Abstract Interpretation
(Non-Standard Semantics)

a.k.a.
“Picking The Right Abstraction”

GRAPHIC WIQLENCE DOES 1T GLAMORIZE DOES \T CAUSE VIOLENCE? THE TRICK 1S
W THE MEDIA. \

VIOLEMCE P SURE. DOES IT wHELL . THAT'S TO ASKE THE
PESENSITIZE US TO VIOLENCET | HARD TO PRGVE. RIGHT QUESTION.
_ OF COURSE. DOES IT WELP o
il US TOLERATE VIOLENCE P s T 2
I ALY g S— T\

I|L"‘----_._ B

You BET. DOES T STUMT
QUR. EMPATHY FOR CUR
FELLOW BEINGS 7 HECK YES.

/

Reading Quiz
e All answers are one to three words.
e Write your UVA ID in big block letters.

e In Reflections on Trusting Trust, Ken
Thompson describes a trojan horse in what
general piece of software?

e In Abramski's Abstract Interpretation, an
“Immediate and spectacular payoff” is the
Theorem that if f: D — D is continuous, it has
a d in D, such that:

- f(d) =d
-VecE. f(e)=e = d< e

#2

Why
analyze

programs
statically?

The Problem

It is extremely useful to predict program behavior
statically (= without running the program)

- For optimizing compilers, program analyses, software
engineering tools, finding security flaws, etc.

The semantics we studied so far give us the precise
behavior of a program

However, precise static predictions are impossible
- The exact semantics is not computable

We must settle for approximate, but correct, static
analyses (e.g. VC vs. WP)

#4

The Plan

e We will introduce abstract
interpretation by example

e Starting with a miniscule language we
will build up to a fairly realistic
application

e Along the way we will see most of the
ideas and difficulties that arise in a big
class of applications

#5

A Tiny Language

e Consider the following language of
arithmetic (“shriIMP’’?)

e:il=n|e *e,

e The operational semantics of this language
nln
e.*e,l=elxel

« We’ll take opsem as the “ground truth”

e For this language the precise semantics is
computable (but in general it’s not)

An Abstraction

e Assume that we are interested not in the
value of the expression, but only in its sign:

- positive (+), negative (-), or zero (0)
« We can define an abstract semantics that
computes only the sign of the result

o: Exp — {-, 0, +}

®

+

a(n) = sign(n)
o(e,* &) =0o(e) ® o(e)

O O o|lo
+ O

| Saw the Sign gadh Sagadir 1T Wi

11 more CDs with your Club membershipl

 Why did we want to compute the sign of an
expression?

- One reason: no one will believe you know
abstract interpretation if you haven’t seen the
sign example :-)

 What could we be computing instead?

IF I HAD A COMPUTER, | /7 YOUD STILL HAVE TO READ THE

I'M SURE 1D GET " BOOK AND TELL _ @«M. WHAT'S ALL T‘AE)
BETTER GRATES ON THE COMPUTER o FUSS ABONT COMPUTERS 7/
MY BOOK REPORTS. "'-'.'i_".-';+; 5
—

WHAT MOU WANT
|

W5

®

Correctness of Sign Abstraction

e We can show that the abstraction is correct
in the sense that it predicts the sign

E\/

e

e‘v’

V=0« o(e)

<0< o(e)

>0 o(e)=+

0

DAVE'S — %5 SIGNS

Correctness of Sign Abstraction

e We can show that the abstraction is correct
in the sense that it predicts the sign

el>0&0(e)=+
el=0<0(e)=0

el <0< ao(e)=-
e Our semantics is abstract but precise

e Proof is by structural induction on the
expression e

- Each case repeats similar reasoning

#10

Another View of Soundness

e Link each concrete value to an abstract one:
B L L — { i) O) t }

e This is called the abstraction function ([3)
- This three-element set is the abstract domain

* Also define the concretization function (y):
Y . {') O) +} — 7D(Z)
v(#) = {n€Z|n>0;}

v@Q) = {0}
v-) = {ne€eZ|n<0}

#11

Another View of Soundness 2

e Soundness can be stated succinctly
Ve € Exp. ell € y(a(e))

(the real value of the expression is among the concrete
values represented by the abstract value of the expression)

o Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, 0, +})
o Commutative diagram: EXp A

#12

Another View of Soundness 3

e Consider the generic abstraction of an operator

o(e,0p &,) =o(e;) op o (&)

e This is sound iff

Va,va,. y(a, op a,) > {n,opn, | n; € y(a,), n, € y(a,)}

e eg.v(@,®a)D {n *n, | nevy(@a),n,€vya,)}

e This reduces the proof of correctness to one proof
for each operator

#13

Abstract Interpretation

e This is our first example of an abstract
interpretation

e We carry out computation in an abstract
domain

e The abstract semantics is a sound
approximation of the standard semantics

e The concretization and abstraction functions
establish the connection between the two
domains

#14

Adding Unary Minus and Addition

« We extend the language to

% = O +
crmnle & e S|+ 0
 We define o(- €) = © o(e)
D 0 +
?
« Now we add addition: 0 - 0 +
ei=nle e |-ele+eg i R

« We definec(e, +e,) =a(e,) & o(e,)

#15

Adding Addition

e The sign values are not closed under addition
 What should be the value of “+ @ -"7?
 Start from the soundness condition:

v+ @-)2{n,+n, | n>0,n,<0}=7%

e We don’t have an abstract |®&|- 0 + T

value whose concretization - - - T T

includes Z, so we add one: 0|- 0 + T
T (“top” = “don’t know”) Jl’ Jl’ Jl’

