Building a Runnable Program

Intermediate Forms

In this section we consider three widely used intermediate forms: Diana, GIMPLE,
and RTL. Two additional examples, Java byte code and the Common Intermediate
Language (CIL) can be found in Chapter 15.

Diana (Descriptive Intermediate Attributed Notation for Ada) is an Ada-
specific, high-level tree-based IF developed cooperatively by researchers at the
University of Karlsruhe in Germany, Carnegie Mellon University, Intermetrics,
Softech, and Tartan Laboratories. It incorporates features from two earlier efforts,
named TCOL and AIDA.

GIMPLE and RTL are the intermediate languages of the GNU compiler col-
lection (gcc). RTL (Register Transfer Language) is the older of the two. It is a
medium-level pseudo-assembly language, and was the basis of almost all language-
independent code improvement in gcc prior to the introduction of GIMPLE in
2005. GIMPLE, like Diana, is a tree-based form, but not quite as abstract. As of
gcc v.4, there are approximately 100 code improvement phases based on GIMPLE,
and about 70 based on RTL.

[4.2.] Diana

Diana is very complex (the documentation is 200 pages long), but highly regular,
and we can at least give the flavor of it here. It is formally described using a
preexisting notation called IDL [SS89], which stands for Interface Description
Language.! IDL is widely used to describe abstract data types in a machine- and
implementation-independent way. Using IDL-based tools, one can automatically
construct routines to translate concrete instances of an abstract data type to and

| Unfortunately, the term “IDL” is used both for the general category of interface description
languages (of which there are many) and the specific Interface Description Language used by
Diana.

Copyright (©) 2009 by Elsevier Inc. All rights reserved. ©303

©304 Chapter 14 Building a Runnable Program

from a standard linear textual representation. IDL is perfectly suited for Diana.
Other uses include multi-database systems, message passing across distributed
networks, and compilation for heterogeneous parallel machines. In addition to
providing the interface between the front end and back end of an Ada compiler,
Diana frequently serves as the standard representation of fragments of Ada code
in a wider program development environment.

Diana structures are defined abstractly as trees, but they are not necessarily
represented that way. To guarantee portability across platforms and among the
products produced by different vendors, all programs that use Diana must be
able to read and write the linear textual format. Vendors are allowed (and in
fact encouraged) to extend Diana by adding new attributes to the tree nodes,
but a tool that produces Diana conforming to the standard must generate all the
standard attributes and must never use the standard attributes for nonstandard
purposes. Similarly, a tool that consumes Diana conforming to the standard may
exploit information in extra attributes if it is provided, but must be capable of
functioning correctly when given only the standard attributes.

Ada compilers construct and decorate the nodes of a Diana tree in separate
passes. The Diana manual recommends that the construction pass be driven by an
attribute grammar. This pass establishes the lexical and syntactic attributes of tree
nodes. Lexical attributes include the spelling of identifier names and the location
(file name, line and column number) of constructs. Syntactic attributes are the
parent—child links of the tree itself.> Subsequent traversal(s) of the tree establish
the semantic and code-based attributes of tree nodes. Code-based attributes rep-
resent low-level properties such as numeric precision that have been specified in
the Ada source.

Symbol table information is represented in Diana as semantic attributes of
declarations, rather than as a separate structure. If desired, an implementation of
Diana can break this information out into a separate structure for convenience,
so long as it retains the tree-based abstract interface. Occurrences of names are
then linked to their declarations by “cross links” in the tree. A fully attributed
Diana structure is therefore in fact a DAG, rather than a tree. The cross links are
all among the semantic attributes, so the initial structure (formed of lexical and
syntactic attributes) is indeed a tree.

