Earley States

- Let X be a non-terminal
- Let a and b be (possibly-empty) sequences of terminals and non-terminals
- Let $X \rightarrow ab$ be a production in your grammar
- Let *j* be a position in the input
- Each Earley State is a tuple $\langle X \rightarrow a \bullet b, j \rangle$
 - We are currently parsing an X
 - We have seen a, we expect to see b
 - We started parsing this *X* after seeing the first *j* tokens from the input.

Formal shift operation

- Whenever
 - chart[i] contains $< X \rightarrow ab \cdot cd$, j >
 - c is a terminal (not a non-terminal)
 - the (i+1)th input token is c
- The **shift** operation
 - Adds $< X \rightarrow abc \cdot d$, j > to chart[i+1]

Formal closure operation

- Whenever
 - chart[i] contains < X → ab cd , j >
 - c is a non-terminal
 - The grammar contains < c → p q r >
- The **closure** operation
 - Adds $< c \rightarrow \bullet p q r$, i > to chart[i]
 - Note < c → p q r , i > because "we started parsing this c after seeing the first i tokens from the input."

Formal reduce operation

- Whenever
 - chart[i] contains < X → ab , j >
 (The dot must be all the way to the right!)
 - chart[j] contains $\langle Y \rightarrow q \bullet X r, k \rangle$
- The **reduce** operation
 - Adds $< Y \rightarrow q X \bullet r$, k > to chart[i]
 - Note < Y → q X r , k > because "we started parsing this Y after seeing the first k tokens from the input."

#42

#44

#36

Massive Earley Example

