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A b s t r a c t .  The goal of the SLAM project is to check whether 
or not a program obeys "API usage rules" that specif[y what 
it means to be a good client of an API. The SLAM toolkit 
statically analyzes a C program to determine whether or 
not it violates given usage rules. The toolkit has two unique 
aspects: it does not require the programmer to annotate 
the source program (invariants are inferred); it minimizes 
noise (false error messages) through a process known as 
"counterexample-driven refinement". SLAM exploits and ex- 
tends results fi'om program analysis, model checking and au- 
tomated deduction. }V~ have successfully applied the SLAM 
toolkit to Windows XP device drivers, to both validate be- 
havior and find defects in their usage of kernel APIs. 

C o n t e x t .  Today, many programmers are realizing the ben- 
efits of using languages with static type systems. By pro- 
viding simple specifications about the tbrm of program data, 
programmers receive useful compile-time error messages or 
guarantees about the behavior of their (type-correct) pro- 
grams. Getting additional checking beyond the confines of 
a particular type system generally requires programmers to 
use assertions and pertbrm testing. A number of projects 
have started to tbcus on statically checking programs against 
user-supplied specifications, using techniques from program 
analysis [18, 19], model checking [21, 17, 22], and automated 
deduction [16, 12]. 

Specif icat ion.  The goal of the SLAM project is to check 
temporal sat>ty properties of sequential C programs [7]. 
Roughly stated, temporal sat~ty properties are those proper- 
ties whose violation is witnessed by a finite execution trace 
(see [24] ibr a formal definition). A simple example of a 
sat>ty property is that a lock should be alternatingly ac- 
quired and released. }¥~ encode temporal sat~ty properties 
in a language called S a c  (Specification Language for Inter- 
face Checking) [9], which allows the definition of a sat~ty 
automaton [30, 29] that monitors the execution behavior of 
a program at the level of function calls and returns. The 

* P r e s e n t e d  b y  the  first  a u t h o r .  

Permission to make digital or hard copies of all or part 
of this work for personal or classroom use is granted with- 
out fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this no- 
tice and the full citation on the first page. 2b copy oth- 
erwise, to republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or at fee. 
POPL '02, Jan. 16-18, 2002 Portland, OR USA 
Copyright 2002 ACM ISBN 1-58113-450-9/02/01...$5.00 

automaton can read (but not modify) the state of the C 
program that is visible at the function call/return interface, 
maintain a history, and signal when a bad state occurs. }V~ 
have developed Smc specifications for a variety of Windows 
XP driver properties, ranging from simple locking proper- 
ties (such as given above) to complex properties dealing with 
completion routines, plug-and-play, and power management. 

Given a program P and a S a c  specification S, a pre- 
processor creates an instrumented program P '  such that a 
unique label ERROR is reachable in P '  if-and-only-if P does 
not satisI} S. The goal then shifts to determining whether 
or not the ERROR label is reachable in P ' ,  a generally unde- 
cidable problem. 

Design.  The basic design of the SLAM process is to iterate 
the creation, analysis and refinement of program abstrac- 
tions, until either a t~asible execution path in P' to ERROR 
is tbund~ the prograln P' is validated (EEROR is shown not 
to be reachable), or we run out of resources or patience. 

T h e  SLAM process creates a sound boolears pr~gr~rrs ab- 
straction B' of the C program p,.1 Boolean programs have 
all the control-flow constructs of C programs, but contain 
only boolean variables. Each boolean variable in B' con- 
servatively tracks the state of a predicate (boolean expres- 
sion) in the C program. Boolean programs are created au- 
tomatically using the technique of predicate abstr~ctior~ [20]. 
If a teachability analysis of B' determines that the label 
ERROR is not reachable in B'  then it is not reachable in 
P ' .  It is possible that B'  may be too coarse an abstrac- 
tion of P '  (that is, ERROR is reachable in B' via a path p 
but ERROR is not reachable in P' via p). V~ apply a method 
known as cour~terw'arr~ple-driver~ ~vfir~err~er~t [23, 28, 27] to 
create a more precise boolean program (by adding new pred- 
icates/boolean variables) that does not contain the spurious 
path p (or other paths that are spurious tbr the same reason 
p is). Termination of the SLAM process is addressed below. 