IDL (and thus the Diana definition) employs a tree grammar notation similar
to that of Section 4.6. Unlike BNF this notation defines a complete syntax tree,
rather than just its fringe (i.e., the yield). To avoid the many “useless” nodes of a
typical parse tree, IDL distinguishes between two kinds of symbols, which it calls
classes and nodes. The nodes are the “interesting” symbols—the ones that are in
the Diana tree. The classes are the “uninteresting” symbols; they exist to facilitate
construction of the grammar. In effect, the distinction between classes and nodes

2 Terminology here is potentially confusing. We have been using the term “attribute” to refer to
annotations appended to the nodes of a parse or syntax tree. Diana uses the term for all the
information stored in the nodes of a syntax tree. This information includes the references to other
nodes that define the structure of the tree.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

14.2.1 Diana ©)305

Structure ExpressionTree Root EXP is
-- ExpressionTree is the name of the abstract data type.
-- EXP is the start symbol (goal) symbol of the grammar.

Type Source_Position ;
-- This is a private (implementation-dependent) type.

EXP ::= leaf | tree ;
-- EXP is a class. By convention, class names are written
-- in all upper-case letters. They are defined with "::="
-- productions. Their right-hand-sides must be an alternation
-- of singletons, each of which is either a class or a node.

tree => as_op: OPERATOR, as_left: EXP, as_right: EXP ;
tree => 1lx_src: Source_Position ;
leaf => lx_name: String ; lx_src: Source_Position ;
-- tree and leaf are nodes. They are the symbols actually
-- contained in an ExpressionTree. Their attributes (including
-- substructure) are defined by "=>" productions. Multiple
—-- productions for the same node are NOT alternatives; they
-- define additional attributes. Thus, every tree node has four
-- attributes: as_op, as_left, as_right, and lx_src. Every leaf
-- has two attributes: lx_name and lx_src. By convention,
-- Diana uses ’1lx_’ to preface lexical attributes,
-- ’as_’ to preface abstract syntax attributes,
-- ’sm_’ to preface semantic attributes, and
-- ’cd_’ to preface code attributes.

-- In a more realistic example, leaf would have a sm_dec
-— attribute that identified its declaration node, where
-- additional attributes would describe its type, scope, etc.

OPERATOR ::= plus | minus | times | divide ;
plus => ; minus => ; times => ; divide => ;
-- OPERATOR is a class consisting of the standard four binary
-- operators. The null productions reflect the fact that an
-- operator’s name tells us all we need to know about it.
-- We could have made the operator of a tree node a private
-- type, eliminating the need for the null productions and empty
-- subtree, but this would have pushed operators out of the
-- machine-independent part of the notation, which is unacceptable.
End

Figure 14.11 Example of the IDL notation used to define Diana.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©306 Chapter 14 Building a Runnable Program

EXAMPLE |4 |9

ExpressionTree
abstraction in Diana

tree
tree times leaf
/‘\ ||2||
leaf plus leaf
n 1 n lI3II

Figure 14.12 Abstract syntax tree for (1 + 3) * 2,using the IDL definition of Figure ©)14.11.
Every node also has an attribute src of type Source_Position;these are not shown here.

serves the same purpose as the A : B notation introduced for the left-hand sides
of productions in Section 4.6 (Figure 14.6).

Figure ©)14.11 contains an IDL example adapted from the Diana manual
[GWEBS83, p. 26]. The ExpressionTree abstraction defined here is much sim-
pler than the corresponding portion of Diana, but it serves to illustrate the IDL
notation. An ExpressionTree for (1 + 3) * 2 appears in Figure ¢)14.12. Note
that the classes (EXP and OPERATOR) do not appear in the tree. Only the nodes
(tree and leaf) appear.

14.2.2 The gcc IFs

Many readers will be familiar with the gcc compilers. Distributed as open source
by the Free Software Foundation, gcc is used very widely in academia, and
increasingly in industry as well. The standard distribution includes front ends
for C, C++, Objective-C and C++, Ada 95, Fortran, and Java. Front ends for
additional languages, including Pascal Modula-2, PL/I, Mercury, and Cobol are
separately available. The C compiler is the original, and the one most widely used
(gcc originally stood for “GNU C compiler”). There are back ends for dozens of
processor architectures, including all commercially significant options. There are
also GNU implementations, not based on gcc, for some two dozen additional
languages.

