
Review Set 3

This Review Set you to prepare written answers to questions on context-
free grammars and Earley parsers. Each of the questions has a short answer.
You may discuss this Review Set with other students and work on the prob-
lems together.

1. Use left-factoring and/or elimination of left recursion to convert the
following grammars into LL(1) grammars. You may assume that these
grammars are unambiguous.

(a)

E → E + T | T | E!

T → int | (E)

(b)

L → X | L,X
X → int | string | (L)

(c)

P → P H 4 U | p
H → h

U → u | u P

2. Consider the following grammar:

S → A

A → A + A | B + + (Each ’+’ is a separate token.)

B → y

Draw the full Earley chart associated with parsing the input string y

+ + + y + + + using the above grammar and indicate whether or not
the Earley parser accepts the string.

1

3. In class we discussed how how to use Earley’s algorithm to recognize if
a string is in the language of a grammar. However, modern parsers can
do more than recognize: they can also produce parse trees, produce
derivations, or otherwise execute user-defined actions (as in yacc or
PA3) whenever a rewrite rule is applied.

Explain in English prose how you would modify an Earley recognizer
(such as the one developed in the class notes and handouts) into a
full-fledged parser that executes user actions. Do not provide code
diffs or deltas. Instead, describe what additional information must be
maintained and how that information should be updated. Remember
that user actions should be executed bottom-up even if the parsing
algorithm is top-down. Remember also that user actions can read val-
ues associated with previously-executed rewrite rules (e.g., $$ = new

PlusNode($1,$3); or return new PlusNode(val[1], val[3]); or
the like). Be precise: make it clear to the reader what data structures
you are adding or changing, how those data structures are updated,
what invariants are maintained, and when and in what order the user
actions are executed.

4. Consider an Earley parser, such as the one we discussed in class, with
the closure (or predict) operation removed. That is, this new type of
Parser only uses shift (or scan) and reduction (or completion) opera-
tions to fill in the chart of parsing states.

• Give a grammar G1 and a string S1 such that S1 ∈ L(G1) but
this new closure-less parser fails to recognize that S1 is in L(G1).
Explain why the parse fails in one sentence.

• Give a grammar G2 and a string S2 such that S2 ∈ L(G1) and
this new closure-less parser still successfully recognizes that S2 is
in L(G2).

2

