PL in the Broader
Research Community

EECS 590: Advanced Programming Languages
27. November 2017

Kevin Angstadt
M angstadt@umich.edu

COMPUTER SCIENCE
& ENGINEERING

Who am 1?

* Fourth-year PhD student (I did my first three years at UVA)
* Advised by Wes Weimer

* My Research: Programming Support for Emerging Hardware
Technologies

* | focus primarily on automata processing

* Developed two languages for automata applications (RAPID and MNRL)
* Automated techniques for adapting legacy code
* Compiler techniques for more efficient execution

* (You'll also find me tinkering with our group’s autonomous vehicles)

* | also spend a decent amount of time teaching and advising
undergraduates

Today’s Agenda

* Debuggers for Traditional and Non-Traditional Architectures
* High-Level Overview

Setting Breakpoints

Review of NFAs

Extending Breakpoints to Non-Traditional Architectures

Lifting Semantics to the Source Level

e Evaluating the Effectiveness of Debuggers

* Discussion: Presenting PL in the Broader Research Community
* Remember those three papers for today?

Debugging Support for
Traditional and Non-

Traditional Architectures

EECS 590: Advanced Programming Languages
27. November 2017

Kevin Angstadt
M angstadt@umich.edu

COMPUTER SCIENCE
& ENGINEERING

“If debugging is the process of
removing bugs, then programming
must be the process of putting
them In.”

Edsger Dijkstra

This lecture may feel very intuitive. That's
quite alright! There are no real tricks with the

basics of debugging; it's just something you
may not have seen before.

Localizing/Understanding Bugs

» Goal: Print out information that helps us to identify problem points

e Two different approaches:
 Compile the print-outs directly into the program source

* Create a tool that can attach to an executing process, stop the process,
and inspect program state

 What are pros/cons of each approach?

* Non-traditional architectures do not always support “printing out
values”

“A [debugger is a] program designhed to help
detect, locate, and correct errors in another
program. It allows the developer to step

through the execution of the process and its
threads, monitoring memory, variables, and

other elements of process and thread context.”
MSDN Windows Dev Center

(https://msd n.microsoft.com/en-us/libra ry/windows/desktop/m3679306(v=vs.85).aspx)

Multi-Step Process

1. First, we must extract current program state from
the processor

2. Then, we lift the extracted state to the semantics
of the source language

Machine Language Debugger (Traditional)

* Operates at the machine/assembly code level
* |nstructions are show vis disassembly

* Allows a user to inspect the values of registers and memory

e Supported features:
 Attach to a process (requires some level of OS support; e.g., ptrace)

* Set breakpoints (can be conditional) and watchpoints
e Single-step through instructions

Breakpoints via Signhals

* A signal is an asynchronous notification sent to a process about an

event
» User presses ctrl-c, Runtime exceptions, OS notifications

* Programs can implement signal handlers

* A signal handler is a function that gets executed when a signal occurs
during the execution of a program

* Add a breakpoint by changing the assembly instructions
 We can’t really insert instructions...why?

Setting a Breakpoint

* |[dentify location in program for breakpoint

e Store old instruction

* Replace with an exception (or something to generate a signal)
e Signal handler replaces instruction

* Prompt for debugging

Additional Features

* How do we inspect memory/registers?
* Conditional breakpoints?

* Watchpoints? (program execution stops when a memory location is
read/written)

* Single-stepping?

 Hardware support for breakpoints/watchpoints?

What assumptions did we make?

* Ability to generate/handle signals
* Ability to dynamically poke memory
* Processor is executing assembly/machine instructions

These assumptions do not always hold for
non-traditional architectures!

What if we can’t dynamically interact?

* Replay (time travel) debugging is our friend!

e How It works:

* Run the program and record memory/registers every X cycles

* "Replay” the program using the snapshots and simulation (or possibly
direct execution on the hardware)

* Replay can be particularly helpful for non-traditional architectures
(e.g., wireless sensor networks, accelerators, etc.)

* Also allows for stepping “backward” in a debugger

What if there are no assembly instructions?

* Not all architectures execution assembly instructions (e.g., FPGAS)

* We will focus on automata processing architectures

* Rather than using assembly instructions, programs are executed as state
machines (NFAs or DFAs), which process a sequence of data

* Recent research has found that a wide range of applications can be
translated to the automata processing paradigm (e.g., NIDS, part-of-speech
tagging, random forests, association rule mining, high-speed physics
particle tracking, etc.)

