
Midterm II — LDI, Spring 2016

UVa ID: (yes, again!) KEY

Problem Max Your Points
1 — Type Checking and Let 15

2 — Adding New Expressions 22

3 — Optimization 13

4 — Exceptions 9

5 — Automatic Memory Management 8

6 — Code Generation 12

7 — Game Theory 5

8 — Debugging, Typing and Opsem 16

Extra Credit 0

TOTAL 100

Honor Pledge:

How do you think you did?

1

1 Type Checking and Let (15 points)

Consider the following two incorrect typing judgments for the non-SELF TYPE case of initialized
variable introduction:

T ′0 =
{

SELF TYPEC if T0 = SELF TYPE
T0 otherwise

O, M, C ` e1 : T1
T1 ≤ T ′0
O[T1/x], M, C ` e2 : T2

O, M, C ` let x : T0 ← e1 in e2 : T2
wrong

T ′0 =
{

SELF TYPEC if T0 = SELF TYPE
T0 otherwise

O, M, C ` e1 : T1
T ′0 ≤ T1
O[T ′0/x], M, C ` e2 : T2

O, M, C ` let x : T0 ← e1 in e2 : T2
alsobad

(a) [7 pts] The modified typing rule wrong is too strict: it rejects good programs that are accepted
by the normal typing rules. Write a Cool expression that is accepted by the normal typing
rules but is rejected by rule wrong.
The issue is that wrong has O[T1/x] but a correct rule would have O[T ′0/x]. That is, when
evaluating the let-body, x is given the static type of the initializer. So the code below will
not type check with wrong:

let x : Object <- 2 in x <- new Object

(b) [8 pts] The modified typing rule alsobad is also unsound: it allows programs that will lead
to run-time errors. Write a Cool expression that is accepted by rule alsobad but that would
violate the normal typing rules and lead to undefined or unsafe behavior at runtime.
The issue is that alsobad uses T ′0 ≤ T1 while the correct rule would use T1 ≤ T ′0. This means
that supertypes are accepted where only subtypes should be allowed! The code below will
lead to undefined behavior at runtime because the m object will not have a main method:

let m : Main <- new Object in m.main()

2

2 Adding New Expressions (22 points)

We would like to add an extend to expression to Cool. In standard Cool, the dynamic type of an
object is set when it is created by new and can never be changed. The extend to expression changes
the dynamic type of an object to that of the specified subtype, allocates space for additional fields
not already present at runtime, assigns them default values, and then executes initializers for the
new fields only. The extend expression returns void and does not change static types. Consider
this example:

class Point inherits IO {
x : Int ;
setX(newX : Int) : Object { x <- newX };
identify() : Object { out_string("I am a Point") };

}
class ColorPoint {

c : String <- "red" ;
y : Int <- x + 1 ;
identify() : Object { { out_string(c) ; out_int(x+y); }};

} ;
class Main {

main() : Object {
let p : Point <- new Point in {

p.setX(2) ;
extend p to ColorPoint ;
p.identify() ; -- prints "red5"

} } ;
} ;

Intuitively, extend to is like a “partial” combination of new and assignment that leaves existing
fields alone but processes fields in the extension.

(a) [6 pts] Complete the typing rule for extend.

O(id) = Tid

T ≤ Tid

O, M, C ` extend id to T : Object
extend− typecheck

3

(b) [12 pts] Complete the operational semantics rule for extend.
We assume without loss that all fields in all classes have distinct names.

E[id] = addr
S1[addr] = X(a1 = l1, . . . , an = ln)
class(T) = (a1 : T1 ← e1, . . . , am : Tm ← em)
n ≤ m
li = newloc(S1), for i = n1 . . . m and each li is distinct
v = T (a1 = l1, . . . , an = ln, . . . am = lm)
S2 = S1[DTn+1/lin+1 , . . . , DTm/lm]
S3 = S2[v/addr]
v, S3, [a1 : l1, . . . , am : lm] ` an1 ← en1 ; . . . am ← em : v′, S4

so, S1, E ` extend id to T : void, S4
extend2

In the first line we look up the address of the identifier, and in the second we load its value
from the store, noting the current attributes a1 . . . an. We then look up the subtype T and
find that it has more attributes, all the way up to am (m ≥ n). Because T ≤ X, they agree
on the first n attributes. We then allocate new space for the attributes from n1 to m — the
“new” attributes — and build a new object v that holds them (as well as the “old” ones). We
then give all of the new attributes their default values based on their types. Then (careful!)
we replace the current value of id (which lives at addr) with the new value v. Finally, we
execute all of the initializers for the new attributes.
This is a (partial) combination of the New rule and the Assign rule.
As Alec pointed out, the above formulation does not handle multiple uses of extend correctly
because it assumes the old fields will always be a strict prefix of the new fields. Students
were not expected to handle this correctly for full credit, but the (more complicated) answer
below is one way to do so (ai and bi both range over field names; l and l′ both range over
addresses; and newfields indicates the indices of the fields in T that are not yet found in v):

