
PL in the Broader
Research Community
EECS 590: Advanced Programming Languages
27. November 2017

Kevin Angstadt
angstadt@umich.edu

1

• Fourth-year PhD student (I did my first three years at UVA)
• Advised by Wes Weimer
• My Research: Programming Support for Emerging Hardware

Technologies
• I focus primarily on automata processing
• Developed two languages for automata applications (RAPID and MNRL)
• Automated techniques for adapting legacy code
• Compiler techniques for more efficient execution
• (You’ll also find me tinkering with our group’s autonomous vehicles)

• I also spend a decent amount of time teaching and advising
undergraduates

Who am I?

2

• Debuggers for Traditional and Non-Traditional Architectures
• High-Level Overview
• Setting Breakpoints
• Review of NFAs
• Extending Breakpoints to Non-Traditional Architectures
• Lifting Semantics to the Source Level
• Evaluating the Effectiveness of Debuggers

• Discussion: Presenting PL in the Broader Research Community
• Remember those three papers for today?

Today’s Agenda

3

Debugging Support for
Traditional and Non-
Traditional Architectures
EECS 590: Advanced Programming Languages
27. November 2017

Kevin Angstadt
angstadt@umich.edu

“If debugging is the process of
removing bugs, then programming
must be the process of putting
them in.”
Edsger Dijkstra

5

“If debugging is the process of
removing bugs, then programming
must be the process of putting
them in.”
Edsger Dijkstra

6

This lecture may feel very intuitive. That’s
quite alright! There are no real tricks with the
basics of debugging; it’s just something you

may not have seen before.

• Goal: Print out information that helps us to identify problem points
• Two different approaches:
• Compile the print-outs directly into the program source
• Create a tool that can attach to an executing process, stop the process,

and inspect program state

• What are pros/cons of each approach?
• Non-traditional architectures do not always support “printing out

values”

Localizing/Understanding Bugs

7

“A [debugger is a] program designed to help
detect, locate, and correct errors in another
program. It allows the developer to step
through the execution of the process and its
threads, monitoring memory, variables, and
other elements of process and thread context.”
MSDN Windows Dev Center
(https://msdn.microsoft.com/en-us/library/windows/desktop/ms679306(v=vs.85).aspx)

8

1. First, we must extract current program state from
the processor

2. Then, we lift the extracted state to the semantics
of the source language

Multi-Step Process

9

• Operates at the machine/assembly code level
• Instructions are show vis disassembly

• Allows a user to inspect the values of registers and memory
• Supported features:
• Attach to a process (requires some level of OS support; e.g., ptrace)
• Set breakpoints (can be conditional) and watchpoints
• Single-step through instructions

Machine Language Debugger (Traditional)

10

• A signal is an asynchronous notification sent to a process about an
event
• User presses ctrl-c, Runtime exceptions, OS notifications

• Programs can implement signal handlers
• A signal handler is a function that gets executed when a signal occurs

during the execution of a program

• Add a breakpoint by changing the assembly instructions
• We can’t really insert instructions…why?

Breakpoints via Signals

11

• Identify location in program for breakpoint
• Store old instruction
• Replace with an exception (or something to generate a signal)
• Signal handler replaces instruction
• Prompt for debugging

Setting a Breakpoint

12

• How do we inspect memory/registers?
• Conditional breakpoints?
• Watchpoints? (program execution stops when a memory location is

read/written)
• Single-stepping?
• Hardware support for breakpoints/watchpoints?

Additional Features

13

• Ability to generate/handle signals
• Ability to dynamically poke memory
• Processor is executing assembly/machine instructions

What assumptions did we make?

These assumptions do not always hold for
non-traditional architectures!

14

• Replay (time travel) debugging is our friend!
• How it works:
• Run the program and record memory/registers every X cycles
• ”Replay” the program using the snapshots and simulation (or possibly

direct execution on the hardware)

• Replay can be particularly helpful for non-traditional architectures
(e.g., wireless sensor networks, accelerators, etc.)
• Also allows for stepping “backward” in a debugger

What if we can’t dynamically interact?

15

• Not all architectures execution assembly instructions (e.g., FPGAs)
• We will focus on automata processing architectures
• Rather than using assembly instructions, programs are executed as state

machines (NFAs or DFAs), which process a sequence of data
• Recent research has found that a wide range of applications can be

translated to the automata processing paradigm (e.g., NIDS, part-of-speech
tagging, random forests, association rule mining, high-speed physics
particle tracking, etc.)

• First, the requested review of NFAs…

What if there are no assembly instructions?

