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ABSTRACT

We present a macroprogramming framework called Macro-
Lab that offers a vector programming abstraction similar to
Matlab for Cyber-Physical Systems (CPSs). The user writes
a single program for the entire network using Matlab-like op-
erations such as addition, find, and max. The framework
executes these operations across the network in a distributed
fashion, a centralized fashion, or something between the two
– whichever is most efficient for the target deployment. We
call this approach deployment-specific code decomposition
(DSCD). MacroLab programs can be executed on mote-class
hardware such as the Telos [24] motes. Our results indicate
that MacroLab introduces almost no additional overhead in
terms of message cost, power consumption, memory foot-
print, or CPU cycles over TinyOS programs.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Real-time and Embedded Systems; D.1.3 [Programming

Techniques]: Concurrent Programming–Distributed pro-
gramming

General Terms

Design, Languages, Performance

Keywords

Cyber-Physical Systems, Embedded Networks, Macropro-
gramming, Programming Abstractions

1. INTRODUCTION
Cyber-Physical Systems (CPSs) combine low-power ra-

dios with tiny embedded processors in order to simultane-
ously cover large geographic areas and provide high-resolution
sensing/actuation. This revolutionary technology has begun
to deliver a new generation of engineering systems and sci-
entific breakthroughs. However, CPSs are extremely diffi-
cult to program; building even a simple application entails
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several complex tasks such as distributed programming, re-
source management, and wireless networking. CPSs have
reached a reasonable degree of technological maturity, but
their impact and widespread adoption is limited by the com-
plexity of their software.

In this paper, we present the MacroLab framework for
CPS software development. We call MacroLab a macropro-
gramming system because the user writes a single macro-
program for the entire CPS and the framework automati-
cally decomposes it into to a set of microprograms that are
loaded onto each node. MacroLab provides a vector pro-
gramming abstraction using syntax similar to Matlab, which
already has broad adoption among scientists and engineers.
Data from sensors and actuators are manipulated just like
other numerical vectors, making MacroLab programs sim-
ilar to and easy to integrate with existing scientific soft-
ware. Its traditional, imperative programming model sup-
ports general-purpose programming and is a natural way to
encode CPS applications involving both sensing and actua-
tion.

MacroLab introduces a new data structure called a macro-
vector which can be used to store in-network data such as
sensor readings. Conceptually, each element of a macro-
vector corresponds to a different node in the network, but
macrovectors can be stored in different ways. Each ele-
ment can be on its corresponding node, all elements can
be on a central server, or all elements can be replicated on
all nodes. No matter how a macrovector is stored, it can
support standard vector operations such as addition, find,
and max. These operations may run in parallel on a dis-
tributed macrovector, sequentially on a centralized macro-
vector, or somewhere in between. Thus, by changing the
representation of each macrovector, MacroLab can decom-
pose a macroprogram in the way that is most efficient for a
particular deployment. For example, it may use centralized
representations for small star topologies and distributed rep-
resentations in large mesh networks. We call this approach
deployment-specific code decomposition (DSCD).

In contrast to systems like TinyOS [15], the MacroLab
programmer specifies application logic in terms of abstract
computation and does not need to explicitly control data
partitioning or message passing from within the source code.
Instead, these tasks are performed automatically as compile-
time and run-time optimizations. By separating application
logic from program decomposition, MacroLab can improve
code portability, increase code reuse, and decrease overall
development costs. Furthermore, it can reduce overall re-
source consumption. Our results show that automatically
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choosing a decomposition for each deployment can reduce
message passing by up to 50 percent over using a single de-
composition for all deployments.

MacroLab provides a clear cost model so that the pro-
grammer can write code that produces efficient and opti-
mized decompositions. This is analogous to the idea in Mat-
lab that vectorized code is more efficient than for loops.
MacroLab does not compromise on power or memory ef-
ficiency in order to provide a high-level vector program-
ming abstraction and our results indicate that MacroLab
programs are just as efficient as normal TinyOS programs.

2. BACKGROUND AND RELATEDWORK
The predominant way to program a CPS today is with

node-level programming. The user writes a microprogram
that is loaded onto each node that specifies when it should
sense, actuate, or send messages and how to respond to
incoming messages or hardware events. This is a difficult
and error-prone way to design a system and would be simi-
lar to an architect designing a building by generating step-
by-step instructions for each construction worker instead of
generating blueprints. Node-level programming is so diffi-
cult that many so-called macroprogramming systems have
recently been proposed: the user writes a single program
that specifies global operations for the entire CPS and the
framework automatically decomposes this into a set of mi-
croprograms for each node.

Macroprogramming systems have been proposed with a
wide variety of abstractions and programming models, each
of which is designed to make programming easier for some
class of applications. For example, database-like systems
such as TinyDB [18] and Cougar [34] allow the user to specify
the desired data using declarative SQL-like queries. These
systems are most suitable for data collection applications
where the desired data can be described with a declarative
query. Several systems such as Hood [32], Regions [30], and
Proto [2] are designed for spatial applications and allow users
to specify operations over groups, neighborhoods, or regions
in space. Other systems such as Semantic Streams [31],
Flask [20], and Regiment [22] allow users to specify global
operations in terms of stream operators. These are most
suitable for defining a static set of long-running operations
over streams of sensor data. MacroLab is perhaps most sim-
ilar to imperative macroprogramming abstractions like Mar-
ionette [33], Pleiades [14], and Kairos [10]. These systems
support general-purpose programming with a traditional im-
perative programming model. MacroLab is the first macro-
programming system for CPSs to provide vector program-
ming, a powerful and concise abstraction that already has
wide adoption among scientists and engineers.

Several existing systems allow users to write imperative
programs that can then be distributed across multiple pro-
cessors for the purposes of high performance computing.
These include High Performance Fortran (HPF) [26], For-
tran D [11], and Split-C [5]. The fundamental difference be-
tween these approaches and MacroLab is their dependence
on the user to specify how the data and operations should be
distributed. For example, Fortran D uses the statments de-
composition, align, and distribute to specify how to exe-
cute a program on multiple processors. In contrast, Macro-
Lab programs do not specify how to map the computation
onto the network. In fact, the system will create a different
mapping for each network on which the program is executed.

Several existing systems such as MagnetOS [16], Coign [12],
and J-Orchestra [29] can automatically decompose a pro-
gram and distribute it across a network in order to mini-
mize network traffic. Similar to MacroLab, these systems
use program profiling to tailor the decomposition to a spe-
cific network topology. In contrast to MacroLab, these sys-
tems decompose programs at the object level. MagnetOS
and J-Orchestra break a program up at the boundaries of
Java objects and use Java RMI between segments of the pro-
gram. Coign requires programs to conform to Microsoft’s
Component Object Model (COM) and breaks them up at
the boundary of the COM objects. MacroLab introduces
parallelism at the level of individual operations instead of at
the level of objects or software components.

Several existing systems allow the user to specify paral-
lel operations using parallel data structures. SET Language
(SETL) [27] provides primitive operations such as set mem-
bership, union, intersection, and power set construction,
which can be applied in parallel to elements of unordered
sets. Starlisp (*Lisp) can apply vector operations such as
vector addition and multiplication over Parallel Variables
(PVARS) which are vectors with one element per proces-
sor. Similarly, NESL allows parallel operations on sequences.
These are similar to MacroLab’s parallel vector operations
on macrovectors. However, MacroLab goes beyond these
systems by employing multiple underlying representations
of a macrovector. Unordered sets, PVARS, and sequences
can only be decomposed in one way while macrovectors are
decomposed in one of many different ways depending on
the topology over which the program is executed. To our
knowledge, MacroLab is the first system that can perform
automatic, topology-specific decomposition on programs de-
scribing parallel operations on parallel data structures.

