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Abstract 

The fifth release of the multithreaded language Cilk uses a 
provably good “work-stealing” scheduling algorithm similar 
to the first system, but the language has been completely re- 
designed and the runtime system completely reengineered. 
The efficiency of the new implementation was aided by a 
clear strategy that arose from a theoretical analysis of the 
scheduling algorithm: concentrate on minimizing overheads 
that contribute to the work, even at the expense of overheads 
that contribute to the critical path. Although it may seem 
counterintuitive to move overheads onto the critical path, 
this “work-first” principle has led to a portable Cilk-5 im- 
plementation in which the typical cost of spawning a parallel 
thread is only between 2 and 6 times the cost of a C function 
call on a variety of contemporary machines. Many Cilk pro- 
grams run on one processor with virtually no degradation 
compared to equivalent C programs. This paper describes 
how the work-first principle was exploited in the design of 
Cilk-5’s compiler and its runtime system. In particular, we 
present Cilk-5’s novel “two-clone” compilation strategy and 
its Dijkstra-like mutual-exclusion protocol for implementing 
the ready deque in the work-stealing scheduler. 
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1 Introduction 

Cilk is a multithreaded language for parallel programming 
that generalizes the semantics of C by introducing linguistic 
constructs for parallel control. The original Cilk-1 release 
[3, 4, 181 featured a provably efficient, randomized, “work- 
stealing” scheduler [3, 51, but the language was clumsy, 
because parallelism was exposed “by hand” using explicit 
continuation passing. The Cilk language implemented by 
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our latest Cilk-5 release [8] still uses a theoretically efficient 
scheduler, but the language has been simplified considerably. 
It employs call/return semantics for parallelism and features 
a linguistically simple “inlet” mechanism for nondeterminis- 
tic control. Cilk-5 is designed to run efficiently on contem- 
porary symmetric multiprocessors (SMP’s), which feature 
hardware support for shared memory. We have coded many 
applications in Cilk, including the *Socrates and Cilkchess 
chess-playing programs which have won prizes in interna- 
tional competitions. 

The philosophy behind Cilk development has been to 
make the Cilk language a true parallel extension of C, both 
semantically and with respect to performance. On a paral- 
lel computer, Cilk control constructs allow the program to 
execute in parallel. If the Cilk keywords for parallel control 
are elided from a Cilk program, however, a syntactically and 
semantically correct C program results, which we call the C 
elision (or more generally, the serial elision) of the Cilk 
program. Cilk is a faithful extension of C, because the C 
elision of a Cilk program is a correct implementation of the 
semantics of the program. Moreover, on one processor, a 
parallel Cilk program “scales down” to run nearly as fast as 
its C elision. 

Unlike in Cilk-1, where the Cilk scheduler was an identifi- 
able piece of code, in Cilk-5 both the compiler and runtime 
system bear the responsibility for scheduling. To obtain ef- 
ficiency, we have, of course, attempted to reduce scheduling 
overheads. Some overheads have a larger impact on execu- 
tion time than others, however. A theoretical understanding 
of Cilk’s scheduling algorithm [3, 51 has allowed us to iden- 
tify and optimize the common cases. According to this ab- 
stract theory, the performance of a Cilk computation can be 
characterized by two quantities: its work, which is the to- 
tal time needed to execute the computation serially, and its 
critical-path length, which is its execution time on an in- 
finite number of processors. (Cilk provides instrumentation 
that allows a user to measure these two quantities.) Within 
Cilk’s scheduler, we can identify a given cost as contribut- 
ing to either work overhead or critical-path overhead. Much 
of the efficiency of Cilk derives from the following principle, 
which we shall justify in Section 3. 
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The work-first principle: Minimize the schedul- 
ing overhead borne by the world of a computation. 
Specifically, move overheads out of the work and 
onto the critical path. 

The work-first principle played an important role during the 
design of earlier Cilk systems, but Cilk-5 exploits the prin- 
ciple more extensively. 

The work-first principle inspired a “two-clone” strategy 
for compiling Cilk programs. Our cilk2c compiler [23] is a 
type-checking, source-to-source translator that transforms a 
Cilk source into a C postsource which makes calls to Cilk’s 
runtime library. The C postsource is then run through the 
gee compiler to produce object code. The cilk2c compiler 
produces two clones of every Cilk procedure-a “fast” clone 
and a “slow” clone. The fast clone, which is identical in 
most respects to the C elision of the Cilk program, executes 
in the common case where serial semantics suffice. The slow 
clone is executed in the infrequent case that parallel seman- 
tics and its concomitant bookkeeping are required. All com- 
munication due to scheduling occurs in the slow clone and 
contributes to critical-path overhead, but not to work over- 
head. 

