
CS 4610 — Midterm 2 KEY

• Write your name and UVa ID on the exam. Pledge the exam before turning it
in.

• There are 12 pages in this exam (including this one) and 7 questions, each with multiple
parts. Some questions span multiple pages. All questions have some easy parts and
some hard parts. If you get stuck on a question move on and come back to it later.

• You have 1 hour and 20 minutes to work on the exam.

• The exam is closed book, but you may refer to your two pages of notes.

• Even vaguely looking at a cellphone or similar device (e.g., tablet computer) during
this exam is cheating.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Please do not
use any additional scratch paper.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We might deduct points if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

– Good Writing Example: Python and Ruby have implemented some Smalltalk-
inspired ideas with a more C-like syntax.

– Bad Writing Example: Im in ur class, @cing ur t3stz!1!

• If you leave a non-extra-credit portion of the exam blank, you will receive one-third
of the points for that portion (rounded down) for not wasting our time. If
you randomly guess and throw likely words at us, we will be much less sanguine.

UVa ID: KEY

NAME (print): KEY

1



UVa ID: (yes, again!) KEY

Problem Max points Points

1 — Type Checking 16

2 — Operational Semantics 24

3 — Code Generation 12

4 — Analysis and Optimization 15

5 — Linking, Loading 10

6 — Game Theory 10

7 — Short Answer 18

Extra Credit 0

TOTAL 105

Honor Pledge:

How do you think you did?

Page 2



1 Type Checking (16 points)

Consider an extension of Cool to support arrays of objects. We introduce an Array class
that inherits from Object. Other classes cannot inherit from the Array class. We introduce
four new expressions for manipulating Cool arrays:

e ::= new Array[e]

| e1[e2]

| e1[e2]← e3

| foreach vi, ve in e1 do e2

Subexpressions are evaluated left-to-right (e.g., e1 before e2). The first expression form
creates a new array of size e. The array initially holds e separate copies of new Object. The
size must be non-negative at runtime to avoid an exception. The second expression form
reads from array e1 at index e2, returning the object stored there. The third writes to array
e1 at index e2 the value e3 (and returns e3). For reads and writes, the index must be between
1 and the size of the array at runtime to avoid an exception. The final expression executes
e2 for every element in array e1 with variable name vi bound to the that element’s index and
variable name ve bound to that element’s value. Each element is considered in ascending
order starting from 1. For example, this code:

let arr : Array <- new Array[3] in

arr[3] <- 5309;

arr[1] <- 867;

arr[2] <- "unicorn";

foreach i, elt in arr do {

out_string("element ") ; out_int(i) ;

out_string(" is ");

case elt of

n : Int => out_int(n) ;

s : String => out_string(s) ;

esac;

out_string("\n");

} ;

Produces:

element 1 is 867

element 2 is unicorn

element 3 is 5309

Give typing rules for the four new array expressions. Be as permissive as possible without
permitting any unsafe programs. [4 pts] each.

Page 3



O, M,C ` e : Int

O, M, C ` new Array[e] : Array

O, M, C ` e1 : Array O,M, C ` e2 : Int

O, M, C ` e1[e2] : Object

O, M, C ` e1 : Array O,M, C ` e2 : Int O, M,C ` e3 : T

O, M, C ` e1[e2]← e3 : T

O, M, C ` e1 : Array O[vi 7→ Int][ve 7→ Object], M,C ` e2 : T

O, M, C ` foreach vi, ve in e1 do e2 : Object

Page 4



2 Operational Semantics and Exceptions (24 points)

Following the previous problem, we extend our notion of Cool values v to include array
objects and a generic array exception used to report any array problem at run-time. Recall
our use of a generalized return value g to model exceptions.

v ::= void

| X(a1 = l1, . . . , an = ln)

| Array(l1, . . . , ln)

| ArrayException

g ::= Norm(v)

| Exc(v)

Give the new operational semantics rules. Write only those rules where all subexpressions
e, e1 and e2 return Normal values. [3 pts] each.