3. MACROLAB
MacroLab allows the user to write a single program that

is simple, robust, and manageable and then automatically
decomposes it depending on the target deployment. A pro-
gram decomposition is a specification of where data is stored
in the network and how messages are passed and compu-
tations are performed in order to execute the program. A
macroprogram may be decomposed into distributed opera-
tions for a large mesh network, where data is stored on ev-
ery node and network operations are performed in-network.
It could also be decomposed into centralized operations for
a small star topology, where all data is collected to a cen-
tral base station. A program may also be decomposed into
many points on the spectrum between purely centralized or
purely distributed code. The implementation could also use
group-based data processing or in-network aggregation.

MacroLab’s overall architecture is depicted in Figure 1. A
macroprogram (described in Section 3.1) is passed to the de-
composer (Section 3.2) which generates multiple decompo-
sitions of the macroprogram. Each decomposition is passed
to the cost analyzer (Section 3.3) which calculates the cost
of each with respect to the cost profile of the target de-
ployment. This cost profile must be provided by the user
and may include information such as the topology, power
restrictions, and descriptions of the radio hardware. The
cost analyzer chooses the best decomposition and passes it
to the compiler and run-time system (Section 3.4) which
converts the decomposition into a binary executable and ex-
ecutes it. While it executes, the program and the run-time
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Figure 1. MacroLab consists of a decomposer, a cost an-
alyzer, and a run-time system. In our implementation, we
generate all possible decompositions of a macroprogram and
then analyze and compare them based on the cost profile of
a target deployment.

system continue to collect information about the cost pro-
file of the deployment and feed this information back to the
cost analyzer. If the cost profile changes or if the cost pro-
file at compile time was incomplete or incorrect, the cost
analyzer may decide to reprogram the network with a new
decomposition.

3.1 Abstraction
MacroLab provides a vector programming abstraction sim-

ilar to Matlab. A vector is a data structure containing values
called elements that are arranged in rows and columns. For
example,

r =

2

4

a b c

d e f

g h i

3

5

is a 3 x 3 vector with 9 elements. Vectors can be indexed
by dimension: the element in the second row and the third
column of r can be selected with r(2,3) resulting in f . In
MacroLab, like in Matlab, the “:” is used to select an entire
dimension. For example, r(3,:) selects the 3rd element of
the first dimension (rows) and the entire second dimension
(columns), namely [g h i]. Operations such as vector addi-
tion and vector multiplication operate on the data structures.
The operation find(r==f) produces the index of the element
in r that has the value f , which is [2, 3]. In addition to stan-
dard vector programming, MacroLab introduces three new
concepts to facilitate software development for CPSs: the
macrovector, the dot-product index, and the neighborhood.
These concepts are discussed in the next three subsections.

3.1.1 The Macrovector

In MacroLab, we define a new data structure called the
macrovector. Macrovectors differ from traditional vectors
in that each element of a macrovector is associated with
a particular node in the network. Thus, macrovectors are
unordered and are indexed by node ID. This abstraction can
be useful, for example, to store sensor readings. If light is
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Figure 2. Two n × 2 macrovectors A and B can be added
and stored into a third macrovector C. The values on the left
of each vector indicate which node ID the cells are associated
with.

a macrovector storing the light values of each sensor, then
the operation light(5) would retrieve the light value of the
sensor node with ID = 5. Since sensor node IDs may be
non-sequential, the elements in a macrovector do not form a
strict sequence. Macrovectors can have multiple dimensions,
but only a single dimension is indexed by node ID. The
other dimensions are normal vectors indexed sequentially.
Macrovectors can be created using the command

light = Macrovector(<scope>, [length], [length], ...)

where the scope of the macrovector is the set of nodes with
which the elements are associated. This scope is a vector
of node IDs and the length of the first dimension will be
the number of IDs. The lengths of subsequent dimensions
must be given for a multi-dimensional macrovector. These
lengths are simply integer values indicating the size of each
dimension.

Macrovectors support many standard Matlab vector op-
erations such as addition, subtraction, cross-product,
find, max, and min. These operations can be combined to
perform macro operations that operate on data associated
with many different sensor nodes. For example, the opera-
tion

maxLight = max( light )

will return the maximum light value in the network. The
operation

hotLight = light( find( temp > 100 ) )

will return the light values on nodes where the temp value
is higher than 100. If these vectors were tables in TinyDB,
this would be similar to posing the SQL query

SELECT light WHERE temp > 100

Elements associated with the same node ID are paired to-
gether for binary operations that involve multiple macrovec-
tors. For example, Figure 2 shows the operation C = A + B

performed on three n × 2 macrovectors. In this operation,
the elements of A and B corresponding to node 35, for ex-
ample, are added together and stored in the elements of C

corresponding to node 35.

3.1.2 Dot-product Index

We provide a new way of indexing into macrovectors called
the dot-product index. For example, with s = [1 2 3] and
t = [2 1 3], the aforementioned vector r can be indexed
as follows:

r(s, t)[1, 2] ==

2

4

b

d

i

3

5
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Figure 3. A three-dimensional vector D can be in-
dexed with the (a) cross-product index D(x,y,1); (b) dot-
product index D(:,y,z)[2,3]; or (c) dot-product index
D(x,y,:)[1,2].

The two values in square brackets indicate that the ele-
ments of the first and second dimension indices should be
matched pair-wise before values are selected from the ma-
trix. Since s and t each contain 3 elements, this dot-product
index would select 3 elements from r in total. With the
values of s and t above, the dot-product index would se-
lect elements [1, 2], [2, 1], and [3, 3]. This is different from
traditional indexing in Matlab, what we might call the cross-
product index, in which the same index vectors would pro-
duce

r(s, t) =

2

4

b a c

e d f

h g i

3

5

In other words, all values of index vector s are paired
with all values of index vector t, selecting 9 values in total.
Figure 3 illustrates how cross-products and dot-products can
be used to select different elements in a three-dimensional
vector.

Dot-product indexing can be used to efficiently perform
operations in which the element to be selected on each node
is different. For example, if an n × 10 macrovector circu-

larBuffer stored the last 10 light values read on each node
and an n × 1 macrovector lastIndex stored the index of
the most recent value stored, then the operation circular-

Buffer(:,lastIndex)[1,2] would provide the most recent
value on each node. The capabilities of macrovectors and
dot-product indexing will be demonstrated in Section 4.

3.1.3 Neighbor-based Representation

A node’s neighborhood is the set of nodes that are within
radio range. This is a very useful type of group in which a
node is guaranteed to have cheap communication to all other
nodes. Connectivity-based neighborhoods are often a criti-
cal part of efficient in-network data processing algorithms.
Neighborhoods are a special type of group since each node
has a different neighborhood. Because of this, we introduce
new syntax for defining a neighbor-based macrovector:

lightReflection = neighborReflection(light)

which indicates that lightReflection is a vector of neighbor-
based macrovectors that should store reflections of the light
macrovector. When a node writes to its own element of the
light macrovector, that value is cached in the rows corre-
sponding to its neighbors. Thus, lightReflection is a two
dimensional vector where each row contains cached values
of a node’s neighbors’ light readings. Since each node may
have a neighborhood of different size, this is not necessarily
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(b) Reflected Macrovector: Nodes can read all values in
the vector, but can only write to their own value.

