain

Consider the following program fragment:
 Code

 fun id(x) = x
 val c = alloc id

 fun inc(x) = x + 1

 *c := inc

 (*c) (“hi”)

Polymorphic References:
A Major Pain

Consider the following program fragment:
 Code Type inference

 fun id(x) = x id : (for any)

 val c = alloc id c : ptr () (for any)

 fun inc(x) = x + 1 inc : int int

 *c := inc Ok, since c : ptr (int int)

 (*c) (“hi”) Ok, c : ptr (string string)

Reconciling Polymorphism
and References

• Type system fails to prevent a type error!
• Common solution:

– value restriction: generalize only the type of
values!
• easy to use, simple proof of soundness

• X Features) X2 Complication

• To see what went wrong we needed to
understand semantics, type systems,
polymorphism and references

Story 2: Java Bytecode Subroutines

• Java bytecode programs contain subroutines (jsr)
that run in the caller’s stack frame (why?)

• jsr complicates the formal semantics of bytecodes
– Several verifier bugs were in code implementing jsr
– 30% of typing rules, 50% of soundness proof due to jsr

• It is not worth it:
– In 650K lines of Java code, 230 subroutines, saving 2427

bytes, or 0.02%

– 13 times more space could be saved by renaming the
language back to Oak

• [In 1994], the language was renamed “Java” after a trademark
search revealed that the name “Oak” was used by a
manufacturer of video adapter cards.

Recall Goal #2
•When (not if) you design
a language, it will avoid
the mistakes of the past
and you’ll be able to
describe it formally

Goal #3
•Understand current PL
research (PLDI, POPL,
OOPSLA, TOPLAS, …) and
technology transfer (MS,
Intel, ...)

Final Goal: Fun

Q: Books (730 / 842)

• This 1960 Daniel Keyes sci-fi novel
is told as a "progris riport" from the
point-of-view of Charlie Gordon as
he takes an experimental
intelligence-enhancing treatment.
The treatment is temporary. The
book won the Hugo and Nebula
awards.

Q: Computer Science

• This Sri Lanka-born, British computer scientist is
best known for his development of QuickSort, a logic
for verifying program correctness, the monitor
approach to mutual exclusion, and the formalism of
Communicating Sequential Processes. In 2009 he
apologized for inventing the null reference:
– I call it my billion-dollar mistake. It was the invention of the null

reference in 1965. At that time, I was designing the first comprehensive
type system for references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should be absolutely
safe, with checking performed automatically by the compiler. But I
couldn't resist the temptation to put in a null reference, simply because
it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years.

Prerequisites
• Undergraduate

PL/compilers
course?
– No

• “Mathematical
maturity”

Assignments
• Short Homework Assignments (5)
• Long Homework Assignment (1)
• Daily Reading (1-2 papers per class)
• Final Project

Homework Problem Sets

• Some material can be “mathy”
• Much like Calculus, practice is handy
• Short: ~3 theory + 1 coding per HW
• You have one week to do each one

– Usually available in advance ...
• Long: analysis of real C programs
• NB: I will be evaluating your English

prose.

Final Project
• Literature survey, implementation

project, or research project
• Write a 5-page paper (akin to PLDI)
• On the topic of your choice

– I will help you find a topic (many
examples)

– Best: integrate PL with your current
research

Reading Quizzes: Let's Vote!

• A common perception:
– If I never check, graduate students will not do

the reading.

• A related desire:
– Graduate students often wish that someone

would make them do the reading.

• Proposal:
– “One Word” reading quizzes

Piazza Forum

• Ask questions about assignments
• Compare concerns about papers

• https://piazza.com/class/j6zcp05jq6r2k6

https://piazza.com/class/j6zcp05jq6r2k6

How Hard Is This Class?

This Shall Be Avoided

In 1930, the Republican-controlled House of Representatives, in an effort to
alleviate the effects of the... Anyone? Anyone? ... the Great Depression,
passed the ... Anyone? Anyone? The tariff bill? The Hawley-Smoot Tariff Act?
Which, anyone? Raised or lowered? ... raised tariffs, in an effort to collect
more revenue for the federal government. Did it work? Anyone? Anyone know
the effects?

Key Features of PL

Programs and Languages

• Programs
– What are they trying to do?
– Are they doing it?
– Are they making some other mistake?
– Were they hard to write?
– Could we make it easier?
– Should you run them?
– How should you run them?
– How can I run them faster?

Programs and Languages

• Languages
– Why are they annoying?

– How could we make them better?

– What tasks can they make easier?

– What cool features might we add?

– Can we stop mistakes before they happen?

– Do we need new paradigms?

– How can we help out My Favorite Domain?