 First, the requested review of NFAs...

What is a Finite Automaton?

A finite automaton consists of
* An input alphabet, .
e A set of states, O
* A starting state, q,
* A set of accepting states, F&Q
* A transition function, transition(input, q;) = q;

Finite Automaton Example

)

Check: 1110 Check: 101

Start

- M

Optimization: Non-determinism

* Can be in multiple states at one time
e Can start in more than one state
* Transition function returns a set of states
* (e-transitions: we’'ll ignore these, but you'll see them in literature)

« Why?
* Exponentially more compact than a (D)FA
* Often easier to generate
 Allow for exploitation of parallelism in hardware

What does this find?

Start H

Start @ ’ ’ a @

00,0 -

Micron’s Automata Processor

Altera Stratix IV GX230 FPGA UDIMM socket
M2

JTAG header

AS header

|
SODIMM socke
M4 0
SODIMM socket

Reset button

M4_1

SODIMM socket
M3 0
SODIMM socket

PCle Gen2 x8 2GB DDR3 M3_1
Connector M1

Figure courtesy of Micron

- M

Exploiting DRAM

Row Address
(Memory Location)

Row Access results in one word being retrieved from memory

Using Bit-Parallelism with NFAs

* Bit-parallel closure: given a set of states, what is the set of
reachable states?

* Symbol closure: given an input symbol, what states accept this
symbol?

* Transition function: intersection (bitwise AND) of these two closures

Bit-Parallel Execution

Input Stream: 1011 » Bit-parallel closure({start}):

* {do, 01, 5}

* Symbol closure(1):
* {0os 02, Q4)

* Bit & Symbol:

Start * {0o, d5)

Bit-Parallel Execution

Input Stream: 1011 « Bit-parallel closure({q,, d.}):

* {dg, A1y Qs A4l

* Symbol closure(O):
* {do, 4, A3}

* Bit & Symbol:

Start * {0o, a4}

Bit-Parallel Execution

Input Stream: 1011 « Bit-parallel closure({q,, d.}):

* {4y, A1, 0> A3}

* Symbol closure(1):
* {do, A2s 04}

* Bit & Symbol:

Start * {dos Uos Ay}

Bit-Parallel Execution

Input Stream: 1011 « Bit-parallel closure({q,, d.}):

* {dg, A1y Qs A4l

* Symbol closure(1):
* {do, A2s 04}

* Bit & Symbol:

Start * {do, A4}

REPORT!

Architectural Design

* Memory Array (Symbol Closure)
256 Rows (i.e. 256 Input Characters)
49,152 Columns (i.e. 49,152 States)

* Routing Matrix (Bit-Parallel Closure)
e Saturating Counters
* Boolean Gates

The AP at a High Level

Automata Processor

Routing
Matrix

Row Address
(Input Symbol)

JV {V A4 JY 47 A\ 4 JV A2 4 JV A\ 4 JV \ A 4 JV v Vv JV {V A4 JV {V v JY 47 A\ 4 JV Yy V. V JV A\ 4 JV \ A 4 JV \AA / JV {V v lV {V v JV 47 A\ 4 JV A\ 4 JV A\ 4 JV A A 4 JV A2 4

Row Access results in 49,152 match & route operations

Executin Mg NFA in DRAM

* Columns in DRAM store STE labels (Each STE is a single column)

» Reconfigurable routing matrix connects the STEs
Columns with “1”:

SEHERER I22Z3 o
Input: © [5[5|5|G plelelelsl £ STEs that accept
. I Row Enable (2"1) | Mb ol1 dO 1l 1lolo l-I S)
(common) (2°-1) —
Drives a Row — : _g Input symbol
) (common) (2°-2) (]
3 Row Enable (2°-3 Mo (IZISISIS glglsizils t&\l)
_— ow - 4
&2 —eammon 2| @9 RIS ——EIRISIRISE <€
Y- H I H 7 iz o
o, 85 0| [lEfele slafefelz| S
Symbol” |3 2 * ol H H H B H HH B
$a ° ° |31313]3 SBISIRIE| &2
] w
-
B —> = _
{p)
Ro&;?::::)(o!) :«(1)!)) > ﬁ ACt'Ve States
State Igz:\i::f:)cmck Logic § % % § > § § § § §,]
I

Active States for Next
Clock Cycle

Meanwhile, Back at the Ranch:
Multi-Step Process

1. First, we must extract current program state from
the processor

2. Then, we lift the extracted state to the semantics
of the source language

What are we trying to do?