Figure 4. Example macrovector representations.
Macrovectors can be (a) distributed across nodes or (b) re-
flected across nodes. They can also be represented in other
ways that are not shown.

a rectangular matrix; each row may be a different length.
This abstraction is very similar to the Hood programming
abstraction [32].

3.2 Program Decomposition
The MacroLab decomposer converts a macroprogram into

a set of microprograms that can be executed on nodes. The
goal is to preserve the semantics of the macroprogram while
allowing for efficient distributed operation. The decomposi-
tion algorithm has two steps. First, it chooses a data rep-
resentation for each macrovector, which can be distributed,
centralized, or reflected (Section 3.2.1). Based on the repre-
sentations chosen, it then uses rule-based translation to con-
vert the vector operations in the macroprogram into network
operations (Section 3.2.2).

3.2.1 Choosing Macrovector Representations

Macrovectors provide a uniform interface to several un-
derlying representations, which are different ways that the
macrovector can be stored in the network. MacroLab cur-
rently supports three representations: distributed, central-
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ized, and reflected, the trade-offs of which are described
in more detail below. Other representations are possible
and would allow MacroLab to support different classes of
distributed algorithms. Vector operations can be applied
to macrovectors regardless of their representation, making
them ideally suited for DSCD.

Distributed Representation: The first way to repre-
sent a macrovector is to store each row on its associated
node. Figure 4(a) shows how the elements of the macrovec-
tors A, B, and C from Figure 2 can be stored on each node
and how the addition operation is performed. Since ele-
ments are only added to corresponding elements on the same
node, this operation can take place without message passing
between nodes.

In general, the distributed representation of macrovectors
allows for the efficient implementation of vector operations
that do not span multiple rows. Conversely, this represen-
tation requires significant message passing for aggregate op-
erations like max that require values resident on multiple
nodes. If a macroprogram uses the max operation frequently
on a particular macrovector, then a distributed decomposi-
tion would be very costly.

Centralized Representation: The second representa-
tion supported by our framework stores all elements on a
single node, typically the base station. This representation
is in diametric opposition to a distributed representation. It
allows operations like max to be applied with virtually no
explicit message passing cost. However, there is a poten-
tially significant cost associated with keeping the elements
of the centralized vector up-to-date. If the values are fre-
quently updated remotely by the sensor nodes, they need to
be frequently transmitted for storage. The centralized repre-
sentation is favorable if the vector participates frequently in
aggregate operations that span rows (like max). It is less fa-
vorable if the vector is frequently updated with sensor data.

Reflected Representation: The third macrovector rep-
resentation stores all elements on all nodes. The microcode
on each node has read/write access to its associated ele-
ment and read-only access to cached versions of all other
elements in the vector. This precludes the need for write-
write synchronization since only one node may write to any
given element. However, nodes do need to communicate
their updated values after performing a write, as illustrated
in Figure 4(b); when node 35 writes to its own element in
the vector, the value is reflected to all other nodes currently
caching it.

This representation is conceptually similar to Reflective
Memory (RM), which is a form of shared memory for paral-
lel systems [13]. It is different from a neighbor-based macro-
vector because the scope of a reflected macrovector is globally
defined; it is not different for each node. The reflected repre-
sentation is beneficial when used by a small group of nodes
that are relatively close to each other but comparatively far
from the base station. In that situation, the cost of sending
information to the base station to perform a max operation
is higher than the cost of transmitting to all other nodes in
the group. The reflected representation may also make an
operation cheaper when all nodes need the result.

3.2.2 Rule-based Microcode Translation

Given a representation for each macrovector, the decom-
poser must produce the appropriate microcode for each op-
eration in the macroprogram. For example, the max oper-

lhs = M(a1, . . . , an) % Synchronous Read

C
n
t.

o
r

R
ef

.

R
owner_id = RTS.owner(cur_pc(), M);

RTS.notify(cur_pc(), owner_id);

L
node_ids = source_nodes(a1);

RTS.wait(cur_pc(), node_ids);

lhs = local( M(a1,...,an) );

D
is

tr
ib

u
te

d R

if (a1 contains node_id()) then

owner_id = RTS.owner(cur_pc(), M);

RTS.send(owner_id,

local(M(node_id(), a2,...,an) ))

RTS.notify(cur_pc(), owner_id);

fi;

L
node_ids = source_nodes(a1);

RTS.wait(cur_pc(), node_ids);

lhs = local( M(a1,...,an) );

M(a1, . . . , an) = rhs % Synchronous Write

C
en

tr
a
li
ze

d R

if (a1 contains node_id()) then

owner_id = RTS.owner(cur_pc(), M);

RTS.wait(cur_pc(), owner_id);

fi;

L
node_ids = source_nodes(a1);

local( M(a1,...,an) ) = rhs;

RTS.notify(cur_pc(), node_ids);

R
efl

ec
te

d R

if (a1 contains node_id()) then

owner_id = owner(cur_pc(), M);

RTS.receive(owner_id,

local( M(a1,...,an) ));

RTS.wait(cur_pc(), owner_id);

fi;

L

node_ids = source_nodes(a1);

local( M(a1,...,an) ) = rhs;

foreach (node_id in node_ids) do

RTS.send(node_id,

local( M(a1,...,an) ));

done;

RTS.notify(cur_pc(), node_ids);

D
is

tr
ib

u
te

d R

if (a1 contains node_id()) then

owner_id = RTS.owner(cur_pc(), M);

RTS.receive(owner_id,

local(M(node_id(), a2,...,an)));

RTS.wait(cur_pc(), owner_id);

fi;

L

node_ids = source_nodes(a1);

local( M(a1,...,an) ) = rhs;

foreach (node_id in node_ids) do

RTS.send(node_id,

local( M(a1,...,an) ));

done;

RTS.notify(cur_pc(), node_ids);

Table 1. Pseudocode for the mote-level microcode trans-
lation for common macrovector operations. For each data
representation, the row marked L (for local) denotes the code
for the mote that will perform the operation (i.e., the locus
of synchronization); R (for remote) marks the code for all
other nodes. M is a macrovector; lhs and rhs are normal
vectors. The mote-local representation of x is given by lo-

cal(x). The owner(PC,M) function gives the ID of the node
requesting the read or write operations on macrovector M at
location PC in the macroprogram.
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ator must perform different actions when operating over a
distributed vector than when operating over a centralized
vector. To accomplish this, MacroLab uses a library of mi-
crocode templates for each operator and the different repre-
sentations of its input parameters. Thus, max would require
three implementations and a binary operator would require
3 × 3 implementations. This approach of using a library
of operator implementations to deal with different matrix
representations has been used before [3] and most of this
complexity is hidden from the user.

