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● Coq
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● On the one hand, Coq can seem “way out 
there”

● On the other hand, Coq can seem like a 
natural unification of every class topic
● Theorem proving, type systems, lambda calculus, 

dependent types, polymorphism, truth vs. 
provability, small-step opsem and normal forms, 
etc. 
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Curry-Howard Isomorphism

● There is a direct equivalence between 
computer programs and mathematical proofs

● The (Intuitionistic) Natural Deduction Proof 
System can be directly interpreted as the 
Typed Lambda Calculus [Howard, 1969]

● “A proof is a program, and the formula it 
proves is the type for the program.”

● How?
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Curry-Howard Correspondences

Logic Programming

Implication Function Type

Conjunction Product Type

Disjunction Sum Type

True Formula Unit Type

False Formula Bottom Type

Hypotheses Free Variables

Implication Elimination Application

Implication Introduction Abstraction 

Universal Quantification Generalized Product Type (Π)

Existential Quantification Generalized Sum Type (Σ)

Natural Deduction Type System for Lambda 
Calculus
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One Example

● Consider: P  (Q  P)→ →
● It is an axiom (tautology) in logic

P Q Q → P P → (Q → P)

T T T T

T F T T

F T F T

F F T T
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One Example

● Consider: P  (Q  P)→ →
● It is an axiom (tautology) in logic

● So a program exists with type σ  (→ τ  →σ)

P Q Q → P P → (Q → P)

T T T T

T F T T

F T F T

F F T T
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Curry-Howard Correspondence 2



 Westley Weimer 9

Constructive Logic

● In Constructive (or Intuitionistic) Logic a 
statement is only true if there is a 
constructive proof for it

● Competing Philosophies:
● Formalism. A statement is either true or false 

regardless of whether we have evidence.            
Thus P || !P (excluded middle).                     
Thus !!P  P (double negation elim). → [Hilbert]

● Intuitionism. A statement is only true if there is a 
proof for it. [LEJ Brouwer] 
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Intuition Was Radical

● "At issue in the sometimes bitter disputes was 
the relation of mathematics to logic, as well 
as fundamental questions of methodology, 
such as how quantifiers were to be construed, 
to what extent, if at all, nonconstructive 
methods were justified, and whether there 
were important connections to be made 
between syntactic and semantic notions."
● Dawson's biography of Godel
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Intuitionism Was Radical 2

● "Taking the principle of excluded middle [P or 
not P] from the mathematician would be the 
same, say, as proscribing the telescope to the 
astronomer or to the boxer the use of his fists. 
To prohibit existence statements and the 
principle of excluded middle is tantamount to 
relinquishing the science of mathematics 
altogether."
● Hilbert
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Constructive Implications

● In a constructive logic, you do not have
● Excluded Middle: P || !P
● Double Negation Elimination: !!P  P→

● However, you do have the existence property
● The existence property or witness property is 

satisfied by a theory if, whenever a sentence 
( x)A(x) is a theorem, where A(x) has no other ∃
free variables, then there is some term t such that 
the theory proves A(t)



 Westley Weimer 13

Lambda Cube
[Barendregt, 1991]
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Lambda Cube
[Barendregt, 1991]
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Calculus of Inductive Constructions

● It is a Type Theory and Programming Language 
(higher-order typed lambda calculus)

● Also a Foundation for Mathematics
● It is Strongly Normalizing

● Every sequence of rewrites terminates with a 
normal form

● That is, every program terminates
● Not provable inside the the system itself [Godel]
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Aside: Theorem Provers and ML

● “Historically, ML was conceived to develop 
proof tactics in the LCF theorem prover 
(whose language, pplambda, a combination of 
the first-order predicate calculus and the 
simply-typed polymorphic lambda calculus, 
had ML as its metalanguage).”

