
CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 29 1–867

3Names, Scopes, and Bindings

3.4 Implementing Scope

For both static and dynamic scoping, a language implementation must keep track
of the name-to-object bindings in effect at each point in the program. The prin-
cipal difference is time: with static scope the compiler uses a symbol table to track
bindings at compile time; with dynamic scoping the interpreter or run-time sys-
tem uses an association list or central reference table to track bindings at run time.

3.4.1 SymbolTables

In a language with static scoping, the compiler uses an insert operation to place
a name-to-object binding into the symbol table for each newly encountered dec-
laration. When it encounters the use of a name that should already have been
declared, the compiler uses a lookup operation to search for an existing binding.
It is tempting to try to accommodate the visibility rules of static scoping by per-
forming a remove operation to delete a name from the symbol table at the end
of its scope. Unfortunately, several factors make this straightforward approach
impractical:

The ability of inner declarations to hide outer ones in most languages with
nested scopes means that the symbol table has to be able to contain an arbitrary
number of mappings for a given name. The lookup operation must return the
innermost mapping, and outer mappings must become visible again at end of
scope.

Records (structures) and classes have some of the properties of scopes, but
do not share their nicely nested structure. When it sees a record declaration,
the semantic analyzer must remember the names of the record’s fields (recur-
sively, if records are nested). At the end of the declaration, the field names
must become invisible. Later, however, whenever a variable of the record type
appears in the program text (as in my_rec.field_name), the record fields

Copyright c© 2009 by Elsevier Inc. All rights reserved. 29



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 30 1–867

30 Chapter 3 Names, Scopes, and Bindings

must suddenly become visible again for the part of the reference after the
dot. In Pascal and other languages with with statements (Section 7.3.3), field
names must become visible in a multi-statement context.

As noted in Section 3.3.3, names are sometimes used before they are declared.
Algol and C, for example, permit forward references to labels. Pascal permits
forward references in pointer declarations. Modula-3 permits forward refer-
ences of all kinds.

As noted in Section 3.3.3, C, C++, and Ada distinguish between the declaration
of an object and its definition. Pascal has a similar mechanism for mutually
recursive subroutines. When it sees a declaration, the compiler must remember
any nonvisible details, so that it can check the eventual definition for consis-
tency. This operation is similar to remembering the field names of records.

While it may be desirable to forget names at the end of their scope, and even
to reclaim the space they occupy in the symbol table, information about them
may need to be saved for use by a symbolic debugger. The debugger is a tool
that allows the user to manipulate a running program: starting it, stopping it,
and reading and writing its data. In order to parse high level commands from
the user (e.g., to print the value of my_firmˆ.revenues[1999]), the debugger
must have access to the compiler’s symbol table. To make it available at run
time, the compiler typically saves the table in a hidden portion of the final
machine-language program.

To accommodate these concerns, most compilers never delete anything fromEXAMPLE 3.44
The LeBlanc-Cook symbol
table

the symbol table. Instead, they manage visibility using enter scope and leave
scope operations. Implementations vary from compiler to compiler; the approach
described here is due to LeBlanc and Cook [CL83].

Each scope, as it is encountered, is assigned a serial number. The outermost
scope (the one that contains the predefined identifiers), is given number 0. The
scope containing programmer-declared global names is given number 1. Addi-
tional scopes are given successive numbers as they are encountered. All serial
numbers are distinct; they do not represent the level of lexical nesting, except in
as much as nested subroutines naturally end up with numbers higher than those
of surrounding scopes.

All names, regardless of scope, are entered into a single large hash table, keyed
by name. Each entry in the table then contains the symbol name, its category
(variable, constant, type, procedure, field name, parameter, etc.), scope number,
type (a pointer to another symbol table entry), and additional, category-specific
fields.

In addition to the hash table, the symbol table has a scope stack that indicates,
in order, the scopes that compose the current referencing environment. As the
semantic analyzer scans the program, it pushes and pops this stack whenever it
enters or leaves a scope, respectively. Entries in the scope stack contain the scope
number, an indication of whether the scope is closed, and in some cases further
information.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 31 1–867

3.4.1 Symbol Tables 31

procedure lookup(name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name – – not something else with same hash value
if e.scope = 0

pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e – – closer instance
exit inner loop

elsif best �= null and then s.scope = best.scope
exit inner loop – – won’t find better

if s.closed
exit inner loop – – can’t see farther

if best �= null
while best is an import or export entry

best := best.real entry
return best

elsif pervasive �= null
return pervasive

else
return null – – name not found

Figure 3.18 LeBlanc-Cook symbol table lookup operation.

