
CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 125 3–867

7DataTypes

7.2.4 The MLType System

The following is an ML version of the tail-recursive Fibonacci function introducedEXAMPLE 7.96
Fibonacci function in ML in Section 6.6.1:

1. fun fib (n) =
2. let fun fib_helper (f1, f2, i) =
3. if i = n then f2
4. else fib_helper (f2, f1+f2, i+1)
5. in
6. fib_helper (0, 1, 0)
7. end;

The let construct introduces a nested scope: function fib_helper is nested
inside fib. The body of fib is the expression fib_helper (0, 1, 0). The body
of fib_helper is an if. . . then . . . else expression; it evaluates to either f2 or
to fib_helper (f2, f1+f2, i+1), depending on whether the third argument
to fib_helper is n or not.

Given this function definition, an ML compiler will reason roughly as follows:
Parameter i of fib_helper must have type int, because it is added to 1 at line
4. Similarly, parameter n of fib must have type int, because it is compared to
i at line 3. In the specific call to fib_helper at line 6, the types of all three
arguments are int, so in this context at least, the types of f1 and f2 are int.
Moreover the type of i is consistent with the earlier inference, namely int, and
the types of the arguments to the recursive call at line 4 are similarly consistent.
Since fib_helper returns f2 at line 3, the result of the call at line 6 will be an
int. Since fib immediately returns this result as its own result, the return type
of fib is int. �

Because ML is a functional language, every construct in ML is an expression.EXAMPLE 7.97
Expression types The ML type system infers a type for every object and every expression. Because

functions are first-class values, they too have types. The type of fib above is int
-> int; that is, a function from integers to integers. The type of fib_helper is

Copyright c© 2009 by Elsevier Inc. All rights reserved. 125

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 126 3–867

126 Chapter 7 Data Types

int * int * int -> int; that is, a function from integer triples to integers. In
denotational terms, int * int * int is a three-way Cartesian product. �

Type correctness in ML amounts to what we might call type consistency : a
program is type correct if the type checking algorithm can reason out a unique
type for every expression, with no contradictions and no ambiguous occurrences
of overloaded names. (For built-in arithmetic and comparison operators, ML
assumes that arguments are integers if it cannot determine otherwise. Haskell
is a bit more general: it allows the arguments to be of any type that supports
the required operations.) If the programmer uses an object inconsistently, theEXAMPLE 7.98

Type inconsistency compiler will complain. In a program containing the following expressions,

fun circum (r) = r * 2.0 * 3.14159;
...
circum (7)

the compiler will infer that circum’s parameter is of type real, and will then
complain when we attempt to pass an integer argument. �

Though usually compiled instead of interpreted, ML is intended for interactive
use. The programmer interacts with the ML system “on-line,” giving it input a
line at a time. The system compiles this input incrementally, binding machine
language fragments to function names, and producing any appropriate compile-
time error messages. This style of interaction blurs the traditional distinction
between interpretation and compilation, but has more of the flavor of the latter.
The language implementation remains active during program execution, but it
does not actively manage the execution of program fragments: it transfers control
to them and waits for them to return.

In comparison to languages in which programmers must declare all types
explicitly, ML’s type inference system has the advantage of brevity and convenience
for interactive use. More important, it provides a powerful form of implicit para-
metric polymorphism more or less for free. While all uses of objects in an MLEXAMPLE 7.99

Polymorphic functions program must be consistent, they do not have to be completely specified:

fun compare (x, p, q) =
if x = p then

if x = q then "both"
else "first"

else
if x = q then "second"
else "neither";

Here the equality test (=) is a built-in polymorphic function of type ’a * ’a
-> bool; that is, a function that takes a pair of arguments of the same type
and produces a Boolean result. The token ’a is called a type variable; it stands
for any type, and takes, implicitly, the role of an explicit type parameter in a
generic construct (Sections 8.4 and 9.4.4). Every instance of ’a in a given call
to = must represent the same type, but instances of ’a in different calls can be
different. Starting with the type of =, an ML compiler can reason that the type of

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 127 3–867

7.2.4 The ML Type System 127

compare is ’a * ’a * ’a -> string. Thus compare is polymorphic; it does not
depend on the types of x, p, and q, so long as they are all the same. The key point
to observe is that the programmer did not have to do anything special to make
compare polymorphic: polymorphism is a natural consequence of ML-style type
inference. �

Type Checking

An ML compiler verifies type consistency with respect to a well-defined set of
constraints. Specifically,

All occurrences of the same identifier (subject to scope rules) must have the
same type.

In an if. . . then . . . else expression, the condition must be of type bool, and
the then and else clauses must have the same type.