Gce has three main IFs. Most of the (language-specific) front ends employ,
internally, some variant of a high-level syntax tree form known as GENERIC.
Early phases of machine-independent code improvement use a somewhat lower-
level tree form known as GIMPLE (still a high-level IF). Later phases use a linear,
medium-level IF known as RTL (register transfer language).

GIMPLE is a recent innovation. Traditionally, all machine-independent code
improvement in gcc was based on RTL. Over time it became clear that the IF had
become an obstacle to further improvements in the compiler, and that a higher-
level form was needed. GIMPLE was introduced to meet that need. As of gcc v.4,
GENERIC is used for semantic analysis and, in a few cases, for certain language-
specific code improvement. As its final task, each front end converts the program

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

14.2.2 The gcc IFs ©307

from GENERIC into GIMPLE. The “middle end” then performs as many as 100
phases of code improvement on the GIMPLE representation, converts to RTL, and
performs as many as 70 additional phases before handing the result to the back
end for target code generation.

Both GIMPLE and RTL are meant to be kept in memory across compiler
phases, rather than being written to a file. Both IFs have a human-readable external
format, which the compiler can write and (partially) read, but this format is not
needed by the compiler: the internal version is much better suited for automatic
manipulation.

GIMPLE

The GIMPLE code generated by a gcc front end is essentially a distillation of

GENERIC, with many of the most complex (and often language-specific) features
exameie |4.20 “lowered” into a smaller, common set of tree node types. As a simple example,
GCD program in GIMPLE consider the gcd program of Example 1.20:

int main () {
int i, j;
int i = getint(), j = getint();
while (i != j) {
if (1> 3)1i=1-j;
else j = j - 1i;
}
putint (i);
}

Figure @)14.13 illustrates the “high GIMPLE” produced by the C front end of
gce 4.0 when given this program as input. If we compare this GIMPLE code to
Figure 14.2, which loosely® resembles GENERIC, we see at least two significant
differences. First, temporary variables have been introduced to hold the values
obtained from getint (GIMPLE declines to write the result of a function call
directly to an in-memory variable). Second, the while loop has been recast with
explicit gotos.

Over the course of its many phases, the gcc middle end will make many
additional changes to this code, not only to improve its quality, but also to fur-
ther lower its level of abstraction. The if statement inside the loop, for example,
will see its then and else parts converted into simple gotos, which will jump to
separate statements. This “flattening” of the tree makes it easier to translate into
RTL.

Perhaps the most significant transformation of GIMPLE is the conversion
to static single assignment (SSA) form. We will study SSA in more detail in

3 Unlike the informal notation of Figure 14.2, GENERIC and GIMPLE make no distinction between
syntax tree nodes and symbol table nodes. In effect, the symbol table is merged into the syntax
tree.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©308 Chapter 14 Building a Runnable Program

bind_expr
(void) (i, j, t1,12) stmt_list

(t) call /ﬁ =
|0 N -
(getint) (t2) call /Vgoto

| M 2
(getint)

label
if

/’\\Iabel

> stmt_list stmt_list if

AL T
) call

W0 A
(

= + stmt_list stmt_list /\
/\ /\ /\ go|to gc!to (puting) {
i) /—\ () /—\ (i))

(i)))i (i)

Figure 14.13 Simplified GIMPLE for the gcd program. Only structural nodes are shown: references to nodes that constitute
symbol table information are indicated by parenthesized names. The node for function main would contain a pointer to the
bind_expr (block) node at the root of the tree shown here.