E[id] = addr
S1[addr] = X(a1 = l1, . . . , an = ln)
class(T) = (b1 : T1 ← e1, . . . , bm : Tm ← em)
newfields = {j | j ∈ [1 . . . m] ∧ ¬∃i. ai = bj}
l′j = newloc(S1), for j ∈ newfields and each lj is distinct

v = T (a1 = l1, . . . , an = ln, . . . , bj = l′j , . . .) (j ∈ newfields)
S2 = S1[. . . , DTj /l′j , . . .] (j ∈ newfields)
S3 = S2[v/addr]
v, S3, [a1 : l1, . . . , an : ln, . . . , bj : l′j , . . .] ` . . . aj ← ej ; . . . : v′, S4 (j ∈ newfields)

so, S1, E ` extend id to T : void, S4
extend− opsem

(c) [4 pts] The extend to expression allows us to simulate some aspects of multiple inheritance.
Write a Cool example that returns an object that, at run-time, has all fields from two siblings
in the class hierarchy. Write any class declarations first (keep them simple) and then write
the expression. (We do not care about Cool syntax like semicolons.)

4

class Shape { x : Int; y : Int; } ;
class Circle inherits Shape { radius : Int ; } ;
class Triangle inherits Shape { angle : Int ; } ;

let s : Shape <- new Shape in {
extend s to Circle ;
extend s to Triangle ;
(* s now has the radius field and the angle field, as well as x and y *)

}

5

3 Optimization (13 points)

(a) [8 pts] The following block of code makes use of five variables: a, b, c, d, and e. However,
we have erased many of the variable references from the original program. In the right-hand
column, we provide the results of liveness analysis (i.e., the variables that are live at each
program point). Please fill in each blank with a single variable so that the program is
consistent with the results of liveness analysis.
Please note that there are no dead instructions in this program. (This means only that X
is always live right after each assignment to X; it doesn’t mean that you couldn’t personally
think of some optimizations to apply here.) You will need this information to fill in some of
the blanks correctly!
Code Live Variables

{a, b, c}
b := a - b

{b, c}
e := b + c

{b, e}
d := e + 1

{b, d}
b := b

{b, d}
c := 123

{b, c, d}
e := b + c

{e, d}
print d

{e}
print e

{}

6

(b) [5 pts] Draw a control-flow graph for the following code. Each node in your control-flow graph
should be a basic block. Do not worry about static single assignment form. Every statement
in the code should appear somewhere in your control-flow drawing.

START
a <- 11
b <- 22

pride: c <- 33
prejudice: d <- 44

if (e > 55) then {
f <- 66
goto prejudice
g <- 77

} else {
h <- 88

}
i <- 99
if (j > 0) then { goto pride }
k <- 111
END

START
A := 11
B := 22

PRIDE:
C := 33

PREJUDICE:
D := 44

IF E < 55 ...

F := 66
goto prejudice

G := 77
(dead code)

H := 88

PRIDE:
C := 33
PRIDE:
C := 33

I := 99
IF J < 0 ...

K := 111
END

7

4 Exceptions (9 points)

(a) [2 pts] Give one example of an exception that is the clear result of a mistake in a program.
Then give one example of an exception that might be raised even in a perfect program.
Mistake: Dereferencing a null pointer. Division by zero. And so on.
Environmental: Out of disk space. Network packet loss. And so on.

(b) [3 pts] Explain where and why the least-upper-bound operator t is used in our formal treat-
ment of language-level exception handling.
In try e1 catch e2 we do not know statically whether e1 or e2 will be executed. As a result,
the type for the expression must by a conservative approximation that safely describes both
T1 and T2. We thus use T1 t T2 as the return type.

(c) [4 pts] Consider the following incorrect unsound typing rule for try-finally.

O, M, C ` e1 : T1 O, M, C ` e2 : T2

O, M, C ` try e1 finally e2 : T1
nofun

Give a Cool expression that does typecheck using this rule but would lead to a run-time error.
This issue is that this typing rule always returns the type associated with e1, even though the
operational semantics return the value associated with e2. Example that would add a string
to an int at runtime:

(try 1 finally "hello") + 2

8

5 Automatic Memory Management (8 points)

(a) [2 pts] Name two specific disadvantages of Mark and Sweep. (Be specific. Just saying that it
it slow, for example, is not adequate.)
Mark and Sweep requires you to store a “mark bit” with each allocated object. Mark and
Sweep takes time proportional to all available memory, even if you are only using a little bit
of it. Mark and Sweep can lead to fragmentation.