16

What is a Finite Automaton?
•A finite automaton consists of
•An input alphabet, ∑
•A set of states, Q
•A starting state, q0
•A set of accepting states, F⊆Q
•A transition function, transition(input, qi) = qj

17

Finite Automaton Example

1 0

Start

Check: 1110 Check: 101
18

Optimization: Non-determinism

• Can be in multiple states at one time
• Can start in more than one state
• Transition function returns a set of states
• (ε-transitions: we’ll ignore these, but you’ll see them in literature)

• Why?
• Exponentially more compact than a (D)FA
• Often easier to generate
• Allow for exploitation of parallelism in hardware

19

What does this find?

⇤

Dd

o n u

t

u

g

h

Start

Start

20

Micron’s Automata Processor

Figure courtesy of Micron

21

Exploiting DRAM

Row Access results in one word being retrieved from memory

Ro
w

 A
dd

re
ss

(M
em

or
y

Lo
ca

tio
n)

22

Using Bit-Parallelism with NFAs

• Bit-parallel closure: given a set of states, what is the set of
reachable states?
• Symbol closure: given an input symbol, what states accept this

symbol?
• Transition function: intersection (bitwise AND) of these two closures

23

Bit-Parallel Execution

⇤

0 0

1 1

Start

Start

Start

• Bit-parallel closure({start}):
• {q0, q1, q2}

• Symbol closure(1):
• {q0, q2, q4}

• Bit & Symbol:
• {q0, q2}q0

q1 q3

q2 q4

Input Stream: 1011

24

⇤

0 0

1 1

Start

Start

Start

Bit-Parallel Execution
• Bit-parallel closure({q0, q2}):
• {q0, q1, q2, q4}

• Symbol closure(0):
• {q0, q1, q3}

• Bit & Symbol:
• {q0, q1}q0

q1 q3

q2 q4

Input Stream: 1011

25

⇤

0 0

1 1

Start

Start

Start

Bit-Parallel Execution
• Bit-parallel closure({q0, q2}):
• {q0, q1, q2, q3}

• Symbol closure(1):
• {q0, q2, q4}

• Bit & Symbol:
• {q0, q2, q4}q0

q1 q3

q2 q4

Input Stream: 1011

26

⇤

0 0

1 1

Start

Start

Start

Bit-Parallel Execution
• Bit-parallel closure({q0, q2}):
• {q0, q1, q2, q4}

• Symbol closure(1):
• {q0, q2, q4}

• Bit & Symbol:
• {q0, q4}q0

q1 q3

q2 q4

Input Stream: 1011

REPORT!

27

Architectural Design

• Memory Array (Symbol Closure)
• 256 Rows (i.e. 256 Input Characters)
• 49,152 Columns (i.e. 49,152 States)

• Routing Matrix (Bit-Parallel Closure)
• Saturating Counters
• Boolean Gates

28

The AP at a High Level
Ro

w
 A

dd
re

ss
(In

pu
t S

ym
bo

l)

Row Access results in 49,152 match & route operations

Routing
Matrix

Automata Processor

29

Executing NFA in DRAM
• Columns in DRAM store STE labels (Each STE is a single column)
• Reconfigurable routing matrix connects the STEs

0 1 0 0 1 1 0 0 1
Input:
Drives a Row

1 1 0 0 0 0 0 1 1

Active States

Columns with “1”:
STEs that accept
input symbol

&
=

Active States for Next
Clock Cycle

30

1. First, we must extract current program state from
the processor

2. Then, we lift the extracted state to the semantics
of the source language

Meanwhile, Back at the Ranch:
Multi-Step Process

31

• We want to set breakpoints in NFAs and inspect their state
• In this context, what is a breakpoint?
• CPU: every clock cycle (conceptually) an instruction is executed.

Breakpoints are set to trigger when an instruction is executed
• AP: every clock cycle (conceptually) an input data symbol is consumed by

the NFAs. Breakpoints are set to trigger after a given number of symbols
are consumed.

• What is program state on an automata processor?

What are we trying to do?

32

• We now have a mechanism for stopping program execution and
inspecting the state of the underlying processor
• Many (most?) applications are written using a high-level

programming language that is compiled to target processor’s
instruction set/computational representation
• What is a high-level language for automata processing?

• What is the relationship between processor state and the source-
level program?

Lifting the Semantics

33

• Compiler emits tables mapping source-level expressions to
assembly instructions
• For every line, what assembly range does it map to?
• For every line, what variables are in scope and where do they live?

• Breakpoint insertion: look up location in the debugging table and
set a corresponding breakpoint in the assembly

• What happens if we optimize code?

Debugging Tables (Traditional)

34

• Very similar to the CPU approach…
• For every line, which NFA states does it map to?
• For every line, what variables are in scope and what are their values (or

which hardware resources hold their values)?