An implementation of a vector operation will typically
consist of multiple functions, each of which is loaded onto
the domain of one of the input parameters. Table 1 shows
the various implementations of two basic macrovector op-
erations: reading and writing one or more elements in a
vector. In this context, the vectors lhs and rhs are normal
vectors and M is an n-dimensional macrovector that is being
accessed by indices a1 through an. These indices are them-
selves vectors and index an entire dimension of the matrix
M. The microcode for these operations is different for each
of the three representations discussed in 3.2.1: centralized,
reflected, and distributed. For each representation, the op-
eration is divided into two functions: one for the L (local)
nodes and one piece of code for the R (remote) nodes.

For illustrative purposes, Table 1 shows the microcode for
the synchronous read and write operations based on the
standard notify and wait primitives instead of using mes-
sage passing primitives. RTS.wait(PC, node_ids) causes
the current node to block until each of the nodes in node_ids

has called RTS.notify with a matching value for PC. A call
to RTS.notify(PC, node_ids) signifies that the caller has
“caught up” to a particular program point in the macropro-
gram. RTS.notify blocks until the corresponding RTS.wait.
This is done to prevent the notifying node from overwriting
data before it can be used by the waiting thread. RTS.owner
takes the current location in the macroprogram (cur_pc())
and returns the node ID of the local node. This ID may
be fixed at compile time. Operations over a centralized
macrovector are always performed on the node that has
the local copy of that macrovector. In other cases, such
as neighborhood-based operations, the ID of the local node
is unknown until runtime and may change over time.

In principle, this implementation of synchronous read and
write could be used to implement most macrovector oper-
ations. Here we show the “local” half of näıve implementa-
tions of the synchronous max and find functions:
1 % smax ( A )

2 sread(A, lvar);
3 lmax = max(lvar);
4 write(A, lmax);
5 .

1 % s f i n d ( A (1) = 5)

2 sread(A, lvar);
3 lres =
4 find(lvar (1) = 5);
5 write(Temp , lres);

The synchronous max operation works by reading A into a
local variable (which is a normal vector), performing the
operation, and then writing the results. Thus, this imple-
mentation caches the entire macrovector on a centralized
node before performing the operation. The code for syn-
chronous find assumes the existence of a temporary vector
Temp created by the translator to store the result of the find
in single-column form. Both operations are synchronized
because the initial read is synchronized, although this näıve
approach incurs a round-trip message between the local node
and each remote node.

In practice, many macro-operations will require special-
ized implementations to further reduce messaging overhead.

For example, the max operation could be performed using
in-network aggregation such as that used in Tiny AGgre-
gation (TAG) [19]. This implementation is a semantics-
preserving optimization. It is computationally equivalent to
the näıve implementation shown above, but would result in
lower messaging overhead. In the following section, we dis-
cuss optimizations to reduce messaging overhead that are
not semantics-preserving.

3.2.3 Reducing Synchronization Overhead

Synchronization is one of the main costs of a MacroLab
program; nodes must send messages to indicate that they
have “caught up” to a point in the macroprogram, even if
they have no useful data to provide. This messaging over-
head is necessary to preserve the semantics of the original
macroprogram, but many CPS applications do not need
strict synchronization for proper operation. Consider the
example below, where the intent of this code is to provide a
frequently updated maximum light value.

1 every (1000) {
2 light = sense(lightSensors);
3 maxLight = max(light);
4 }

In this case, synchronizing line 3 is unnecessary since the
user is probably not explicitly interested in having max-

Light represent the maximum for a particular loop iter-
ation. Similarly, the synchronized version of the opera-
tion find(light > 100) would require a round trip message
from all nodes, including those that have light values less
than 100. An unsynchronized implementation could require
messages only from those nodes that have values greater
than 100. These optimizations improve parallelism and re-
duce messaging overhead, but do not preserve the original
semantics of the vector operations. To allow users to employ
these optimizations, MacroLab must provide both synchro-
nized and unsynchronized versions of each operation. We
adopt the convention that the synchronized versions take
function names that start with an s: smax, swrite, splus,
etc. The usual notations (e.g., A + B, max(A)) will refer to
the unsynchronized version of that operation.

It is important to note that not all vector operations re-
quire synchronization. Operations over macrovectors gen-
erally fall into two categories: row-parallel operations and
inter-row operations. An inter-row operation is any expres-
sion that “mixes” macrovector domains. For example, an
expression like max(A) returns a single-valued result by com-
bining information from all rows of A. Inter-row operations
require synchronization to be semantics-preserving, but al-
ternative implementations with different semantics can be
used in order to reduce overhead. Conversely, a statement
like A = A + B is row-parallel: the operation over any par-
ticular row does not require information from any other row,
and so the operation can be performed over each row with-
out waiting for A and B to be fully updated. When multiple
row-parallel operations occur consecutively, their execution
may overlap.

Generally, inter-row operations are more expensive than
row-parallel operations because of the synchronization re-
quired. The difference between row-parallel and inter-row
operations is evident from the source code, providing the
user with a clear cost model of the macroprogram and em-
powering the user to write optimized code that will produce
efficient decompositions. Furthermore, the user can con-

230



trol the amount of synchronization overhead by choosing
between synchronized and unsynchronized versions of each
inter-row operation.

3.3 Cost Analyzer
The decomposition process produces many feasible candi-

date program decompositions. The goal of cost analysis is
to predict which candidate will be most efficient for a target
deployment. We use two different techniques for cost analy-
sis: compile-time analysis and run-time analysis. As shown
in Figure 1, an initial decomposition might be chosen using
the static analysis until richer run-time profile information
is available. Cost analyses can be based on a number of dif-
ferent cost functions such as power, bandwidth, messages,
or latency. In this paper, we consider only messaging costs.

3.3.1 Static Cost Analysis

Our static analysis approximates the true messaging cost
of a MacroLab program based on (1) user-provided cost in-
formation for messages, (2) sensing event frequencies, (3)
a description of the deployment network, and (4) a conser-
vative analysis of the source code to locate network sends.
The cost information is provided as a matrix indicating hop
counts between nodes. The high-level structure of the static
cost anlayzer is as follows:

1 totalCost = 0;
2 foreach node x in the network do
3 cost[x] = 0;
4 foreach predicted send in one run of x do
5 cost[x] += hop_count[x,target_of_send] *
6 frequency_of_this_event_at_this_node;
7 done;
8 totalCost += cost[x];
9 done;
10 return totalCost;

We assume that the MacroLab program follows a main
event-loop format (as in lines 4–7 of Figure 6, lines 6–19 of
Figure 7, or lines 10–17 of Figure 9) and predict the cost
for one run through that loop. We use an intraprocedural
dataflow analysis to scan the statements in the program’s
main loop for predicted sends (line 4).

We consider each statement that contains a macrovector
operation, such as a read from a sensor array. Based on the
decomposition, the operation is analyzed to determine if it
involves remote or distributed operations and thus, message
sends. If we cannot statically determine the destination of
the message, we conservatively use the maximal hop cost
from the current node. The hop cost is weighted by the
relative frequency of that event.

Note that it is not possible for a distributed operation to
trigger other distributed operations in MacroLab; the user
cannot write messaging code directly and all sends and re-
ceives are inserted by the decomposer and mediated by the
run-time system. There are no message loops to consider
and it suffices to consider each node separately to calculate
a total predicted cost.