● Compare: SQL for Database Queries
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Aside: Theorem Provers and ML 2

● “In ML the various parts of the object language---terms, 
declarations, proofs and rules---are data types. By defining a 
formal metalanguage we have made concrete the structure 
and elements of the object language. We can then write ML 
programs that manipulate objects of the object language. 
Thus, for example, we can write a program to return the 
subterms of a term or one that substitutes a term for a free 
variable in a term. More importantly, we can write ML 
functions which search for or transform proofs. We can then 
use such automated  proof techniques and theorem-proving 
heuristics, tactics, while writing proofs.

● A tactic is a function written in ML which partially automates 
the process of theorem proving [ … ].”
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Coq

● Coq is a dependently typed functional 
programming language based on the calculus 
of constructions

● Associated with an interactive theorem prover
● Influential author: Thierry Coquand

● “CoC”  “Coq” (French for rooster)  →
● 2013 ACM Software System Award
● Associated with the CompCert project
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Coq's Magic Power

● Recall the existence property: whenever a 
sentence ( x)A(x) is a theorem, where A(x) has ∃
no other free variables, then there is some 
term t such that the theory proves A(t)

● So if you can prove “There exists x such that x 
is a function that sorts a list of numbers” in 
Coq

● Then Coq will produce a program x doing so
● Coq will write the source code to “sort” for you!
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This Merits Repeating

● Because Coq is constructive and because 
proofs are related to programs … 

… if you can prove something in Coq, you get 
the corresponding program for free!

● “An interesting additional feature of Coq is 
that it can automatically extract executable 
programs from specifications, as either 
Objective Caml or Haskell source code.”
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Coq Example: Naturals

● “Proof development in Coq is done through a 
language of tactics that allows a user-guided 
proof process. [ … ] the curious user can check 
that tactics build lambda-terms.”

● Coq “data type”: 

  Inductive nat : Set :=

  | 0 : nat

  | S : nat -> nat.
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Coq Example: Lists 

● Naturals:

  Inductive nat : Set :=

  | 0 : nat

  | S : nat -> nat.

● Lists with element type A:

  Inductive list (A:Type) : Type :=

  | nil : list A

  | cons : A -> list A -> list A.
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Coq Example: Function

● Addition of Naturals:

Fixpoint plus (n m:nat) {struct n} : nat :=

  match n with

  | O => m

  | S p => S (plus p m)

  end

where "p + m" := (plus p m).
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Coq Example: Function

● Addition of Naturals:

Fixpoint plus (n m:nat) {struct n} : nat :=

  match n with

  | O => m

  | S p => S (p + m)

  end

where "p + m" := (plus p m).

Which structure are we
inducting on? Recall:
strongly normalizing!
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Coq Example: 
Proof that “length” is correct

Inductive seq : nat -> Set :=

| niln : seq 0

| consn : forall n : nat, nat -> seq n -> seq (S n).

Fixpoint length (n : nat) (s : seq n) {struct s} : nat := 

  match s with

  | niln => 0

  | consn i _ s' => S (length i s')

  end.

Each sequence is
a list that also stores
its own length!

What if I try to recompute
the length recursively?
will I get the same answer
as the “stored” length?
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Coq Example: A Theorem

Theorem length_corr : 

  forall (n : nat) (s : seq n),

    length n s = n.

● Recall: Coq is an interactive theorem prover!

Proof.

● To prove “forall n”, we say “introduce an 
arbitrary n about which we know nothing”

    intros n s.
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

  Intros n s. 

● Now we decide to reason by [structural] induction 
on s. It has two cases, niln and consn, so we have 
two subgoals.

    induction s.
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

  Intros n s. 

    induction s.

● We are in the case where s is niln. We simply 
substitute that into the body of length … 
Fixpoint length (n : nat) (s : seq n) {struct s} : nat := 

  match s with  | niln => 0  | consn i _ s' => S (length i s')

  end.

● … and get length 0 niln = 0. 

      simpl.
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

  Intros n s. 

    induction s.

      simpl.