A programmer-defined function has type ’a -> ’b, where ’a is the type of
the function’s parameter, and ’b is the type of its result. As we shall see shortly,
all functions have a single parameter. One obtains the appearance of multiple
parameters by passing a tuple as argument.

When a function is applied (called), the type of the argument that is passed
must be the same as the type of the parameter in the function’s definition.
The type of the application (call) is the same as the type of the result in the
function’s definition.

In any case where two types A and B must be “the same,” the ML compiler must
unify what it knows about A and B to produce a (potentially more detailed)
description of their common type. For example, if the compiler has determined
that E1 is an expression of type ’a * int (that is, a two-element tuple whose
second element is known to be an integer), and that E2 is an expression of type
string * ’b, then in the expression if x then E1 else E2, it can infer that
’a is string and ’b is int. Thus x is of type bool, and E1 and E2 are of type
string * int.

Lists

As in most functional languages, ML programmers tend to make heavy use of
lists. In languages like Lisp and Scheme, which are dynamically typed (and also

DESIGN & IMPLEMENTATION

Unification
Unification is a powerful technique. In addition to its role in type inference
(which also arises in the templates [generics] of C++), unification plays a
central role in the computational model of Prolog and other logic languages.
We will consider this latter role in Section 11.1. In the general case the cost
of unifying the types of two expressions can be exponential [Mai90], but the
pathological cases tend not to arise in practice.

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 128 3–867

128 Chapter 7 Data Types

implicitly polymorphic), lists may contain objects of arbitrary types. In ML, allEXAMPLE 7.100
Polymorphic list operators elements of a given list must have the same type, but—and this is important—

functions that manipulate lists without performing operations on their members
can take any kind of list as argument:

fun append (l1, l2) =
if l1 = nil then l2
else hd (l1) :: append (tl (l1), l2);

fun member (x, l) =
if l = nil then false
else if x = hd (l) then true
else member (x, tl (l));

Here append is of type ’a list * ’a list -> ’a list; member is of type
’a * ’a list -> bool. The reserved word nil represents the empty list. The
built-in :: constructor is analogous to cons in Lisp. It takes an element and a list
and tacks the former onto the beginning of the latter; its type is ’a * ’a list ->
’a list. The hd and tl functions are analogous to car and cdr in Lisp. They
return the head and the remainder, respectively, of a list created by ::. �

Lists are most often written in ML using “square bracket” notation. The tokenEXAMPLE 7.101
List notation [] is the same as nil. [A, B, C] is the same as A :: B :: C :: nil. Only

“proper” lists—those that end with nil—can be represented with square brackets.
The append function defined above is actually provided in ML as a built-in infix
constructor, @. The expression [a, b, c] @ [d, e, f, g] evaluates to [a, b,
c, d, e, f, g]. �

Since ML lists are homogeneous (all elements have the same type), one might
wonder about the type of nil. To allow it to take on the type of any list, nil is
defined not as an object, but as a built-in polymorphic function of type unit ->
’a list. The built-in type unit is simply a placeholder, analogous to void in C.
A function that takes no arguments is said to have a parameter of type unit.
A function that is executed only for its side effects (ML is not purely functional)
is said to return a result of type unit.

Overloading

We have already seen that the equality test (=) is a built-in polymorphic operator.
The same is not true of ordering tests (<, <=, >=, >) or arithmetic operators (+, -,
*). The equality test can be defined as a polymorphic function because it accepts
arguments of any type. The relations and arithmetic operators work only on
certain types. To avoid limiting them to a single type of argument (e.g., integers),
ML defines them as overloaded names for a collection of built-in functions, each
of which operates on objects of a different type (integers, floating-point numbers,
strings, etc.). The programmer can define additional such functions for new types.

Unfortunately, overloading sometimes interferes with type inference—thereEXAMPLE 7.102
Resolving ambiguity with
explicit types

may not be enough information in an otherwise valid program to resolve which
function is named by an overloaded operator:

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 129 3–867

7.2.4 The ML Type System 129

fun square (x) = x * x;

Here the ML compiler cannot tell whether * is meant to refer to integer or floating-
point multiplication; it assumes the former by default. If this is not what the
programmer wants, the alternative must be specified explicitly:

fun square (x : real) = x * x; �

In addition to allowing the resolution of overloaded symbols, explicit type dec-
larations serve as “verified documentation” in ML programs. ML programmers
often declare types for variables even when they aren’t required, because the dec-
larations make a program easier to read and understand. Readability could also
be enhanced by comments, of course, but programmer-specified types have a very
important advantage: the compiler understands their meaning, and ensures that
all uses of an object are consistent with its declared type.