To look up a name in the table, we scan down the appropriate hash chain
looking for entries that match the name we are trying to find. For each matching
entry, we scan down the scope stack to see if the scope of that entry is visible. We
look no deeper in the stack than the top-most closed scope. Imports and exports
are made visible outside their normal scope by creating additional entries in the
table; these extra entries contain pointers to the real entries. We don’t have to
examine the scope stack at all for entries with scope number 0: they are pervasive.
Pseudocode for the lookup algorithm appears in Figure 3.18. �

The lower right portion of Figure 3.19 contains the skeleton of a Modula-EXAMPLE 3.45
Symbol table for a sample
program

2 program. The remainder of the figure shows the configuration of the symbol
table for the referencing environment of the with statement in procedure P2. The
scope stack contains four entries representing, respectively, the with statement,
procedure P2, module M, and the global scope. The scope for the with statement
indicates the specific record variable to which names (fields) in this scope belong.
The outermost, pervasive scope is not explicitly represented.

All of the entries for a given name appear on the same hash chain, since the
table is keyed on name. In this example, A2, F2, and T have also ended up on a
single chain, due to hash collisions. Variables V and I (M’s I) have extra entries,
to make them visible across the boundary of closed scope M. When we are inside

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 32 1–867

32 Chapter 3 Names, Scopes, and Bindings

type
 T = record
  F1 : integer;
  F2 : real;
 end;
var V : T;
...
module M;
 export I; import V;
 var  I : integer;
 ...
 procedure P1 (A1 : real;
  A2t: integer) : real;
 begin
  ...
 end P1;
 ...
 procedure P2 (A3 : real);
 var  I : integer;
 begin
  ...
  with V do
      ...
  end;
  ...
 end P2;
 ...
end M;

Hash table Scope stack
H

as
h li

nk
Nam

e
Cat

eg
or

y
Sc

ope
Typ

e
O

th
er

Clo
se

d?

O
th

er

—

—

—

—

—

—

—

—

—

parameters

M 1

2 record V

5

3

1

mod

A1 4 (2)param

P1 3 (1)func

I

I

I

5 (1)var

3 (1)var

export1 (1)var

A2 4 (1)param

V 3 importvar

F2 2 (2)field

record scope 2T 1type

V 1var

integer 0 (1)

(2)

type

real 0type

—F1 2 (1)field

A3 5 (2) —param

P2 proc 3 parameters

with V

P2

M

Globals

X

Sc
ope

Figure 3.19 LeBlanc-Cook symbol table for an example program in a language like Modula-2. The scope stack represents
the referencing environment of the with statement in procedure P2. For the sake of clarity, the many pointers from type fields
to the symbol table entries for integer and real are shown as parenthesized (1)s and (2)s, rather than as arrows.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 33 1–867

3.4.2 Association Lists and Central Reference Tables 33

Referencing environment A-list

(predefined names)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

Referencing environment A-list

(predefined names)

other infoP

other infoJ

other infoI

other infoI

other infoJ

other info

global proc

global var

global var

param

local var

global procQ

other infoP

other infoJ

other infoI

other infoJ

other info

global proc

global var

global var

local var

global procQ

(newest declarations are at this end of the list)

Figure 3.20 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other
grey arrow: after P returns to Q. When searching for I, one will find the global definition.

P2, a lookup operation on I will find P2’s I; neither of the entries for M’s I will
be visible. The entry for type T indicates the scope number to be pushed onto
the scope stack during with statements. The entry for each subroutine contains
the head pointer of a list that links together the subroutine’s parameters, for use
in analyzing calls (additional links of these chains are not shown). During code
generation, many symbol table entries would contain additional fields, for such
information as size and run-time address. �

3.4.2 Association Lists and Central ReferenceTables

Pictorial representations of the two principal implementations of dynamic scoping
appear in Figures 3.20 and 3.21. Association lists are simple and elegant, but
can be very inefficient. Central reference tables resemble a simplified LeBlanc-
Cook symbol table, without the separate scope stack; they require more work at
scope entry and exit than do association lists, but they make lookup operations fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supportedEXAMPLE 3.46
A-list lookup in Lisp by a rich set of built-in functions in most Lisp dialects. It is therefore natural

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 34 1–867

34 Chapter 3 Names, Scopes, and Bindings

(other names)

Central reference table

P

I

Q

J

(each table entry points to the newest declaration of the given name)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

other info

other infoother info

global proc

global varparam

other infoglobal proc

other infoother info global varlocal var

(other names)

Central reference table

P

I

Q

J

other info

other info

global proc

global var

other infoglobal proc

other infoother info global varlocal var

Figure 3.21 Dynamic scoping with a central reference table.The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the I slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for I, one will find the global definition.

for Lisp interpreters to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 35 1–867