• Breakpoints on the input data remain the same for high-level
languages
• We can set breakpoints on lines of code by leveraging reporting

signals to identify offsets in the input stream where the line of code
is executing

Debugging Tables for Automata Processing

35

RAPID Program

RAPID
Compiler

Machine A

Machine B

Accelerator processes data with Machine B

Accelerator processes data with Machine A

Reports occur
when line
is executed

Input breakpoints
inserted at reports

Fig. 4: Transformation of a line breakpoint to an input breakpoint. Reports gen-
erated by STEs mapped to RAPID expressions determine input breakpoints.

to traditional CPU debugging, in which processor state is mapped expressions
in the input program using lookup tables generated at compile time [13].

We augment the RAPID compiler to produce debugging information, repre-
sented as a debugging automaton, (Q,⌃, �, S, F, id, d). The additional term, d,
is a mapping from NFA states to RAPID source locations and known program
variable state. The RAPID compiler (Section 3.3) employs a staged computation
model; the values of some variables are resolved at compile time and known at
the time of NFA state generation. These are the values stored in the mapping.

The compiler for the AP transforms an input automaton to a configuration
for the processor’s memory array and routing matrix (see Section 2.2). The com-
pilation process may result in multiple states being mapped to a single hardware
location (state merging) or a single state being mapped to multiple hardware
locations (state duplication) as a result of optimizations to better utilize avail-
able hardware resources (cf. debugging with optimizations [14]). The compiler
also produces a mapping, loc, from hardware locations to automaton state IDs.
This debugging technique can be directly extended to any underlying automata
processing engine that can provide this location mapping.

When an STE-level breakpoint is triggered, we determine the corresponding
location(s) in the original RAPID program by calculating

[

q2Qactive

d(id(loc(q)))

where Qactive is the set of active states extracted from the state vector. Due
to the inherent parallelism in RAPID programs, the locus control may be on

36

Putting it all together

• Developer writes program in high-level language (e.g., RAPID) for
automata processing
• The compiler generates NFAs for execution and debugging tables with

mappings between source lines and NFA states
• During program execution, the developer observes abnormal behavior

after executing X bytes
• The debugging system processes X bytes and extracts the state vector
• Control is transferred to an interactive debugger where the recorded

state and debugging tables are used to inspect the state of the program

37

Standard Program Execution

Debugging Execution

Accelerator processes data

Accelerator processes data

Abnormal behavior observed

N User-defined breakpoint
System-calculated breakpoint

Accelerator
state vector

Simulator
state vector

Simulator
processes

data

Mapping

Interactive debugging session

Fig. 3: An example debugging scenario. While executing the RAPID program,
abnormal behavior is observed deep into processing data. The user sets an input
breakpoint, and the debugging system sets an input breakpoint N symbols prior
for low-latency time-travel support. Data is processed on the hardware acceler-
ator until the input breakpoint is reached, the state vector is exported, and the
final N symbols are processed using a software automata simulator. The result-
ing state vector is then lifted to the semantics of the user-level RAPID program
and control is transferred to the interactive debugging session.

While the double compilation and execution steps do incur a minimum of a
2⇥ overhead7 for line breakpoints over execution containing no line breakpoints,
we note that current hardware supports this approach. A more e�cient approach
would be to support hardware-based debugging signals. On the AP, these could
be implemented similar to reporting events. These breakpoint signals could also
be supported on FPGA-based automata processing engines. Direct hardware
support obviates the need for processing the input data twice, significantly re-
ducing debugging overhead. This proposed breakpoint element would serve a
similar role as a hardware break- or watch-point in a general-purpose CPU [13].

4.4 Debugging of RAPID Programs

Following the capture of the state vector, our debugging system lifts the underly-
ing state to the semantics of the input RAPID program. Our approach is similar

7 Naively, processing of the input stream twice approximately doubles the execution
time. However, this does not consider the additional time needed to compile a second
automaton, reconfigure the AP, or process reporting events.

38

Do these tools actually help?

• ~60 participants (students and
professional developers)
• Participants shown 10 RAPID

programs with seeded defects
• 5 have interactive debugger
• 5 have no debugging information

• Asked to identify location of bug
in source code and describe
• Recorded time needed to

perform each task
39

• Our tool did not (statistically significantly) decrease the time
needed to localize faults in RAPID programs
• Our debugging tool improves a user’s fault localization accuracy for

RAPID programs in a statistically significant manner (p = 0.013)
• Debugging information for RAPID programs helps novices and

experts alike (there is no interaction between developer experience
and the ability to interpret debugging information)

Human Study Results

40

• Macrodebugging: replay debugging of event traces in wireless
sensor networks
• GPU stream programs: record program state on the GPU and

inspect after program execution
• Non-Intrusive FPGA Debugger (NIFD): GDB interface to FPGA

application that interprets configure information to provide
breakpoints and interactive debugging

What about other non-traditional archs?

41