Haskell adopts a more general approach to overloading known as type classes.EXAMPLE 7.103
Type classes in Haskell The equality functions, for example, are declared (but not defined) in a predefined

class Eq:

class Eq a where
(==), (/=) :: a -> a -> Bool -- type signature
x /= y = not (x == y) -- default implementation of /=

Here a (written without a tick mark) is a type parameter: both == and /= take
two parameters of the same type and return a Boolean result. Any value that is
passed to one of these functions will be inferred to be of some type in class Eq. Any
value that is passed to one of the ordering functions (<, <=, >=, >) will similarly
be inferred to be of some type in class Ord:

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

The“(Eq a) =>”in the header of this declaration indicates that Ord is an extension
of Eq; every type in class Ord must support the operations of class Eq as well.
There is a strong analogy between type classes and the interfaces of languages with
mix-in inheritance (Section 9.5.4). �
Pattern Matching

In our discussion so far, we have been “glossing over” another key feature of ML
and its types: namely, pattern matching. One of the simplest forms of pattern
matching occurs in functions of more than one parameter. Strictly speaking, such
functions do not exist. Every function in ML takes a single argument, but this
argument may be a tuple. A tuple resembles the records (structures) of manyEXAMPLE 7.104

Pattern matching of
argument tuples

other languages, except that its members are identified by position, rather than by
name. As an example, the function compare defined above takes a three-element
tuple as argument. All of the following are valid:

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 130 3–867

130 Chapter 7 Data Types

compare (1, 2, 3);
let val t = ("larry", "moe", "curly") in compare (t) end;
let val d = (2, 3) in

let val (a, b) = d in
compare (1, a, b)

end
end;

Here pattern matching occurs not only between the parameters and arguments
of the call to compare, but also between the left- and right-hand sides of the val
construct. (The reserved word val serves to declare a name. The construct fun
inc (n) = n+1; is syntactic sugar for val inc = (fn n => n+1);.) �

As a somewhat more plausible example, we can define a highly useful functionEXAMPLE 7.105
Swap in ML that reverses a two-element tuple:

fun swap (a, b) = (b, a);

Since ML is (mostly) functional, swap is not intended to exchange the value
of objects; rather, it takes a two-element tuple as argument, and produces the
symmetrical two-element tuple as a result. �

Pattern matching in ML works not only for tuples, but for any built-in or user-
defined constructor of composite values. Constructors include the parentheses
used for tuples, the square brackets used for lists, several of the built-in operators
(::, @, etc.), and user-defined constructors of datatypes (see below). Literal
constants are even considered to be constructors, so the tuple t can be matched
against the pattern (1, x): the match will succeed only if t’s first element is 1.

In a call like compare (t) or swap (2, 3), an ML implementation can tell
at compile time that the pattern match will succeed: it knows all necessary infor-
mation about the structure of the value being matched against the pattern. In
other cases, the implementation can tell that a match is doomed to fail, generally
because the types of the pattern and the value cannot be unified. The more inter-
esting cases are those in which the pattern and the value have the same type (i.e.,
could be unified), but the success of the match cannot be determined until run
time. If l is of type int list, for example, then an attempt to “deconstruct” lEXAMPLE 7.106

Run-time pattern matching into its head and tail may or may not succeed, depending on l’s value:

let val head :: rest = l in ...

If l is nil, the attempted match will produce an exception at run time (we will
consider exceptions further in Section 8.5). �

We have seen how pattern matching works in function calls and val constructs.
It is also supported by a case expression. Using case, the append function aboveEXAMPLE 7.107

ML case expression could have been written as follows:

fun append (l1, l2) =
case l1 of

nil => l2
| h :: t => h :: append (t, l2);

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 131 3–867

7.2.4 The ML Type System 131

Here the code generated for the case expression will pattern-match l1 first against
nil and then against h :: t. The case expression evaluates to the subexpression
following the => in the first arm whose pattern matches. The compiler will issue
a warning message at compile time if the patterns of the arms are not exhaustive,
or if the pattern in a later arm is completely covered by one in an earlier arm
(implying that the latter will never be chosen). �

A useless arm is probably an error, but harmless, in the sense that it will never
result in a dynamic semantic error message. Nonexhaustive cases may be inten-
tional, if the programmer can predict that the pattern will always work at run
time. Our append function would have generated such a warning if written asEXAMPLE 7.108

Coverage of case labels follows:

fun append (l1, l2) =
if l1 = nil then l2
else let val h::t = l1 in h :: append (t, l2) end;

Here the compiler is unlikely to realize that the let construct in the else clause
will be elaborated only if l1 is nonempty. (This example looks easy enough to
figure out, but the general case is uncomputable, and most compilers won’t contain
special code to recognize easy cases.) �

When the body of a function consists entirely of a case expression, it can alsoEXAMPLE 7.109
Function as a series of
alternatives

be written as a simple series of alternatives:

fun append (nil, l2) = l2
| append (h::t, l2) = h :: append (t, l2); �

Pattern matching features prominently in other languages as well, particularly
those (such as Snobol, Icon, and Perl) that place a heavy emphasis on strings.
ML-style pattern matching differs from that of string-oriented languages in its
integration with static typing and type inference. Snobol, Icon, and Perl are all
dynamically typed.