(b) [3 pts] Consider the following program:

while not_done() {
ptr = malloc(100 * MEGABYTE);
do_work(ptr);
/* done with ptr */

}

You are running this program with 4 gigabytes of physical memory and want to use automatic
memory management. Would you choose Stop and Copy or Mark and Sweep? Why?
Interestingly, Stop and Copy is provably/mathematically better in this case. With Mark and
Sweep, you will invoke the garbage collector every 4GB/100MB = 40 iterations around the
loop. Once invoked, Mark and Sweep takes time proportional to 4 GB.
By contrast, Stop and Copy will be invoked twice as often (because it cuts usable memory in
half) — so once every 20 iterations around the loop. But once invoked, it will only take time
proportional to reachable memory (100 MB). So Stop and Copy is invoked twice as often, but
costs 40 times less: ultimately Stop and Copy is 20 times faster!

(c) [3 pts] Suppose that you have already decided to use garbage collection. Which automatic
memory management scheme would you apply to a C or C++ program that was not written
with garbage collection in mind? Which scheme would run into trouble?
You could potentially apply a conservative version of Mark and Sweep. Because you cannot
tell the difference between integers and pointers, you will have to “trace” some integers,
which means that you will mistakenly fail to free some dead memory. The Boehm-Weiser
conservative garbage collected for C and C++ does just that (http://hboehm.info/gc/ —
it works, check it out).
You cannot use Stop and Copy, because you cannot safely move around potential objects in
C. (For exampe, if you think an integer is a pointer to an object and you “copy” it and move
it, you will change the meaning of the program.)

9

6 Code Generation (12 points)

(a) [6 pts] Consider the following incorrect stack-machine code generation rule:

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch

false_branch: cgen(e4)
true_branch: cgen(e3)
end_if:

Write an expression e for which the above rule generates incorrect code. Indicate specifically
what should happen when your expression e is evaluated as well as what mistakenly happens
when the above rule is used to generate code.

if 1 = 2 then print "a" else print "b"

With the incorrect rule, both “b” and “a” will be printed (because there is no jump after
the false branch around the true branch). In a correct implementation, only “b” should be
printed.

(b) [6 pts] Consider three classes, A, B, and C. Consider the following object (field) and dispatch
table (vtable) layouts:

0 – 2 3 4 5 6 7
A (header) e t a o n
B (header) e t
C (header) e t r

0 1 2 3
A A’s x() A’s y() B’s z() A’s w()
B B’s x() B’s y() B’s z()
C B’s x() C’s y() C’s z()

Write the three class declarations, showing all inheritance and field and method declaraitons.
(All of the fields are Ints.)

class B {
e : Int ; t : Int ;
x() { ... }; y() { ... }; z() { ... };

};
class A inherits B {

a : Int; o: Int; n: Int;
x() { (* override *) ... }; y() { (* override *) ... };
w() { ... };

};
class C inherits B {

r : Int ;
y() { (* override *) ... }; z() { (* override *) ... };

}

10

7 Game Theory (5 points)

(a) [5 pts] Consider the following Nim scenario. It is your turn. Indicate a winning move (e.g.,
write it out textually or circle the items you would take from a single heap). In the game
board below, heap A has three items, heap B has four items, etc.

A B C D E

The board has value 3⊕ 4⊕ 5⊕ 5⊕ 2. The first thing to note is that 5⊕ 5 = 0, so you can
just ignore columns C and D. That leaves us with 3⊕4⊕2 = 5, which is a win for the current
player.
The winning move is to take 3 from B, leaving 3⊕ 1⊕ 2 = 0.

11

8 Debugging, Typing and Opsem (16 points)

Consider these OCaml programs that do not type-check and their corresponding error messages
(including the implicated code, shown underlined). Each has comments detailing what the program
should do as well as sample invocations that should type-check.

(* "sumlist xs" returns the sum of the
integer elements of "xs" *)

let rec sumList xs = match xs with
| [] -> []
| y :: ys -> y + sumList ys

assert(sumList [1;2] = 3);;

This expression has type
’a list

but an expression was expected of type
int

(* "wwhile (f, x)" returns x’ where there exist
values v0, ..., vn such that:

- x is equal to v0
- x’ is equal to vn

- for each i between 0 and n-2, we have
(f vi) equals (vi+1, true)

- (f vn−1) equals (vn, false) *)

let f x =
let xx = x * x in
(xx, (xx < 100))

let rec wwhile (f,b) =
match f with
| (z, false) -> z
| (z, true) -> wwhile (f, z)

assert(wwhile (f, 2) = 256) ;;

This expression has type
int -> int * bool

but an expression was expected of type
’a * bool

(a) [2 pts] Why is the sumList program not well-typed?
It is trying to add an integer to a list during the recursive step.