Common PL Research Tasks

• Design a new language feature
• Design a new type system / checker
• Design a new program analysis
• Find bugs in programs
• (Help people to) Fix bugs in programs
• Transform programs (source or assembly)
• Interpret and execute programs
• Prove things about programs
• Optimize programs

Grand Unified Theory
• Design a new type system
• Your type-checker becomes a bug-finder

– No type errors) proof that program is safe

– Type error) bug may exist in program
• Fault localization and automated program repair

• Design a new language feature
– To prevent the sort of mistakes you found

• Write a source-to-source transform
– Your new feature now works on existing code

EECS 590 - Core Topics
• Model Checking
• Operational semantics
• Provers and proofs
• Type theory
• Verification conditions
• Symbolic Execution
• Invariant Detection
• Abstract interpretation
• Machine Learning
• Lambda Calculus

Special Topics

• Communications and Concurrency
• Fault Localization, Bug Isolation
• Automated Program Repair

• What do you want to hear about?

Weimer's Research Group
• I am looking to pick up a new PhD student
• Take Grad PL and do well
• Pick an ambitious semester project
• Expectations: 1-2 new submissions / year

– Kinga: 1 journal + 5 conf + PhD in 4 years, now professor at GMU

– Ray: 1 journal + 8 conf (1 best paper) + research internship + grant
in 6 years, now at Google

– Pieter: 2 journal + 9 conf (1 best paper) + 3 research internships in 6
years, now at Facebook

– Claire: 4 journal + 7 conf (3 best papers) + research internship in 6
years, now a professor at CMU

66

First Topic: Model Checking
• Verify critical properties of software or find bugs
• Take an important program (e.g., a device driver)
• Merge it with a property (e.g., no deadlocks, asynchronous

IRP handling, BSD sockets, database transactions, …)
• Transform the result into a boolean program

– Same control flow, but only boolean variables

• Use a model checker to explore the resulting state space
– Result 1: program provably satisfies property
– Result 2: program violates property right here on line 92,376!

67

Example Program

Is this program correct?Example () {
 do{
 lock();
 old = new;

q = q->next;
 if (q != NULL){
 q->data = new;

 unlock();
 new ++;
 }
 } while(new != old);
 unlock();
 return;
}

Example () {
 do{
 lock();
 old = new;

q = q->next;
 if (q != NULL){
 q->data = new;

 unlock();
 new ++;
 }
 } while(new != old);
 unlock();
 return;
}

68

Example Program

Is this program correct?

What does correct
mean?
Doing no evil?

Doing some good?

How do we determine if
a program is correct?

Example () {
 do{
 lock();
 old = new;

q = q->next;
 if (q != NULL){
 q->data = new;

 unlock();
 new ++;
 }
 } while(new != old);
 unlock();
 return;
}

Example () {
 do{
 lock();
 old = new;

q = q->next;
 if (q != NULL){
 q->data = new;

 unlock();
 new ++;
 }
 } while(new != old);
 unlock();
 return;
}

69

Verification by Model Checking

1. (Finite State) Program

2. State Transition Graph

3. Reachability

Example () {
1: do{
 lock();
 old = new;

q = q->next;
2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }
4: } while(new != old);
5: unlock();
 return;
}

Example () {
1: do{
 lock();
 old = new;

q = q->next;
2: if (q != NULL){
3: q->data = new;

 unlock();
 new ++;
 }
4: } while(new != old);
5: unlock();
 return;
}

- Pgm ! Finite state model

- State explosion

+ State Exploration

+ Counterexamples

Precise [SPIN, SMV, Bandera, JPF]

For Our Next Exciting Episode
• See webpage under “Lectures”
• Read the two articles
• Peruse the HW and Project pages

	Programming Languages Topic of Ultimate Mastery
	Reasonable Initial Skepticism
	Today’s Class
	Meta-Level Information
	What Have You Done For Us Lately?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Parts of Computer Science
	Programming Languages
	Overarching Theme
	Goal #1
	Useful Complex Knowledge
	No Useless Memorization
	Goal #2
	Story: The Clash of Two Features
	Polymorphism (Informal)
	References in Standard ML
	Polymorphic References: A Major Pain
	Slide 39
	Slide 40
	Slide 41
	Reconciling Polymorphism and References
	Story: Java Bytecode Subroutines
	Recall Goal #2
	Goal #3
	Final Goal: Fun
	Q: Books (730 / 842)
	Slide 48
	Prerequisites
	Assignments
	Homework Problem Sets
	Final Project
	Slide 53
	Slide 54
	How Hard Is This Class?
	This Shall Be Avoided
	Key Features of PL
	Programs and Languages
	Slide 59
	Common PL Research Tasks
	Grand Unified Theory
	CS 615 - Core Topics
	Special Topics
	Slide 64
	Slide 65
	Big Example #X: SLAM
	Verification by Model Checking
	Slide 68
	Slide 69
	For Our Next Exciting Episode