If the user does not have a model of the sensing event
frequencies at each node, our analysis assumes events will
occur with equal frequency across all nodes for all decom-
positions. A final cost estimate can be produced that is
relative to the number of sensing events. In such a scenario,
our cost analyzer does not predict the actual messaging cost
of a decomposition but still provides a useful heuristic for
distinguishing between two candidate decompositions.

getID()
returns the node’s ID
getProperty(’property’)
returns a generic property of a node
getNodes(’group’)
returns the current membership in a global group
getTime()
returns the current global time
getNeighbors()
returns the current radio neighbors of a node
remoteFeval(nodeIDs,funcName,{P1,P2,...,Pn})
remote function invocation

Table 2. The RTS must provide an interface for neighbor
discovery, time sync, and remote function calls.

Note that we could use a more precise dataflow analysis
for predicting statement frequencies (e.g., [25]). However, we
would still need to model message costs, understand the net-
work topology, and predict event frequencies. In our experi-
ments these were the determining factors and the MacroLab
programs themselves were small and easy to analyze.

3.3.2 Run-time Cost Analysis

We can also perform a run-time analysis to measure the
costs of a deployed decomposition. We use the decomposer
to inject logging code at appropriate locations in the micro-
program to count the messages that are actually being sent.
We can also inject logging code to estimate how many mes-
sages would be sent by other decompositions (as in Table 1).
The logged information is periodically analyzed by the cost
analyzer to ensure that an efficient version of the imple-
mentation is executing. If the currently-executing version is
more costly than an alternative, the network can be repro-
grammed with the alternative decomposition. Currently, we
do not have the capability to reprogram the network with-
out losing the state of the program that was generated by a
different decomposition, but this will be analyzed in future
work.

3.4 Compilation and Run-Time System
The run-time system supports three operations for

MacroLab microprograms: (1) networking, (2) hardware ac-
cess, and (3) accessor functions to information such as node
ID, current time, location, radio neighbors, etc. The RTS is
written as a nesC module and supports the functions shown
in Table 2. The first three functions are provided directly
by the RTS while the last three functions must interface
with TinyOS libraries for capabilities such as time synchro-
nization and networking operations. By interfacing with
TinyOS, MacroLab leverages an existing suite of distributed
algorithms as well as ongoing advances and future software
development.

The remoteFeval function is a generic messaging interface
provided to the MacroLab microprograms. It is similar to
Matlab’s feval function in that it takes a function handle
and a set of arguments and invokes that function with those
arguments. However, remoteFeval invokes the function on
a set of remote nodes indicated by the nodeIDs parameter.
The function name and arguments are marshalled into a
packet, sent to those nodes, and unmarshalled before the
function is invoked. The remoteFeval function can take
an arbitrary set of nodeIDs and the RTS decides the best
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1 module LightSensorP {
2 provides interface LightSensor;
3 uses interface Read <uint16_t > as Read;
4 }
5 implementation
6 {
7 command void LightSensor.sense () {
8 call Read.read();
9 }

10 event void Read.readDone(error_t err ,
11 uint16_t val) {
12 if(err == SUCCESS) {
13 #CALLBACK(val);
14 }
15 }
16 }

Figure 5. A split-phase hardware driver for reading from
the light sensor. The LightSensor.sense function is called
by the microcode through the RTS. The decomposer must
automatically replace #CALLBACK with an appropriate func-
tion to continue microprogram execution.

way to send the message. For example, if nodeIDs only
contains the ID of the base station node, the RTS sends
the message using a standard TinyOS routing protocol. If
nodeIDs only contains IDs of neighboring nodes, the RTS
sends the message using a local broadcast. In our current
implementation, the RTS will flood the message to all nodes
for any other set of nodeIDs, but multi-cast algorithms or
other routing algorithms could easily be inserted as they are
developed.

Access to hardware such as sensors and actuators must be
done through new functions provided by user defined hard-
ware drivers. The BASE_DISPLAY and CAMERAFOCUS functions
shown in Figures 6 and 7 would simply be C functions pro-
vided by the user that would set the input/output pins of
the microcontroller based on the input parameters. In the
case of split-phase functions like sense, the driver must de-
clare the name of the callback that will be triggered when
the function is complete. The decomposer then generates
the appropriate code using this callback to continue execu-
tion in the microprogram. The actual light sensor driver
used by the code in Figure 6 is shown in Figure 5.

In order to conserve power, MacroLab enables the TinyOS
2.x low-power listening capabilities [23], which automatically
duty cycles the radio and sends messages with long pream-
bles. The RTS dynamically sets the sleep interval of the
radio based on the number of messages currently being sent
by the application. The entire network starts with a de-
fault sleep interval of 100 milliseconds and nodes will flood
the network to halve or double the sleep interval when total
transmission time is greater than 80 percent or less than 20
percent. Thus, the radio sleep interval for the entire net-
work is dynamically set based on the node with the highest
load. This simple algorithm will not always be optimal, but
it works well for our existing applications, as shown in Sec-
tion 4.2, and we will explore more sophisticated adaptive
algorithms in future work. We currently execute MacroLab
programs on Telos [24] nodes, for which the TinyOS libraries
automatically use low-power mode when idle.

The MacroLab microprogram, the RTS, and the TinyOS
libraries are compiled together into a single binary executable
(Figure 1) that can run on mote-class devices such as the

MICA [4] and the Telos. The microprogram generated by
the decomposer is written in Embedded Matlab, a simpli-
fied form of the Matlab syntax that does not support dy-
namic typing or dynamic memory allocation. This is com-
piled down to C code by the Embedded Matlab compiler,
provided by The MathWorks [1]. This C code is then com-
piled together with the nesC RTS module and the TinyOS
libraries by the nesC compiler.

4. EVALUATION
We evaluate MacroLab in four parts. First, we evalu-

ate the programming abstraction by showing that it is ex-
pressive enough to implement canonical CPS applications,
such as data collection and object tracking. Second, we
measure the overhead of running MacroLab programs as
compared with similar programs written using nesC and
TinyOS. Third, we deploy one MacroLab application in mul-
tiple different scenarios and measure the effect of DSCD on
message cost. Finally, we evaluate the accuracy of the static
cost analyzer.

4.1 Expressiveness of the Abstraction
We evaluate the expressive power of our programming ab-

straction by showing that it can be used concisely to im-
plement two canonical CPS applications: tree-based data
collection in Surge [8] and object tracking in the Pursuer-
Evader Game (PEG) [28]. We selected these two applica-
tions because they represent basic algorithms that have been
incorporated into many other CPS applications. Table 3
presents a comparison of the number of lines of code nec-
essary to implement Surge and PEG in MacroLab as com-
pared to their original implementations in nesC/TinyOS.
The number of lines of code for the nesC/TinyOS implemen-
tations of Surge and PEG were cited from previous publi-
cations [14, 21]. The MacroLab applications are about one-
fiftieth the size of equivalent nesC/TinyOS implementation
in terms of lines of code. This ratio is typical of the differ-
ence in size between equivalent Matlab and C programs.
MacroLab builds a considerable amount of logic such as
routing algorithms and vector operations into the run-time
system. We thus claim that MacroLab dramatically reduces
the amount of code and therefore the amount of development
and maintenance time required to implement basic CPS ap-
plications.