● Now we have to prove the equality between 
length n s and n. But currently length 0 niln = 0, 
so we just have to prove 0 = 0. 

      trivial.
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s. 

    induction s.

      simpl. Trivial. (* base case *) 

● Now the inductive case where s = consn n e s. We 
again simply substitute in the body of length … 
Fixpoint length (n : nat) (s : seq n) {struct s} : nat := 

  match s with  | niln => 0  | consn i _ s' => S (length i s')

… but we also have an inductive hypothesis for 
any smaller sequence s'. 

      simpl.
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s. 

    induction s.

      simpl. Trivial. (* base case *) 

      simpl. 

● The inductive hypothesis has type length n s = n 
(for smaller sequences). We apply it! 

      rewrite Ihs.

● This rewrites length i s' into n 
  match s with  | niln => 0  | consn i _ s' => S (length i s')
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Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s. 

    induction s.

      simpl. Trivial. (* base case *) 

      simpl. rewrite IHs. 

● Now the goal is S n = S n, which is trivial.

      Trivial. (* inductive step *) 

● And now both sub-cases are handled, so we close off 
the inductive case analysis and forall-introductions:

   Qed.
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That Interactive Session Generates 
A Machine-Checkable Proof

● Coq is an interactive theorem prover. Here's the proof: 

  length_corr =

    fun (n : nat) (s : seq n) =>

      seq_ind (fun (n0 : nat) (s0 : seq n0) => length n0 s0 = n0) 

        (refl_equal 0)

        (fun (n0 _ : nat) (s0 : seq n0) (IHs : length n0 s0 = n0) =>

          eq_ind_r 

            (fun n2 : nat => S n2 = S n0) 

            (refl_equal (S n0)) IHs) n s

  : forall (n : nat) (s : seq n), length n s = n
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Generating OCaml

● Consider:

forall b:nat, b > 0 -> forall a:nat, diveucl a b
● where diveucl is a [dependent] type (i.e., a 

specification) for the pair of the quotient and 
the modulo

● That is, we are saying “there exists a function 
that takes all naturals a and b with b>0 and 
returns the euclidean division of them”
● Once we prove that theorem, Coq will generate a 

correct OCaml implementation for us!
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type nat =| O | S of nat

type sumbool =| Left | Right

(** val sub : nat -> nat -> nat **)

let rec sub n m =

  match n with

  | O -> n

  | S k -> (match m with

            | O -> n

            | S l -> sub k l)

(** val le_lt_dec : nat -> nat -> sumbool **)

let rec le_lt_dec n m =

  match n with

  | O -> Left

  | S n0 -> (match m with

             | O -> Right

             | S m0 -> le_lt_dec n0 m0)

(** val le_gt_dec : nat -> nat -> sumbool **)

let le_gt_dec =

  le_lt_dec

type diveucl =

| Divex of nat * nat

(** val eucl_dev : nat -> nat -> diveucl **)

let rec eucl_dev n m =

  let s = le_gt_dec n m in

  (match s with

   | Left ->

     let d = let y = sub m n in eucl_dev n y in

     let Divex (q, r) = d in Divex ((S q), r)

   | Right -> Divex (O, m))
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Rosetta Stone

euclid(m,  n):

  r = m;

  q = 0;

  while (r >= n):

    r = r - n;

    q = q + 1;

  return (q,r);

let rec eucl_dev n m =

  let s = le_gt_dec n m in

  (match s with

   | Left ->

     let d = 

        let y = sub m n in

        eucl_dev n y in

     let Divex (q, r) = d in 

     Divex ((S q), r)

   | Right -> Divex (O, m))

(* Left means >= is true *)

(* Right: >= is false *)
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Further Resources

● Certified Programming with Dependent Types
● Adam Chlipala

http://adam.chlipala.net/cpdt/
● “A traditional hardcopy version is available 

from MIT Press, who have graciously agreed to 
allow distribution of free versions online 
indefinitely, minus the benefits of the Press' 
copy editing!”

● Outside of France, Adam is our leading Coq 
wizard … 

http://adam.chlipala.net/cpdt/
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