so, E, S1 ` e : Norm(Int(n)), S2

n > 0
l1, . . . , ln = . . . newloc(S1) . . .
S3 = S2[l1 7→ DObject, . . . , ln 7→ DObject]
v = Norm(Array(l1, . . . , ln))

so, E, S1 ` new Array[e] : v, S3

so, E, S1 ` e : Norm(Int(n)), S2

n ≤ 0
v = Exc(ArrayException)

so, E, S1 ` new Array[e] : v, S2

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

so, E, S2 ` e2 : Norm(Int(i)), S3

1 ≤ i ≤ n
v = Norm(S3[li])

so, E, S1 ` e1[e2] : v, S3

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

so, E, S2 ` e2 : Norm(Int(i)), S3

(i < 1) ∨ (i > n)
v = Exc(ArrayException)

so, E, S1 ` e1[e2] : v, S3

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

so, E, S2 ` e2 : Norm(Int(i)), S3

so, E, S3 ` e3 : Norm(v), S4

1 ≤ i ≤ n
S5 = S4[li 7→ v]

so, E, S1 ` e1[e2]← e3 : Norm(v), S5

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

so, E, S2 ` e2 : Norm(Int(i)), S3

so, E, S3 ` e3 : Norm(v), S4 (optional)
(i < 1) ∨ (i > n)
v = Exc(ArrayException)

so, E, S1 ` e1[e2]← e3 : v, S4

Page 5



Answer Variant #1:

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

lvi
= newloc(S2)

so, E[vi 7→ lvi
, ve 7→ l1], S2[lvi

7→ Int(1)] ` e2 : v1, S2+1
...
so, E[vi 7→ lvi

, ve 7→ ln], S2+n−1[lvi
7→ Int(n)] ` e2 : v1, S2+n

so, E, S1 ` foreach vi, ve in e1 do e2 : void, S2+n

Answer Variant #2:

so, E, S1 ` e1 : Norm(Array(l1 . . . ln)), S2

c = “let vi : Int← 1 in

while vi ≤ n loop

let ve : Object← e1[vi] in
e2;
vi ← vi + 1;

pool”
so, E, S2 ` c : v, S3

so, E, S1 ` foreach vi, ve in e1 do e2 : void, S3

Page 6



3 Code Generation (12 points)

In this problem we consider code generation for the arrays introduced in the previous prob-
lems. Following the approach described in class, we decide to lay out array objects as follows:

type tag
object size

dispatch table pointer
array element 1 pointer

...
array element n pointer

[8 pts] Give the stack machine code generation rule for cgen(e1[e2]← e3). You may assume
there is a function at label raise ArrayException; call to that label with no arguments to raise
an ArrayException at run-time.

cgen(e1[e2] <- e3) =

cgen(e1)

push acc

cgen(e2)

tmp1 <- acc # tmp1 holds index

pop tmp2 # tmp2 holds array

ld tmp3 <- tmp2[1] # load array object size

tmp3 <- tmp3 - 3 # number of elements

if tmp1 < 1 goto err # index too low

if tmp2 > tmp3 goto err # index too high

tmp1 <- tmp1 + 2

tmp1 <- tmp1 + tmp2 # tmp1 points to e1[e2]

push tmp1

cgen e3

pop tmp1

tmp1 <- acc

jmp end

err:

call raise_ArrayException

end:

[4 pts] Give the general formula for NT (e1[e2]← e3), the number of temporaries required.

Option A: max( NT(e1), 1 + NT(e2), 1 + NT(e3) )

Option B: max( NT(e1), 1 + NT(e2), 2 + NT(e3) )

Page 7



4 Analysis and Optimization (15 points)

We desire to eliminate expensive array bounds checks at run-time in cases where we can
prove statically that the indices are in bounds. To this end we introduce an internal analysis
that tracks upper and lower bounds for integer variables. We write [low , high] to indicate
the bounds for a variable. The special values ∞ and −∞ are also allowed in bounds. Thus,
[3, 3] means the variable is exactly 3, [3, 5] means the variable must be between 3 and 5,
and [−∞,∞] means the variable could be anything. We also write # for information at a
location that is not (yet) reachable. For example:

arr <- new Array[10];

x <- 5;

if user_input() > 2:

x <- 3;

else:

x <- 7;

x <- x + 1;

arr[x] <- "alicorn";

At the end of the code snippet, [4, 8] is a bound for x, so we can eliminate the normal bounds
check from the array write. We write Bin(x, s) and Bout(x, s) for the bounds values for x
before and after statement s, respectively. Give the local transfer functions for Bout in terms
of Bin . Assume Bin(x, s) = [a, b]; do not consider # for these four.

(a) [1 pt] Bout(x, x← const) = [const , const ]

(b) [1 pt] Bout(x, y ← . . .) = Bin(x, s) or [a, b]

(c) [2 pts] Bout(x, x← x + const) = [a + const , b + const ]

(d) [1 pt] Bout(x, x← function()) = [−∞,∞]

(e) Fill in each blank with the most general and precise answer. [5 pts] each.

x > 5 or x >= 6 [min(a,c), max(b,d)]

  

if _________

x = [-11, 5]

True

False

x = [6, 22]

X = [-11, 22]

x = 
    _________________

x = [a, b]

x = [c, d]

x = #

Page 8



5 Linking, Loading and Libraries (10 points)

In the diagram below, two relocatable objects and their resulting linked executable are shown.
The final addresses in the linked executable are shown underlined.