The MacroLab programming abstraction is suitable for
many application domains, but it cannot express algorithms
that require explicit message passing. For example, it cannot
easily be used to implement routing protocols, time synchro-
nization protocols, or other distributed middleware libraries.
Instead, all of these operations must be incorporated into
the run-time system. Thus, MacroLab programs are limited
to distributed operations that can be neatly stored in a li-
brary and provided by some interface. We claim that this it
not a restricting requirement for most CPS software. How-
ever, it can make it difficult to provide application-specific
distributed operations. Developers must encapsulate such
functionality by extending the run-time system. Code move-
ment in systems like Agilla [7] and EnviroSuite [17] might
be difficult to implement in MacroLab.

4.1.1 Surge

Surge is a simple application that periodically collects sen-
sor readings from all nodes and routes them back to a base
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MacroLab nesC/TinyOS
Surge 7 400
PEG 19 780

Table 3. Comparison of lines of code required for equivalent
functionality in two basic CPS applications.

station. Figure 6 shows the source code for Surge written
in MacroLab. In line 1, the run-time system is instantiated
and in lines 2 and 3, it is used to instantiate a vector of light
sensors (one for each node in the network) and a macro-
vector to hold the light values. Line 4 is the beginning of a
loop that occurs every 1000 milliseconds. The light sensors
are read in line 5 and the values are displayed at the base
station in line 6.

There is hidden complexity in the interaction between
lines 5 and 6. The decomposer identifies that the sensor
resources are on the nodes while the BASE_DISPLAY function
is only available on the base station. It therefore infers that
the information created in line 5 must be routed across ma-
chine boundaries in order to be used in line 6 and the com-
piled version of the code automatically invokes the routing
algorithm via the remoteFeval interface described in Sec-
tion 3.4. The high-level algorithm can be expressed in seven
lines of MacroLab. The automatically generated microcode
that runs on the nodes is closer in size to the nesC/TinyOS
implementation.

1 RTS = RunTimeSystem ();
2 lSensors = SensorVector(’lightSensor ’,’uint16 ’);
3 lightValues = Macrovector(’uint16 ’);
4 every (1000)
5 lightValues = sense(lSensors);
6 BASE_DISPLAY(lightValues);
7 end

Figure 6. A data collection application (Surge) in Macro-
Lab. BASE_DISPLAY is implemented within the RTS and
sends a message to a base station for display.

4.1.2 Pursuer-Evader Game (PEG)

The Pursuer-Evader Game (PEG) is a distributed CPS
application that detects and reports the position of a moving
object within a sensor field. Figure 7 shows an implementa-
tion of PEG in MacroLab in which the network routes the
location of the evader to a camera which visually follows the
evader. In line 1, the run-time system is instantiated and in
lines 2 and 3, it is used to instantiate a vector of magnetome-
ter sensors, one for each node in the network. In line 5, a
neighborReflection macrovector is created that automati-
cally reflects and stores the values of each node’s neighbors’
magVal elements if they are within the threshold. In the
main loop, the sensors are sampled and each node’s neigh-
bors’ magnetometer readings are checked against a threshold
value to see if there are more than two neighboring nodes
that sense the evader. If so, a leader is chosen from amongst
them by finding the node with the highest of all magne-
tometer readings. Its ID is then passed to the CAMERAFOCUS

function, which focuses the camera on the location of that
node. The purpose of this example is to demonstrate that
MacroLab can concisely represent efficient, neighborhood-
based, in-network processing. We do not elaborate on how
to focus the camera on the location of the leader node.

1 RTS = RunTimeSystem ();
2 magSensors = SensorVector(’MagSensor ’, ’uint16 ’);
3 magVals = Macrovector(’uint16 ’);
4 THRESH = uint8 (3);
5 nRefl = neighborReflection (magVals ,magVals >THRESH)
6 every (1000)
7 magVals = sense(magSensors);
8 nodes = find(nRefl > THRESH);
9 rowSum = sum(~isnan(nRefl(nodes ,:)) ,2)
10 toCheck = find(rowSum >2);
11 if(toCheck)
12 maxID = find(magVals(nodes(toCheck)) ...
13 == max(nRefl(nodes ,:) ,[],2));
14 end
15 leaderID = nodes(toCheck(maxID));
16 if(leaderID)
17 CAMERAFOCUS(leaderID);
18 end
19 end

Figure 7. A tracking application (PEG) in MacroLab.
CAMERAFOCUS is implemented within the RTS and sends a
message to the camera, which is at the base station.

4.2 Performance Overhead
To evaluate the performance overhead of MacroLab, we

measured the resource consumption of the two applications
described in Section 4.1 and compared it against existing ap-
plications written in nesC/TinyOS. We found that Macro-
Lab programs are very similar to TinyOS programs in terms
of memory footprint, execution speed, and power consump-
tion.

The program size and heap size of two MacroLab pro-
grams is shown in Table 4, along with those of several ex-
isting TinyOS programs. The MacroLab programs actually
have a smaller memory footprint than their corresponding
TinyOS implementations, both in terms of program memory
and RAM. Table 5 shows the breakdown of our MacroLab
programs’ memory footprints. This information was col-
lected by examining the symbol table of the final binary ex-
ecutables. Therefore any variables or code removed by com-
piler optimizations are not included. The vast majority of
the program size of MacroLab applications (approximately
17KB of ROM and 600 bytes of RAM) is due to imported
TinyOS libraries for multi-hop routing, access to the ADC,
and the Timer. The run-time system module requires 558
bytes of program memory and 66 bytes of RAM. For both
PEG and Surge, the application logic itelf required less than
1.3KB of ROM and 150 bytes of RAM.

We also compared the maximum run-time stack sizes of
the MacroLab and nesC Surge implementations. We filled
memory with a special reference pattern, ran the program
for 600 seconds, and then computed the high water mark for
stack growth by looking for the last byte not containing the
reference pattern. MacroLab’s RTS layer introduces addi-
tional functions and could therefore potentially require more
memory for the stack. However, aggressive function inlining
by the nesC compiler causes the function call depth to be
almost the same for both applications. The TinyOS version
requires 120 bytes while the MacroLab version requires 124
bytes for the stack, as shown in the last column of Table 6.

To compare the execution speed of a MacroLab program
with a TinyOS program, we measured the time to execute
Surge from the beginning of the loop when the node reads
the sensor until the radio has accepted the message for trans-

233



Application Program Size Heap Size
TelosB 49,152 10,240
MICAz 131,072 4,096
Blink 2,472 38
CountRadio 11,266 351
Oscilloscope 9,034 335
OscilloscopeRF 14,536 449
SenseToRfm 14,248 403
TOSBase 10,328 1,827
MacroLab Surge 19,374 669
SurgeTelos 24,790 911
MacroLab PEG 18,536 770
PEG [28] 61,440 3,072

Table 4. Program and heap size comparison for com-
mon TinyOS applications and two MacroLab applications
for TelosB nodes.

Application TinyOS RTS MacroLab
MacroLab PEG 16714/579 558/66 1264/125
MacroLab Surge 15714/579 558/66 1144/24

Table 5. A breakdown of the amount of flash/RAM in
the TinyOS libraries, RTS, and program logic of MacroLab
applications

mission. These times do not include the MAC and transmis-
sion delays. This time was measured for both the MacroLab
and TinyOS implementations using an oscilloscope. The
first two columns of Table 6 show that the total execution
time was about 18 milliseconds for both programs, but the
MacroLab program takes about 3 percent longer (0.5 mil-
liseconds). The CPU was idle for most of the execution,
waiting for the ADC to return a value. The non-idle time
for the MacroLab program was 705 microseconds compared
with 361 microseconds for the TinyOS program. Thus, the
MacroLab program requires almost twice as many instruc-
tions to be executed as the TinyOS program. This is a large
multiple, but the effect on overall execution time and power
consumption is small.