#16

Loss of Precision

o Abstract computation may lose information:
[(1+2) +-3] =0
but: o((1+2) + -3) =
(c(1) ® o(2)) P o(-3) =
(re)@e-=T
 We lost some precision

e But this will simplify the computation of the
abstract answer in cases when the precise
answer is not computable

#17

Adding Division

e Straightforward except for division by 0
- We say that there is no answer in that case
- y(+20)={n|In=n/0,n>0}=0

o Introduce L to be the abstraction of the ()

- We also use the same Q|- 0 + 1
abstraction for + 0 - T L
non-termination! o|L L

1 = “nothing” +1- 0 + T L
T = “something unknown”| T | T 1

#18

Q: Books (750 / 842)

e This 1962 Newbery Medal-
winning novel by Madeleine
L'Engle includes Charles
Wallace, Mrs. Who, Mrs.
Whatsit, Mrs. Which and the
space-bending Tesseract.

Computer Science

e This American Turing-award winner is known
for developing Speedcoding and FORTRAN
(the first two high-level languages), as well
creating a way to express the formal syntax of
a language and using that approach to specify
ALGOL. He later focused on function-level (as
opposed to value-level) programming. His
first major programming project calculated
the positions of the Moon. Oh, and he studied
at UVA as an undergrad (but quit).

The Abstract Domain

e Our abstract domain forms a lattice

o A partial order is induced by vy
a, <a, iffy(a;) Cv(a,)
- We say that a, is more precise than a,!

e Every finite subset has a least-upper
bound (lub) and a greatest-lower bound (glb)

HOW ABOUT
JUST ME THEM?
]

T

YES, CALVING? 00 HBNE YEAK, T wAS WONDERMG IF | OF COURSE HOT.
B GUESTION? WE COULD STOP THE WO THEM, LET'S
LESSON HERE AMD ROOOURM
™ THE PLMIGROMD FOR
TE REST OF TME D
|

AL TURWN TO PACE

Lattice Facts

e A lattice is complete when every subset has
a lub and a gub

- Even infinite subsets!
e Every finite lattice is (trivially) complete

e Every complete lattice is a complete partial
order (recall: proof techniques: induction!)

- Since a chain is a subset

e Not every CPO is a complete lattice
- Might not even be a lattice at all

#22

Lattice History

e Early work in denotational semantics used
lattices (instead of what?)

- But only chains need to have lubs
- And there was no need for T and glb

What is the image below?

Lattice History

e Early work in denotational semantics used
lattices (instead of what?)

- But only chains need to have lubs
- And there was no need for T and glb

« In abstract interpretation we’ll use T to
denote “/ don’t know”.
- Corresponds to all values in the concrete domain

#24

From One, Many

e We can start with the abstraction function 3
B:C—A
(maps a concrete value to the best abstract value)
- A must be a lattice
 We can derive the concretization function vy
v : A— P(C)
v@) ={xeC|p(x)<a}
 And the abstraction for sets a
a: P(C) — A
a(S)=lub {B(X) | xeS}

#25

Example

e Consider our sign lattice

+ ifn>0
B(n) =<0 ifn=0
- ifn<0
e a(S)=lub{B(x) | x € S}
- Example: a ({1, 2})
a ({1, 03)
a ({3)
* y@={n|pm)<aj}
- Example: Y (+) =
y (T) =

y (L) =

1|] 1|
c c c
O O O
= M
+ o+
R
o
—

c

| I |
-+

> 3

W Lo Lo Lo

— e e —
-

T A

IA A TN

>

#26

Galois Connections

« We can show that
- v and a are monotonic (with C ordering on P(C))
- a(y(a)) =a forall a € A

- vy (a(S)) 25 for all S € P(C)

e Such a pair of functions is called a Galois
connection

- Between the lattices A and P(C)

S ——C
v(a(S))%,\ >

#27

Correctness Condition

e In general, abstract interpretation satisfies
the following (amazingly common) diagram

abstract semantics

G dbsractsemantics >

EXp " A abstract
domain

o (<)

abstraction
function for sets

concretization
function

#28

Three Little Correctness Conditions

Three conditions define a
correct abstract interpretation

A LADYBIRD ERS"I" HE#IHHE BUDI{ g
Ei' J e

o and are monotonic “WELL-LOVED TALES’

! . r The Three B
a and y form a Galois =2
connection

= “o. and y are almost inverses”

. Abstraction of operations is
correct

a, op a3, = a(y(a;) op v(a,))

On The Board Questions
« What is the VC for:

fori=¢,, toe,, docdone

» This axiomatic rule is unsound. Why?

l_ {A /\ p} Cthen {Bthen} I_ {A A ﬁp} Celse {Belse}

- {A}if pthenc, . else c_.. {B;., V B...}

#30

Homework

e Read Cousot & Cousot Article

#31

	Abstract Interpretation (Non-Standard Semantics) a.k.a. “Picking The Right Abstraction”
	Slide 2
	Slide 3
	The Problem
	The Plan
	A Tiny Language
	An Abstraction
	 I Saw the Sign
	Correctness of Sign Abstraction
	Slide 10
	Another View of Soundness
	Another View of Soundness 2
	Another View of Soundness 3
	Abstract Interpretation
	Adding Unary Minus and Addition
	Adding Addition
	Loss of Precision
	Adding Division
	Q: Books (750 / 842)
	Slide 20
	The Abstract Domain
	Lattice Facts
	Lattice History
	Slide 24
	From One, Many
	Example
	Galois Connections
	Correctness Condition
	Three Little Correctness Conditions
	On The Board Questions
	Slide 31