(a) [4 pts] Fill in each box labeled “Imports”, “Exports” or “Relocations” with the appro-
priate variable or label names.

(b) [6 pts] Label each offset measurement bar with the appropriate amount. Four of the
bars are already labeled for you. Fill in the remaining five bars for Object A and three
bars for Object B.

  

Imports
P

Exports
M
D

Relocations
L

Code
…

M: R1  P←
bnz R1 L
return R1

L: return 0

Data
D: 123...

Object A
Imports

M
D

Exports
P

Relocations
E

Code
…

P: R1  E←
R2  M←
call R2
R3  D←
R4  R1+R3←
return R4

Data
E: 255...

Object B

0 Code
...

100 M: R1  P← (650)
200 bnz R1 L (400)

return R1
400 L: return 0

...
650 P: R1  E←      (1275)
750 R2  M← (100)

call R2
900 R3  D←      (1050)

R4  R1+R3←
return R4

1000 Data
1050 D: 123...
1275 E: 255...

Linked Executable

450

100 200 400

200

50

500
150

75
200
300 450

950

Page 9



6 Game Theory (10 points)

Following our study of two-person impartial games of perfect information, we decide to
extend Nim to be more forgiving. We consider a version of Nim in which you must remove
one or more items from the same heap, but may also elect to take one item from a different
heap if you like. (You don’t have to take that one extra item from a separate heap — you
can skip that option.) We call this the “Nim With Interesting Takes” variant, or Nimwit.

Note that in Nimwit, two identical heaps need not be a loss for the current player. If you
are facing two singleton heaps A and B, you could take one from heap A then elect to take
one from heap B, leaving your opponent facing the empty board (and thus a game loss).

Consider the following Nimwit game of three heaps:

A A B C

(a) [7 pts] If you are going first, what move would you make to win? Circle the items you
would remove.

Answer: Take one A.

(b) [3 pts] We mentioned in class that all impartial games are equivalent to Nim. What
standard Nim sum does this Nimwit game equal? (That is, what height singleton
standard Nim heap does it equal?)

Answer: 4.

7 Short Answer (18 points)

For each short answer question, limit your answer to at most four sentences.

(a) [3 pts] One weakness of the array approach considered here is that a case expression
is typically required to make use of a retrieved object. Argue for or against the claim
that a small change to SELF TYPE could alleviate this problem.

Against. SELF TYPE allows us to typecheck good methods (that we would otherwise
reject) that return self in the presence of inheritance. Our arrays cannot be inherited from,
so SELF TYPEArray is Array or any subtype of Array, which is just Array, so it does not
help directly. Instead, we would want to extend our type system so that ArrayInt is treated
differently from ArrayString, for example.

(b) [3 pts] How would you change our array object layout to support inheriting from and
extending the Array class?

Our array object layout treats the array entries as fields. Different arrays can have different
number of entries. But for dynamic dispatch and inheritance to work, all fields must be at

Page 10



a known offset. If Point inherits from Array and adds x and y fields, the x field would be at
offset 4 in an array of size 1, but at offset 5 in an array of size 2. One solution: rather than
“inlining” each array element separately, instead have one object field that is a pointer to
all of the array elements. Now the x field in our example is always at offset 4, regardless of
the array size.

(c) [3 pts] Argue for or against the claim that the debugging table approach described in
class can be applied to programs that use stop-and-copy garbage collection.

For. The debugging table must be able to locate local and global variables in memory.
Those local and global variables are exactly the roots in garbage collection. Stop-And-
Copy does not move the roots, it moves the heap objects pointed to by the roots. For
example, if Register 1 holds local variable X, after Stop-And-Copy, Register 1 will still hold
local variable X (although its value may have changed if X is a pointer). So a debugging
table that says local variable X lives in Register 1 will be correct in with copying garbage
collection. (Note that more complicated heap variables, like X-¿Y-¿Z, still just start from
the root X, and so work fine.)

(d) [3 pts] What information would need to be communicated by the compiler and/or
runtime system to admit accurate sampling-based profiling in the presence of garbage
collection?

The profiler would need to be able to tell the difference between normal user program
execution and garbage collection. This should be as simple as indicating which program
counter ranges correspond to the garbage collector code. The profiler could then report
garbage collection time and user function time separately.