The power consumption of both implementations of the
Surge application is shown in Figure 8. In both cases, power
consumption was measured using an oscilloscope on a node
that was forwarding messages from exactly two children.
The period with which Surge sampled the sensor and for-
warded the message to the base station was varied from 100
milliseconds to 10 seconds. The results show that the aver-
age power consumption over a sample run of 100 seconds is
nearly identical for both implementations, even as the sam-
pling frequency changes by over two orders of magnitude.
This evidence suggests that MacroLab programs can match
TinyOS programs in terms of power efficiency.

4.3 Effect of DSCD on Performance
To evaluate the effect of DSCD on the performance of an

application in multiple scenarios, we implement a bus track-

Application Execution CPU Stack
Surge 17.7msec 361usec 120bytes
MacroLab Surge 18.2msec 705usec 124bytes

Table 6. An evaluation of the execution time of the applica-
tion, logic (CPU), and maximum consumed stack memory.
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Figure 8. Oscilloscope power measurements of MacroLab
and nesC Surge implementations.

ing application (Figure 9). In order to easily modify the
deployment scenario, we performed this part of the evalu-
ation in simulation. In the bus tracking application, each
bus stop records arrival times for the buses and computes
estimated arrival times for all other buses. The application
logic is shown in Figure 9, which maintains state about the
last time a bus was seen at every stop, the time it takes to
travel from each stop to every other stop, and the estimated
time that each bus will next arrive at every stop.

First, we sense for a bus at each stop and collect a time
stamp of the bus arrival as busTime. The arrivals matrix
stores the last time before now that each bus arrived at each
stop, so we update travelTime to be busTime minus arrivals.
In other words, we estimate the travel time between stops
to be the current time that each bus arrived less the last
time that bus was seen at every other stop. Arrivals is then
updated with the current arrival time of the bus. Next, the
estimates vector is updated to be travelTime plus busTime.
We estimate the predicted arrival time for each bus to be
its travel time plus the last time it was seen at all stops.
Finally, the estimated arrival times are displayed to poten-
tial passengers using the BASE_DISPLAY operation. These
main matrix operations in this application make heavy use
of the dot product notation described in Section 3.1.2 for
conciseness and efficiency.

MacroLab’s row-level parallelism allows the matrix oper-
ations to occur in parallel. In this particular application,
the program runs correctly without using the synchronized
implementation of any inter-row operations, and so the as-
signment in line 15 does not block until all values are col-
lected. Each row can be processed in parallel as buses arrive
at different stops.

We evaluate this application in four scenarios: 1) the es-
timated bus arrival times are displayed to the passengers on
a website which is updated from a centralized base station,
2) the estimated bus arrival times are displayed to the pas-
sengers at each bus stop, 3) the base station radio range is
increased substantially for better coverage, and 4) an addi-
tional bus route is added by the bus company. Our results
show no decomposition is best for all target deployments

234



1 RTS = RunTimeSystem ();
2 busstops = RTS.getNodes(’stopnode ’);
3 buses = RTS.getNodes(’bus’);
4 estimates = Macrovector(busstops , length(buses) ,’uint16 ’);
5 arrivals = Macrovector(busstops , length(buses) ,’uint16 ’));
6 travelTime = Macrovector(busstops , length(busstops), length(buses) ,’uint16 ’));
7 busSensors = SensorVector(’BusSensor ’,busstops ,’uint16 ’);
8 routes = uint8 ({[1 2 3 4], [ 5 6 7 8]}); % E x a m p l e r o u t e s

9
10 while (1)
11 [busID ,r] = sense(busSensors);
12 busTime = RTS.getTime ();
13 travelTime(routes{r},routes{r},busID)[1,3] = busTime - arrivals(routes{r}, busID);
14 arrivals(routes{r},busID)[1,2] = busTime;
15 estimates(routes{r},busID) = travelTime(routes{r},routes{r},busID)[2,3] + busTime;
16 BASE_DISPLAY(estimates(routes{r},:));
17 end

Figure 9. MacroLab code for the bus tracking application.

and choosing the correct decomposition can reduce messag-
ing costs by an average of 44 percent.

MacroLab can optimize for a number of cost metrics (such
as latency, power consumption, or message cost) by using a
cost profile and a cost analyzer that analyzes the cost of each
program decomposition for a target deployment scenario.
In this evaluation, we only optimize the total number of
messages that must be sent by the network to achieve the
global objective.

4.3.1 Experimental Setup

Our test scenario consists of actual bus routes at the Uni-
versity of Virginia, provided by the University Transit Ser-
vice (UTS), shown in Figure 10. We assume that each bus
stop has a mote and can sense the bus currently at its stop.
The cost profile of the test scenario was created based on
the actual locations of the bus stops and assuming a reliable
communication range of 500 meters

In order to test this wide variety of deployment scenar-
ios, we built a Matlab-based simulator for this part of the
evaluation. The simulation environment for MacroLab only
requires a slight modification to the RTS in order to sup-
port function calls into the simulator instead of directly to

Figure 10. UTS Bus Routes at U.Va. The base station is
indicated as a cross at the top of the figure.

Figure 11. Neither decomposition is best for all deploy-
ment scenarios. Small changes in the deployment scenario
changes the optimal implementation between centralized
and distributed.

the nodes. The simulator runs code similar to microcode
that would run on a mote-based RTS. In this experiment,
we only evaluate two decompositions: a centralized and dis-
tributed decomposition.

Communication between nodes is provided by the RTS.
Based on the cost profile of the network, the simulation ob-
serves the total message cost for each decomposition and
scenario. The cost matrix is computed from the topology of
our scenario and encodes the cost to send messages between
pairs of nodes. The RTS currently supports point-to-point
routing but more routing algorithms can be added as they
are developed.

4.3.2 Scenario 1: Website Display

In the first scenario, we record and display the bus infor-
mation on a website using a centralized base station. This
is accomplished by using the BASE_DISPLAY operation which
can only be executed in a centralized fashion. In order to ac-
complish this version of the application, the nodes will sense
buses and send their data directly back to the base station
which will maintain state in all of the macrovectors and per-
form all of the vector computations. The messaging cost of
this application is the same as the Surge application. Only
one bar is shown in Figure 11 because the BASE_DISPLAY
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operator is only defined for centralized decompositions. By
running this decomposition in simulation, we found the cost
of running the application using this scenario to be 48 mes-
sages over a 30 minute simulation.

4.3.3 Scenario 2: Bus Stop Displays

Changing BASE_DISPLAY to MOTE_DISPLAY allows us to
show the data at each bus stop rather than at the base
station. Sending and receiving bus arrival information be-
tween all nodes within each route totals 8156 messages for
the centralized implementation and 4734 for the distributed
version; the distributed decomposition is almost twice as ef-
ficient. The large increase in the number of messages is due
to the fact that each time a bus arrives at a stop, its ar-
rival time must be transmitted to all the stops in the route.
In the centralized implementation, this requires O(n2) mes-
sages per route, where n is the number of stops on that route.
This cost increases dramatically for routes that are far from
the base station. All nodes must send each bus arrival event
all the way to the base station which must then forward the
message back to each node on the route individually.