}V~ expect the SLAM process to work well tbr programs 
whose behavior is governed by an underlying finite state pro- 
tocol. Seen in this light, the goal of SLAM is tO tease out 
the underlying "protocol" state machine ti'om the code, to 
a level of precision that is good enough to find real errors 

1Of  course ,  w h e n e v e r  one hea r s  a c la im t h a t  a n  ana lys i s  of C code  
is % o u n d " ,  one m u s t  ask % o u n d  wi th  r e spec t  to  w h a t  a s sumpt ions ' . ' "  
b e c a u s e  of t he  (po ten t i a l )  use  of a r b i t r a r y  p o i n t e r  a r i t h m e t i c .  In 
SLAM, %ve g u a r a n t e e  s o u n d n e s s  u n d e r  t he  a s s u m p t i o n  t h a t  t he  C pro-  
g r a m  obeys  a " logica l  m e m o r y  m o d e l '  in w h i c h  the  express ions  *p a n d  
*(p+i)  re fer  to  t he  s ame  ob j ec t .  A n o t h e r  ana lys i s  (see the  work  on 
C C u r e d  p r e s e n t e d  a t  th i s  s y m p o s i u m  [25]) is n e e d e d  to  d i s c h a r g e  the  
" logical  m e m o r y "  a s s u m p t i o n .  
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or validate the code. For example, while a video card driver 
may have a huge data path, most of this data has no bearing 
on the driver's interaction with the operating system. How- 
ever, some of the driver data definitely are relevant to this 
interaction, and correlations between these data may need 
to be tracked. 

I m p l e m e n t a t i o n .  Three basic tools comprise the SLAM 
toolkit (in addition to the SLI¢ preprocessor): 

• C2Be, a tool that transtbrms a C program P into a 
boolean program /31P(P,E) with respect to a set of 
predicates E [2, 3]. C2Bp translates each procedure 
of the C program separately, enabling it to scale to 
large programs. Using the theory of abstract interpre- 
tation [13], we have characterized the precision of the 
boolean program abstractions created by C2ge [4]. 

• BEBOP, a too1 for performing reachability analysis of 
boolean programs [6, 8]. BEBOe combines interproce- 
dural dataflow analysis in the style of [26] with Binary 
Decision Diagrams [10, 11] (BDDs) to etficiently rep- 
resent the reachable states of the boolean program at 
each program point. 

• NEWTON, a too1 that discovers additional predicates to 
refine the boolean program, by analyzing the t~asibility 
of paths in the C program. 

The SLAM process starts with an initial set of predicates E0 
derived t¥om the SLI¢ specification, and iterates the follow- 
ing steps: 

1. Apply C2BP to construct the boolean program 
13p(P', Ed. 

2. Apply BEBOe to check if there is a path Pi in 
BT'(P' ,  Ei) that reaches the ERROR label. If BEBOP de- 
termines that ERROR is not reachable, then P satisfies 
the SLI¢ specification and the process terminates. 

3. If there is such a path pi, then NEWTON checks if Pi 
is feasible in P ' .  There are three possible outcomes: 
"yes", the process terminates with an error path pi; 
"no", in which case NEWTON finds a set of predicates 
FFi that "explain" the ini~asibility of path pi in P ' ;  
"maybe", the incompleteness of the underlying theo- 
rem prover may cause this outcome, in which case user 
input is required. 

4. Let E/+l := E/U FFs, and i := i + 1, and proceed to the 
next iteration. 

T e r m i n a t i o n :  T h e o r y  a n d  Prac t i ce .  }V~ have proved a 
strong relationship between a process based on iterative re- 
finement of abstractions (such as in SLAM) and traditional 
fixpoint analyses with widening (which is used to ensure 
the termination of abstract interpretations in domains with 
infinite ascending chains) [5]. Using widening, the latter 
process always will terminate, but it may not give a defi- 
nite result ("error found" or "program validated"). ~V~ have 
shown that if there is an oracle that can provide a "widening 
schedule" that causes the latter method to terminate with 
a definite result then an iterative refinement process (which 
does not rely on an oracle) will terminate with a definite 
result. Intuitively, this means that iterative refinement has 
the eft>ct of exploring the entire state space of all possible 
sequences of widenings. 

In practice, the SLAM process has terminated for all 
drivers within 20 iterations. Our major concern has been 
with the overall running time of the process. So far, we are 
able to analyze programs on the order of 10,000 lines, and 
abstractions with several hundred boolean variables in the 
range of minutes to a half hour. In practice, we find that 
most of the predicates SLAM generates are simple equalities 
with possible pointer deret~rences. For this class of predi- 
cates, we believe it is possible to scale the SLAM process to 
several 100,000 lines of code through optimizations outlined 
below. 

A major expense in the SLAM process is the reacha- 
bility step (BEgot'), which has worst case running time 
O(N(GL)a), where N is the size of the boolean program, G 
is the number of global states, and L is the maximum num- 
ber of local states over all procedures. The number of states 
is exponential (in the worst-case) in the maximal number of 
variables in scope. 