By casting “multiargument” functions in terms of tuples, ML eliminates the
asymmetry between the arguments and return values of functions in many other
languages. As shown by swap above, a function can return a tuple just as easily as
it can take a tuple argument. Pattern matching allows the elements of the tuple toEXAMPLE 7.110

Pattern matching of return
tuple

be extracted by the caller:

let val (a, b) = swap (c, d) in ...

Here a will have the value given by d; b will have the value given by c. �

Datatype Constructors

In addition to lists and tuples, ML provides built-in constructors for records,
together with a datatype mechanism that allows the programmer to introduce
other kinds of composite types. A record is a composite object in which the
elements have names, but no particular order (the language implementation must

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 132 3–867

132 Chapter 7 Data Types

choose an order for its internal representation, but this order is not visible to
the programmer). Records are specified using a “curly brace” constructor: {nameEXAMPLE 7.111

ML records = "Abraham Lincoln", elected = 1860}. (The same value can be denoted
{elected = 1860, name = "Abraham Lincoln"}.) �

ML’s datatype mechanism introduces a type name and a collection of con-EXAMPLE 7.112
ML datatypes structors for that type. In the simplest case, the constructors are all functions of

zero arguments, and the type is essentially an enumeration:

datatype weekday = sun | mon | tue | wed | thu | fri | sat;

In more complicated examples, the constructors have arguments, and the type is
essentially a union (variant record):

datatype yearday = mmdd of int * int | ddd of int;

This code defines mmdd as a constructor that takes a pair of integers as argument,
and ddd as a constructor that takes a single integer as argument. The intent is to
allow days of the year to be specified either as (month, day) pairs or as integers
in the range 1 . . 366. In a non–leap year, the Fourth of July could be represented
either as mmdd (7, 4) or as ddd (188), though the equality test mmdd (7, 4) = ddd
(188) would fail unless we made yearday an abstract type (similar to the Euclid
module types of Section 3.3.4), with its own, special, equality operation. �

ML’s datatypes can even be used to define recursive types, without the need
for pointers. The canonical ML example is a binary tree:EXAMPLE 7.113

Recursive datatypes
datatype int_tree = empty | node of int * int_tree * int_tree;

By introducing an explicit type variable in the definition, we can even create a
generic tree whose elements are of any homogeneous type:

datatype ’a tree = empty | node of ’a * ’a tree * ’a tree;

Given this definition, the tree

R

Y

WZ

X

can be written node (#"R", node (#"X", empty, empty), node (#"Y", node
(#"Z", empty, empty), node (#"W", empty, empty))). Recursive types also
appear in Lisp, Clu, Java, C#, and other languages with a reference model of
variables; we will discuss them further in Section 7.7. �

Because of its use of type inference, ML generally provides the effect of struc-
tural type equivalence. Definitions of datatypes can be used to obtain the effectEXAMPLE 7.114

Type equivalence in ML of name equivalence when desired:

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 133 3–867

7.2.4 The ML Type System 133

datatype celsius_temp = ct of int;
datatype fahrenheit_temp = ft of int;

A value of type celsius_temp can then be obtained by using the ct constructor:

val freezing = ct (0);

Unfortunately, celsius_temp does not automatically inherit the arithmetic oper-
ators and relations of int: unless the programmer defines these operators explic-
itly, the expression ct (0) < ct (20) will generate an error message along the
lines of “operator not defined for type.” �

3CHECK YOUR UNDERSTANDING

54. Under what circumstances does an ML compiler announce a type clash?

55. Explain how the type inference of ML leads naturally to polymorphism.

56. What is a type variable? Give an example in which an ML programmer might
use such a variable explicitly.

57. How do lists in ML differ from those of Lisp and Scheme?

58. Why do ML programmers often declare the types of variables, even when they
don’t have to?

59. What is unification? What is its role in ML?

60. List three contexts in which ML performs pattern matching.

61. Explain the difference between tuples and records in ML. How does an ML
record differ from a record (structure) in languages like C or Pascal?

62. What are ML datatypes? What features do they subsume from imperative
languages such as C and Pascal?

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 134 3–867