The cost of the distributed implementation does not incur
this overhead. Each node forwards bus arrival events to all
other nodes on its route; it does not need to transmit back
and forth to the base station. If a stop is on two or more
routes, it forwards the message to all other stops on all such
routes. In the compiled code, this is achieved by distributing
all vectors in the program and making the arrivals vector
a reflected vector across all nodes on a route. For this target
deployment scenario, the messaging cost of the distributed
decomposition is about 50 percent lower than the centralized
decomposition.

The only change to the bus tracking application in this
scenario versus Scenario 1 is that the BASE_DISPLAY function
was changed to MOTE_DISPAY, changing the library function
from a centralized operator to a distributed operator. It
should be noted that if this were a TinyOS application, we
would be required to implement a completely new version
of the program in order to make this change. Thus, small
changes in the program can result in large changes to the
cost profile of each decomposition. In MacroLab, the single
line addition is handled by the decomposer and the RTS in
order to choose the optimal solution.

4.3.4 Scenario 3: Increased Base Station Range

In the third deployment scenario, a high-gain antenna is
added to the base-station which increases the coverage of
the base station and changes the cost profile of the network.
Figure 11 shows that adding the antenna reduces the cost
of messages dramatically. This cost reduction is because the
increased range allows all of the nodes to more cheaply com-
municate with the base station. However, this change affects
the centralized decomposition to a greater extent. This is
because all nodes in the network use the base station link
in the centralized implementation while in the distributed
implementation, only the nodes that can opportunistically
route through the base station to reduce messaging costs
to other nodes on the route will actually do so. Increasing
the base station range increases the number of nodes that
opportunistically route through the base station, reducing
messaging costs but not as dramatically as in a centralized
decomposition. Figure 12 shows that for more then a 1500
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Figure 12. Changing the base station range changes the
balance between the two decompositions.
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Figure 13. Adding a new route at various distances
changes the balance between the two decompositions.

meter range, the centralized implementation gives superior
performance.

In this scenario, a centralized decomposition costs 1468
messages while the distributed version costs 2472 messages.
This is a reversal of the cost trade-off in the previous sce-
nario. We show that small changes to radio hardware can
lead to large changes in the cost profile of the target deploy-
ment. Redesigning a TinyOS program to be efficient given
this new cost profile would be difficult, but the MacroLab
framework makes this change automatically.

4.3.5 Scenario 4: Additional Route

In the fourth deployment scenario we add a route that
runs from the main campus to a new location 2500 meters
away from the base station. Figure 13 shows the distributed
and centralized costs as a function of the number of hops
from the base station. As the number of hops increases,
the centralized decomposition must send messages farther
to reach the base station, while the cost of the distributed
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Figure 14. Estimated and measured messaging costs. The
parameter α is the ratio of buses on long routes versus those
on all other routes.

decomposition does not change. Once this messaging cost
to and from the base station exceeds the cost of sending
messages directly to the other nodes in the route, it is more
expensive to utilize the centralized implementation.

Figure 11 shows that at an additional 4000 meters, the dis-
tributed version becomes more efficient than the centralized
decomposition. The centralized cost is 6210 and the dis-
tributed cost is 3439. Because the new route is farther away
from the base station, communication with the base station
becomes more expensive. In this scenario, we demonstrate
that small changes to the network topology can cause large
changes to the cost profile of the target deployment.

4.4 Accuracy of Static Cost Analyzer
Our static cost analysis (Section 3.3.1) can make use of in-

formation about expected event frequency. For simple event-
loop MacroLab programs, the presence and quality of this
event frequency information is the determining factor in the
accuracy of the analysis. In the worst case, such informa-
tion is not available. For the bus tracking application, lack-
ing any other information, our static analysis assumes that
each bus stop observes a bus event with the same frequency.
However, this is not necessarily true and there will be some
discrepancy between the cost estimated by the static analy-
sis and the actual cost of the decompositions. For example,
if a larger percentage of buses appear on very long routes,
this will increase the cost of the distributed decomposition
relative to the static estimate. On the other hand, if many
buses appear on routes far from the base station, this would
increase the cost of the centralized decomposition.

Figure 14 shows static estimated costs as well as dynamic
measured costs as the distribution of buses and therefore
sensed events within the network changes. To highlight the
differences between the centralized and distributed imple-
mentations, we focus on the longest routes. The parameter
α is defined as the ratio of buses on the long routes versus
those on all other routes. The crossover point for centralized
and distributed message costs is represented by the y = x

line. Ratios above the crossover line will be optimally run
as centralized applications, those below as distributed. By

computing the ratios for various scenarios, we can see how
much each change will affect the total cost of the applica-
tion and whether it will cause a switch in the optimal im-
plementation. The bounds of our application are plotted
by the α = 0 and α = 1 lines, in which either all buses
or no buses appear on the longest routes. Our static cost
analysis algorithm is quite accurate for this application and
is not extremely sensitive to the assumptions made about
the frequency of events; it will only be incorrect with ex-
tremely non-uniform event distributions. In such cases, the
run-time system can dynamically monitor changes or errors
in the cost profile of the target deployment. As shown in
Figure 1, such dynamic cost information can be fed back
into the cost analyzer which can decide to reprogram the
network.

5. CONCLUSIONS
MacroLab’s approach of deployment-specific code decom-

position addresses a central question in the area of Cyber-
Physical Systems software design: should programs be im-
plemented in a centralized or distributed fashion? Most
early sensor network research focused on“localized algorithms
– where sensors only interact with other sensors in a re-
stricted vicinity, but nevertheless collectively achieve a de-
sired global objective” [6]. For example, early object track-
ing applications argue that neighborhood communication
and local processing are necessary to efficiently filter false
positives [32] and services like TAG use in-network aggre-
gation to calculate network statistics en route to decrease
message passing [18]. More recently, several architectures
have proposed the use of centralized algorithms to control
distributed systems. Marionette allows the user to write
a centralized Python script to control all nodes in a net-
work [33]. It argues that centralized algorithms are easier
to write and debug and that, once debugged, functional-
ity can be migrated to the sensor nodes for efficiency rea-
sons if necessary [31]. The Tenet [9] architecture takes a
stronger stance by arguing that all application-specific code
should always execute on master devices while sensor nodes
should be restricted to a small set of predefined operations
on locally-generated data. The rationale here is to sepa-
rate the application code from the networking code so that
changes in the application do not cause cascading changes
to the networking middleware.

In this paper, we argue that programs can actually be
implemented in both a centralized and a distributed fash-
ion. We re-frame the architectural question from where code
should execute to how code should be written. The central
tenet of our architecture is that all application-specific logic
should be contained in a macroprogram and all distributed
operations must be contained as libraries in the run-time
system. When code is written in this way, we get the best
of both worlds: (1) the decomposer and the run-time sys-
tem can choose the manner of implementation that provides
the best performance in terms of cost metrics like band-
width, power, and latency, and (2) the user is free to write
deployment-independent programs that are simple, robust,
and easy to understand. In future work, we will use new
macrovector representations to decompose programs into
many points on the spectrum between purely centralized or
purely distributed code, such as hierarchical or group-based
data processing, and in-network aggregation.
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