Advanced Programming Languages
Homework Assignment 1

Wes Weimer

Exercise 1: Bookkeeping. Indicate in a sentence or two how much time
you spent on this homework, how difficult you found it subjectively, and
what you found to be the hardest part. Any non-empty answer will receive
full credit. If you are working in pairs, each person must respond to this
prompt. If your uniquename is mst3k, upload a single ZIP file containing
mst3k.pdf (your answers to the written parts of this assignment) as well as
mst3k-hwl.ml and mst3k-example-imp-command (see below).

Exercise 2: Language Design. Comment on some aspect from Hoare’s
Hints On Programming Language Design that relates to your programming
experience. Provide additional evidence in favor of one his points and against
one of his points. Do not exceed three paragraphs. Both your ideas and also
the clarity with which they are expressed (i.e., your English prose) matter. 1
should be able to identify your main claim, the arguments you are bringing
to bear, and your conclusion. If you are working in pairs, each person must
complete this exercise separately.

Exercise 3: Simple Operational Semantics. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a di-
vision operator. Explain what changes must be made to the operational
semantics (big-step only). Write out formally any new rules of inference you
introduce.

Exercise 4: Language Feature Design. Consider the IMP language
with a new command construct “let x = e in ¢”. The informal semantics of
this construct is that the Aexp e is evaluated and then a new local variable
x is created with lexical scope ¢ and initialized with the result of evaluating
e. Then the command c is evaluated. We also extend IMP with a new
command “print e” which evaluates the Aexp e and “displays the result”
in some un-modeled manner but is otherwise similar to skip.
We expect (the curly braces are syntactic sugar):

1



}s
print x ;
print y

to display “3 2 1 5”.

e Extend the natural-style operational semantics judgment < ¢,o >{ o’
with one new rule for dealing with the let command. Pay careful
attention to the scope of the newly declared variable and to changes to
other variables.

e Extend the set of redexes, contexts and reduction rules for the contextual-
style operational semantics that we discussed in class to account for the
let command.

e Download the Homework 1 code pack from the course web page. Mod-
ify hwi.ml so that it implements a complete interpreter for IMP (in-
cluding let and print). Base your interpreter on IMP’s large-step
operational semantics. The Makefile includes a “make test” target
that you should use (at least) to test your work.

e Modify the file example-imp-command so that it contains a “tricky”
IMP command that can be parsed by our IMP test harness (e.g., “imp
< example-imp-command” should not yield a parse error).

e Rename hwl.ml to your_uniquename-hwl.ml and rename example-imp-command
to your_uniquename-example-imp-command and submit them. Do not
modify any other files (such as the expected output of your example-
imp-command). Your submission’s grade will be based on how many of
the submitted example-imp-commands it interprets correctly (in a man-
ner just like the “make test” trials). If your submitted example-imp-command
breaks the greatest number of interpreters (and more than 0!), you will
receive extra credit. If there is a tie all tiers will receive the extra credit.