(e) [3 pts] Suppose we are creating a Cool-to-C native interface. Fill in the source code
below for a C method to convert Cool Int objects to C int values.

int cool_Int_to_c_int(cool_object * cobj) {

int * cobj_as_int = (int *) cobj;

return cobj_as_int[3]; // int value

// Offset 0 is TypeTag, Offset 1 is Size, Offset 2 is VtablePtr

}

(f) [3 pts] Suppose you are writing C code that is called from OCaml as part of a multi-
language project. When would the runtime system ever need to invoke the garbage
collector inside your C code?

Whenever your C glue code needs to allocate memory. This is typically when you need to
create a new OCaml value, such as a Tuple or a String.

Page 11



8 Extra Credit (0 points)

“No Answer” is not valid on extra credit questions.

(a) [1 pt] Answer the following true-false questions about SELF_TYPE.

i. FALSE: T ≤ SELF_TYPET

ii. FALSE: SELF_TYPE helps us to reject incorrect programs that are not rejected
by the normal type system.

iii. FALSE: SELF_TYPE is a dynamic type.

iv. FALSE: A formal parameter to a method can have type SELF_TYPE.

v. TRUE: If the return type of method f is SELF_TYPE then the static type of
e0.f(e1, . . . , en) is the static type of e0.

(b) [1 pt] List one thing you would like to see changed or improved in the class. List one
thing that you are enjoying.

(c) [2 pts] Cultural literacy. Below are the English translations or names for ten concepts
or figures in world folklore, legend, religion or mythology. Each concept is associated
with one of the ten most common languages (by current number of native-language
speakers; Ethnologue estimate). For each concept, give the associated language. Be
specific.

• German. The Pied Piper.

• Mandarin/Chinese. The Eight Immortals.

• English. King Arthur.

• Japanese. Kami.

• Hindi. Kamayani.

• Arabic. Jinn.

• Russian/Slavic. Ilya Muromets.

• Portuguese. Endovelicus.

• Spanish. Don Juan.

• Bengali. Bankubabur Bandhu.

Page 12



9 Twtr: Which tongues work best for microblogs?

(0 points)

(for fun and stress relief only — no questions on this page)

The Economist – March 31st 2012

THIS 78-character tweet in English would be only 24 characters long in Chinese. That makes Chinese 
ideal for micro-blogs, which typically restrict messages to 140 symbols. Though Twitter, with 140m 
active users the world’s best-known microblogging service, is blocked in China, Sina Weibo, a local 
variant, has over 250m users. Chinese is so succinct that most messages never reach that limit, says 
Shuo Tang, who studies social media at the University of Indiana.

Japanese is concise too: fans of haiku, poems in 17 syllables, can tweet them readily. Though Korean 
and Arabic require a little more space, tweeters routinely omit syllables in Korean words; written 
Arabic routinely omits vowels anyway. Arabic tweets mushroomed last year, though thanks to the 
uprisings across the Middle East rather than any linguistic features. It is now the eighth most-used 
language on Twitter with over 2m public tweets every day, according to Semiocast, a Paris-based 
company that analyses social-media trends. 

Romance tongues, among others, generally tend to be 
more verbose (see chart). So Spanish and Portuguese, 
the two most frequent European languages in the 
Twitterverse after English, have tricks to reduce the 
number of characters. Brazilians use “abs” for abraços 
(hugs) and “bjs” for beijos (kisses); Spanish speakers 
need never use personal pronouns (“I go” is denoted by 
the verb alone: voy). But informal English is even 
handier. It allows personal pronouns to be dropped, has 
no fiddly accents and enjoys a well developed culture of 
abbreviation. “English is unmatched in its acronyms, 
such as DoD for department of defence,” says 
Mohammed al-Basha, a spokesman for the Yemeni 
government, who tweets in English and Arabic.

Twitter’s growth around the world has reduced the 
proportion of total global tweets in English to 39% from 
two-thirds in 2009, but polyglot tweeters still often 
favour the language because of its ubiquity. Many 
Arabic-speaking revolutionaries used it to get their 
messages to a larger audience during the Arab spring, 
sometimes using automatic translation services. Until a 
recent upgrade, users of Arabic, Farsi and Urdu had 
trouble using hashtags (words prefixed with the # sign to mark a tweet’s subject). Some people use 
English to avoid censorship. Micro-bloggers on Sina Weibo (where messages containing some 
characters are automatically blocked) wrote “Bo” in English in order to comment freely about Bo Xilai, 
a purged party chief.

Though ubiquity and flexibility may give English hegemony, Twitter is also helping smaller and 
struggling languages. Basque- and Gaelic-speakers tweet to connect with other far-flung speakers. 
Kevin Scannell, a professor at St Louis University, Missouri, has found 500 languages in use on Twitter 
and has set up a website to track them. Gamilaraay, an indigenous Australian language, is thought to 
have only three living speakers. One of them is tweeting—handy for revivalists.

Page 13