3.4.2 Association Lists and Central Reference Tables 35

memory locations. In the left half of Figure 3.20, the first (top) entry on the
A-list represents the most recently encountered declaration: the I in procedure
P. The second entry represents the J in procedure Q. Below these are the global
symbols, Q, P, J, and I, and (not shown explicitly) any predefined names provided
by the Lisp interpreter. �

The problem with using an association list to represent a program’s referencing
environment is that it can take a long time to find a particular entry in the list,
particularly if it represents an object declared in a scope encountered early in the
program’s execution, and now buried deep in the list. A central reference table isEXAMPLE 3.47

Central reference table designed for faster access. It has one slot for every distinct name in the program.
The table slot in turn contains a list (stack) of declarations encountered at run
time, with the most recent occurrence at the beginning of the list. Looking up a
name is now easy: the current meaning is found at the beginning of the list in the
appropriate slot in the table. In the upper part of Figure 3.21, the first entry
on the I list is the I in procedure P; the second is the global I. If the program is
compiled and the set of names is known at compile time, then each name can have
a statically assigned slot in the table, which the compiled code can refer to directly.
If the program is not compiled, or the set of names is not statically known, then a
hash function will need to be used at run time to find the appropriate slot. �

When control enters a new scope at run time, entries must be pushed onto the
beginning of every list in the central reference table whose name is (re)declared
in that scope. When control leaves a scope for the final time, these entries
must be popped. The work involved is somewhat more expensive than push-
ing and popping an A-list, but not dramatically more so, and lookup opera-
tions are now much faster. In contrast to the symbol table of a compiler for
a language with static scoping, central reference table entries for a given scope
do not need to be saved when the scope completes execution; the space can be
reclaimed.

Within the Lisp community, implementation of dynamic scoping via an asso-
ciation list is sometimes called deep binding, because the lookup operation may
need to look arbitrarily deep in the list. Implementation via a central reference
table is sometimes called shallow binding, because it finds the current association
at the head of a given reference chain. Unfortunately, the terms “deep and shallow
binding” are also more widely used for a completely different purpose, discussed
in Section 3.6. To avoid potential confusion, some authors use “deep and shallow
access” [Seb08] or “deep and shallow search” [Fin96] for the implementations of
dynamic scoping.

Closures with Dynamic Scoping

(This subsection is best read after Section 3.6.1.)
If an association list is used to represent the referencing environment of aEXAMPLE 3.48

A-list closures program with dynamic scoping, the referencing environment in a closure can
be represented by a top-of-stack (beginning of A-list) pointer (Figure 3.22).
When a subroutine is called through a closure, the main pointer to the referencing
environment A-list is temporarily replaced by the pointer from the closure, making

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 36 1–867

36 Chapter 3 Names, Scopes, and Bindings

procedure P(procedure C)
 declare I, J
 call C

procedure F
 declare I

procedure Q
 declare J
 call F

−− main program
 call P(Q)

Referencing environment A-listCentral Stack

main program

P
I, J
C == Q

Q J

I

M

P

Q

F

I

J

J

I

F

Figure 3.22 Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names.When the main
program passes Q to P with deep binding, it bundles its A-list pointer in Q’s closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of I), the A-list is temporarily bifurcated.

any bindings created since the closure was created (P’s I and J in the figure)
temporarily invisible. New bindings created within the subroutine (or in any
subroutine it calls) are pushed using the temporary pointer. Because the A-list is
represented by pointers (rather than an array), the effect is to have two lists—
one representing the caller’s referencing environment and the other temporary
referencing environment resulting from use of the closure—that share their older
entries. When Q returns to P in our example, the original head of the A-list will
be restored, making P’s I and J visible again. �

With a central reference table implementation of dynamic scoping, the creation
of a closure is more complicated. In the general case, it may be necessary to
copy the entire main array of the central table and the first entry on each of its
lists. Space and time overhead may be reduced if the compiler or interpreter is
able to determine that only some of the program’s names will be used by the
subroutine in the closure (or by things that the subroutine may call). In this case,
the environment can be saved by copying the first entries of the lists for only the
names that will be used. When the subroutine is called through the closure, these
entries can then be pushed onto the beginnings of the appropriate lists in the
central reference table. Additional code must be executed to remove them again
after the subroutine returns.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 37 1–867

3.4.2 Association Lists and Central Reference Tables 37

3CHECK YOUR UNDERSTANDING

44. List the basic operations provided by a symbol table.

45. Outline the implementation of a LeBlanc-Cook style symbol table.

46. Why don’t compilers generally remove names from the symbol table at the
ends of their scopes?

47. Describe the association list (A-list ) and central reference table data structures
used to implement dynamic scoping. Summarize the tradeoffs between them.

48. Explain how to implement deep binding by capturing the referencing envi-
ronment A-list in a closure. Why are closures harder to build with a central
reference table?

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 38 1–867