Section @)16.4.1. Briefly, the SSA conversion introduces extra variable names into
the program in such a way that nothing is ever written in more than one place.
If there are 10 assignments to variable foo in the source code, there will be (at
least) ten separate variables fooy, ..., foojp in SSA. When control paths merge
(e.g., after an if...then...else), versions of a variable arriving on different
paths are combined, using a hypothetical “phi function” to create yet another
version (fooq; = ¢ (fooy, f00,)). As in functional programming languages, the
single-assignment character of SSA means that expressions are referentially trans-
parent—independent of evaluation order. Referential transparency significantly
simplifies many forms of code improvement.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

EXAMPLE |42|

An RTL insn sequence

14.2.2 The gcc IFs ©309

RTL

RTL is loosely based on the S-expressions of Lisp. Each RTL expression consists of
an operator or expression type and a sequence of operands. In its external form,
these are represented by a parenthesized list in which the element immediately
inside the left parenthesis is the operator. Each such list is then embedded in a
wrapper that points to predecessor and successor expressions in linear order. Inter-
nally, RTL expressions are represented by C structs and pointers. This pointer-rich
structure constitutes the interface among the compiler’s many back-end phases.
There are several dozen expression types, including constants, references to values
in memory or registers, arithmetic and logical operations, comparisons, bit-field
manipulations, type conversions, and stores to memory or registers.

The body of a subroutine consists of a sequence of RTL expressions. Each
expression in the sequence is called an insn (instruction). Each insn begins with
one of six special codes:

insn: an “ordinary” RTL expression.

jump_insn: an expression that may transfer control to a label.
call_insn: an expression that may make a subroutine call.
code_label: a possible target of a jump.

barrier: an indication that the previous insn always jumps away. Control will
never “fall through” to here.

note: a pure annotation. There are nine different kinds of these, to identify the
tops and bottoms of loops, scopes, subroutines, and so on.

The sequence is not always completely linear; insns are sometimes collected
into pairs or triples that correspond to target machine instructions with delay
slots. Over a dozen different kinds of (non-note) annotations can be attached to
an individual insn, to identify side effects, specify target machine instructions or
registers, keep track of the points at which values are defined and used, automat-
ically increment or decrement registers that are used to iterate over an array, and
so on. Insns may also refer to various dynamically allocated structures, including
the symbol table.

A simplified insn sequence for the code fragment d := (a + b) * c appears
in Figure @)14.14. The three leading numbers in each insn represent the insn’s
unique id and those of its predecessor and successor, respectively. The :SI mode
specifier on a memory or register reference indicates access to a single (4-byte)
integer. Fields for the various insn annotations are not shown.

In order to generate target code, the back end matches insns against patterns
stored in a semiformal description of the target machine. Both this description
and the routines that manipulate the machine-dependent parts of an insn are
segregated into a relatively small number of separately compiled files. As a result,
much of the compiler back end is machine independent, and need not actually be
modified when porting to a new machine.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©310 Chapter 14 Building a Runnable Program

(insn 8 6 10 (set (reg:SI 2)
(mem:SI (symbol_ref:SI ("a")))))

(insn 10 8 12 (set (reg:SI 3)
(mem:SI (symbol_ref:SI ("b")))))

(insn 12 10 14 (set (reg:SI 2)
(plus:SI (reg:SI 2)
(reg:SI 3))))

(insn 14 12 15 (set (reg:SI 3)
(mem:SI (symbol_ref:SI ("c")))))

(insn 15 14 17 (set (reg:SI 2)
(mult:SI (reg:SI 2)
(reg:SI 3))))

(insn 17 15 19 (set (mem:SI (symbol_ref:SI ("d")))
(reg:SI 2)))

Figure 14.14 Simplified textual version of the RTL for d := (a + b) * c.

\/CHECK YOUR UNDERSTANDING

24. Characterize Diana, GIMPLE, RTL, Java byte code,and Common Intermediate
Language as high-, medium-, or low-level intermediate forms.

15. What is an interface description language?

26. Give a brief description of Diana.

2]. Explain the distinction between attributes and nodes in Diana.

18. Name three languages (other than C) for which there exist gcc front ends.
29. What is the internal IF of gcc’s front ends?

30. Give brief descriptions of GIMPLE and RTL. How do they differ? Why was
GIMPLE introduced?

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