The key to scaling for the SLAM process is in control- 
ling the complexity of the boolean program abstraction. 
Satyaki Das has implemented a predicate abstraction tech- 
nique based on successive approximations [15] in the SLAM 
toolkit, which has proven quite useful in this regard. Also 
relevant here is the paper on "lazy abstraction" in this sym- 
posium [21]. 

Additionally, there is substantial overhead in having to 
iterate the SLAM process many times, which can be ad- 
dressed by both the "lazy abstraction" method as well as 
methods tbr heuristically determining a "good" initial set 
of predicates. }V~stley }V~imer has implemented an algo- 
ri thm in SLAM that, given the set of predicates present in 
the SLI¢ specification, determines what other predicates in 
the C program will very likely be needed in the future. This 
technique, based on the value-flow graph [14], greatly re- 
duces the number of iterations of the SLAM process. 

Cha l lenges ,  ~¥~ summarize by discussing some of the chal- 
lenges inherent in the endeavor of checking user-supplied 
properties of sottware. 

Specification burden. The creation of correct specifications 
is a hard problem requiring human time and energy (in the 
extreme, it is as hard as writing a program). If the effort 
put into developing specifications is not paid back in terms 
of discovered detects, then there is little incentive to develop 
specifications in the first place. }V~ focused our specification 
effort at the level of the API so that specifications may be 
reused across different programs using the API. SLI¢ spec- 
ifications can be partial. V~ started by first specit~ing a 
small set of errors in SLI¢, and then gradually enlarging the 
set. Nevertheless, the complexity of the device driver API 
meant that it took considerable eflbrt to arrive at a use- 
ful specification that tbund real detects. The "chicken and 
egg" problem of specifications is the topic of a paper in this 
symposium [1]. 

Annotation burden. By "annotation", we mean a modifica- 
tion to the program text inserted by a programmer explic- 
itly to help an analysis tool make progress. Examples of 
such annotations include loop invariants and pre- and post- 
conditions for procedures, such as required by the ESC-Java 
tool [16]. In SLAM, annotations are not required. Instead, 
the abstract fixpoint analysis of the BEBOP too1 discovers 
inductive invariants (loop invariants as well as procedure 
call summaries) expressed as a boolean combination of the 
predicates that are input to the C2BP tool. 
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Ou@ut. Generating good explanations of errors and their 
causes is a complicated affair, made more difficult as the 
expressivity of the specification language increases. When 
the SLAM toolkit finds an error, it presents it as an error 
path in the source code using an interface that resembles 
a source level debugger. However, there is sometimes an 
overwhelming amount of detail in these traces. }¥~ are de- 
veloping techniques for presenting both short and detailed 
summaries of errors. 

Soundness~Completeness~Usefulness. An analysis is 
%ound" if every true error is reported by the analysis, "com- 
plete" if every reported error is a true error (no noise), 
and "use%l" if it finds errors that someone (programmers, 
testers, customers) cares about. Detbct detection tools such 
as LCLint [19], Metal [18] and PREfix [12] are neither sound 
nor complete, yet are demonstrably useful. SLAM is sound 
(relative to the assumptions stated before), incomplete and 
is starting to demonstrate usefulness in the domain of device 
drivers. 

A c k n o w l e d g e m e n t s .  Many people have contributed to 
the SLAM project. V ~  have been fortunate to have many 
excellent interns who helped push the project forward over 
the summer months of 2000 and 2001. Sagar Chaki, Rupak 
Majumdar and Todd Millstein were 2000 summer interns. 
Sagar Chaki, Satyaki Das, Robby and }¥~stley }¥~imer were 
2001 summer interns. V ~  have had a long and fYuitful col- 
laboration with Andreas Podelski, who has helped us un- 
derstand the theoretical limits of the SLAM approach. 

The SLAM toolkit would not be possible without the soft- 
ware it builds upon. V ~  thank Manuvir Das for providing 
us his one-level flow analysis tool. }¥~ thank the develop- 
ers of the AST toolkit at Microsot% Research, and Manuel 
Fghndrich for providing us his OCaml interface to the AST 
toolkit. Additionally, we have made good use of the publi- 
cally available OCaml language, the Simpli[v and Vampyre 
theorem provers, and the BDD libraries of CMU and Col- 
orado. 

Thanks also to the members of the Sot%ware Productiv- 
ity Tools research group at Microsot% Research tbr many 
enlightening discussions on program analysis, programming 
languages and device drivers. Finally, thanks to Jim Larus, 
who initially suggested device drivers as an interesting ap- 
plication domain. 
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