* We want to set breakpoints in NFAs and inspect their state

* |n this context, what is a breakpoint?

* CPU: every clock cycle (conceptually) an instruction is executed.
Breakpoints are set to trigger when an instruction is executed

* AP: every clock cycle (conceptually) an input data symbol is consumed by

the NFAs. Breakpoints are set to trigger after a given number of symbols
are consumed.

 What is program state on an automata processor?

Lifting the Semantics

* We now have a mechanism for stopping program execution and
inspecting the state of the underlying processor

* Many (most?) applications are written using a high-level
programming language that is compiled to target processor’s
Instruction set/computational representation

* What is a high-level language for automata processing?

* What is the relationship between processor state and the source-
level program?

- M

Debugging Tables (Traditional)

 Compiler emits tables mapping source-level expressions to
assembly instructions
* For every line, what assembly range does it map to?
* For every line, what variables are in scope and where do they live?

* Breakpoint insertion: look up location in the debugging table and
set a corresponding breakpoint in the assembly

 What happens if we optimize code?

Debugging Tables for Automata Processing

* Very similar to the CPU approach...
* For every line, which NFA states does it map to?
* For every line, what variables are in scope and what are their values (or

which hardware resources hold their values)?
* Breakpoints on the input data remain the same for high-level
languages
* We can set breakpoints on lines of code by leveraging reporting
signals to identify offsets in the input stream where the line of code
IS executing

- M

RAPID Program

macro helloWorld() {
whenever(ALL_INPUT == input()) {
foreach(char ¢ : "Hello") {
c == input();
}

‘input() =
foreach(char ¢ : "world") {
c == input(); |:> RAPID

} Compiler

report;
}
}
network() {
helloWorld();

} Machine B

d d 4 4

~ Reports occur

Accelerator processes data with Machine B .
when line
is executed

Machine A

Input breakpoints

Accelerator processes data with Machine A :
inserted at reports

« M

Putting it all together

* Developer writes program in high-level language (e.g., RAPID) for
automata processing

* The compiler generates NFAs for execution and debugging tables with
mappings between source lines and NFA states

* During program execution, the developer observes abnormal behavior
after executing X bytes

* The debugging system processes X bytes and extracts the state vector

* Control is transferred to an interactive debugger where the recorded
state and debugging tables are used to inspect the state of the program

Standard Program Execution

*

»

Accelerator processes data Abnormal behavior observed

Debugging Execution

> “_- %(_/ \
Accelerator processes data ‘\ N User-defined breakpoint
et 'System—calculated breakpoint
A“ \\\\\\\\\\\\
> R >
AN

Simulat M&pp\jnt ,,,,,,,,,,,,,
Accelerator 152362825 Simulator & L=
state vector p data state vector .

Interactive debugging session

Do these tools actually help?

Input Data Stream:

L] [
Input Stream: WFF W50 4B 03 \x04 W00 01 06 x50 4B \x05 \x06 \x53 W00 W5C W34 Wx42 W50 Ww4B x50 4B \x05 \x06
Input Offset: o 1 2 3 4 s 6 7 s 9 10 u 12 1 1 15 1 7 1 1 2 2 2 -
Report: r r pro eSSIOI Ia eve OperS
Use the buttons below to step through the data stream. Currently active lines of the RAPID

Participants shown 10 RAPID
programs with seeded defects

Program State

. .
Each active line of the RAPID program has associated program state. In-scope variables .
are listed below.

Line: 2

In-Scope Variables:

* 5 have no debugging information

findZip : macro

S Asked to identify location of bug
In source code and describe

- e Recorded time needed to

perform each task

« M

Human Study Results

* Our tool did not (statistically significantly) decrease the time
needed to localize faults in RAPID programs

* Our debugging tool improves a user’s fault localization accuracy for
RAPID programs in a statistically significant manner (p = 0.013)

* Debugging information for RAPID programs helps novices and
experts alike (there is no interaction between developer experience
and the ability to interpret debugging information)

What about other non-traditional archs?

* Macrodebugging: replay debugging of event traces in wireless
sensor networks

* GPU stream programs: record program state on the GPU and
inspect after program execution

* Non-Intrusive FPGA Debugger (NIFD): GDB interface to FPGA
application that interprets configure information to provide
breakpoints and interactive debugging