(b) [2 pts] Fix the code so that sumList works correctly.
Change the base case so that it returns 0 instead of [].

(c) [2 pts] Why is the wwhile program not well-typed?
It is treating the function f as if it were a tuple.

(d) [2 pts] Fix the wwhile program.
Change match f with to match (f b) with.

12

Consider an execution trace that shows a high-level overview of a
program execution focusing on function calls. For example, the trace
on the right tells us that:

i. We start off with fac 1.

ii. After performing some computation, we have the expression 1
* fac 0. The 1 * is grayed out, indicating that fac 0 is the
next expression to be evaluated.

iii. When we return from fac 0, we are left with 1 * true, in-
dicating a program error: we cannot multiply an int with a
bool.

let rec fac n =
if n <= 0 then

true
else

n * fac (n - 1)

assert(fac 1 = 1) ;;

(* "append xs ys" returns a list containing the
elements of "xs" followed by the elements of "ys" *)

let rec append xs ys =
match xs with
| [] -> ys
| h::t -> h :: t :: ys

assert(append [1] [2] = [1;2]) ;;

Error encountered because
int

is incompatible with
int list

(e) [2 pts] Why is the append program not well-typed?
It is trying to cons a list onto a list (instead of consing an element onto a list).

(f) [2 pts] Fix the code so that append works correctly.
Replace h :: t :: ys with h :: (appendtys).

13

(* "digitsOfInt n" returns "[]" if "n" is
not positive, and otherwise returns the
list of digits of "n" in the order in
which they appear in "n". *)

let rec append x xs =
match xs with
| [] -> [x]
| -> x :: xs

let rec digitsOfInt n =
if n <= 0 then

[]
else

append (digitsOfInt (n/10))
[n mod 10]

assert(digitsOfInt 99 = [9;9]) ;;

Error encountered because
’a list

is incompatible with
int

(g) [2 pts] Why is the digitsOfInt program not well-typed?
It is trying to cons the empty list on to a list of integers.

(h) [2 pts] Fix the code so that digitsOfInt works correctly.
Swap the order of the arguments to the call to append in digitsOfInt:

let rec append x xs =
match xs with
| [] -> x
| _ -> x @ other

(many other solutions are possible)

14

9 Extra Credit (0 points)

“No Answer” is not valid on extra credit questions.

(a) [1 pt]Answer the following true-false questions about SELF_TYPE.

i. TRUE: SELF_TYPE is a static type.

ii. false: SELF_TYPE helps us to reject incorrect programs that are not rejected by the
normal type system.

iii. TRUE: SELF_TYPET ≤ T

iv. false: A formal parameter to a method can have type SELF_TYPE.

v. TRUE: If the return type of method f is SELF_TYPE then the static type of e0.f(e1, . . . , en)
is the static type of e0.

(b) [1 pt] List three important considerations when linking a program with a shared library.
Multiple programs should share copies of the library code segment. Multiple programs should
get their own private copies of library data. A linkage (GP) register may be involved in
locating data. Library code may have to call back to program code. Import, export and
relocation tables are used.

(c) [1 pt] Explain the interaction between Python’s duck typing and interfacing Python with C.
When writing the C interface code, all functions called from Python appear to accept a
generic “Object” as an argument. Because a Python function foo could be called foo(5) or
foo(“hello′′, 5), the C programmer must test to see if that Object is an integer or a tuple of
a string and an integer. This is done by querying Python’s runtime system, as in:

if (PyArg_ParseTuple (args , "s#s", & n_plain , & plain_size , & n_keytext))

or

if (PyArg_ParseTuple (args , "s#i" , & n_plain , & plain_size , & n_mask))

The former looks for two strings, the latter looks for a string followed by an integer. Python
makes this determination via duck-typing (e.g., something qualifies as a string or tuple if it
has the right properties).

(d) [2 pts] Cultural literacy. Below are the English translations or names for ten concepts or
figures in world folklore, legend, religion or mythology. Each concept is associated with one of
the ten most common languages (by current number of native-language speakers; Ethnologue
estimate). For each concept, give the associated language. Be specific.

15

• Chinese (Mandarin). The Eight Immortals.
• Javanese. Panji.
• English. King Arthur.
• Japanese. Kami.
• Hindi. Kamayani.
• Arabic. Jinn.
• Russian (Slavic). Ilya Muromets.
• Portuguese. Endovelicus.
• Spanish. Don Juan.
• Bengali. Bankubabur Bandhu.

16