The work-first principle also inspired a Dijkstra-like [ll], 
shared-memory, mutual-exclusion protocol as part of the 
runtime load-balancing scheduler. Cilk’s scheduler uses a 
“work-stealing” algorithm in which idle processors, called 
thieves, “steal” threads from busy processors, called vic- 
tims. Cilk’s scheduler guarantees that the cost of steal- 
ing contributes only to critical-path overhead, and not to 
work overhead. Nevertheless, it is hard to avoid the mutual- 
exclusion costs incurred by a potential victim, which con- 
tribute to work. To minimize work overhead, instead of using 
locking, Cilk’s runtime system uses a Dijkstra-like protocol, 
which we call the THE protocol, to manage the runtime 
deque of ready threads in the work-stealing algorithm. An 
added advantage of the THE protocol is that it allows an 
exception to be signaled to a working processor with no ad- 
ditional work overhead, a feature used in Cilk’s abort mech- 
anism. 

The remainder of this paper is organized as follows. Sec- 
tion 2 overviews the basic features of the Cilk language. Sec- 
tion 3 justifies the work-first principle. Section 4 describes 
how the two-clone strategy is implemented, and Section 5 
presents the THE protocol. Section 6 gives empirical evi- 
dence that the Cilk-5 scheduler is efficient. Finally, Section 7 
presents related work and offers some conclusions. 

2 The Cilk language 

This section presents a brief overview of the Cilk extensions 
to C as supported by Cilk-5. (For a complete description, 
consult the Cilk-5 manual [8].) The key features of the lan- 
guage are the specification of parallelism and synchroniza- 
tion, through the spawn and sync keywords, and the speci- 
fication of nondeterminism, using inlet and abort. 

#include tstdlib.h> 
#include <stdio.h> 
#include <cilk.h> 

cilk int fib (int n) 
c 

if (n(2) return n; 
else c 

int x, y; 
x = spawn fib (n-1); 
y = spawn fib (n-2); 
sync; 
return (x+y) ; 

lt 
1 

cilk int main (int argc, char *argv[l) 
{ 

int n. result; 
n = atoi(argvC11); 
result. = spawn fib(n); 
sync ; 
printf (“Result: %d\n”, result) ; 
return 0: 

Figure 1: A simple Cilk program to compute the nth Fibonacci 
number in parallel (using a very bad algorithm). 

The basic Cilk language can be understood from an exam- 
ple. Figure 1 shows a Cilk program that computes the nth 
Fibonacci number.’ Observe that the program would be an 
ordinary C program if the three keywords cilk, spawn, and 
sync are elided. 

The keyword cilk identifies fib as a Cilk procedure, 
which is the parallel analog to a C function. Parallelism 
is created when the keyword spawn precedes the invocation 
of a procedure. The semantics of a spawn differs from a 
C function call only in that the parent can continue to ex- 
ecute in parallel with the child, instead of waiting for the 
child to complete as is done in C. Cilk’s scheduler takes the 
responsibility of scheduling the spawned procedures on the 
processors of the parallel computer. 

A Cilk procedure cannot safely use the values returned by 
its children until it executes a sync statement. The sync 
statement is a local “barrier,” not a global one as, for ex- 
ample, is used in message-passing programming. In the Fi- 
bonacci example, a sync statement is required before the 
statement return (x+y> to avoid the anomaly that would 
occur if x and y are summed before they are computed. In 
addition to explicit synchronization provided by the sync 
statement, every Cilk procedure syncs implicitly before it 
returns, thus ensuring that all of its children terminate be- 
fore it does. 

Ordinarily, when a spawned procedure returns, the re- 
turned value is simply stored into a variable in its parent’s 
frame: 

‘This program USES an inefficient algoritlnn which runs in exponen- 
tial time. Although logarithmic-time methods are known [9, p. 8501, 
this program nevertheless provides a good didactic example. 
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cilk int fib (int n) 
c 

int x = 0; 
inlet void summsr (int result) 

x += result; 
return; 

1 

if (nt2) return n; 
else c 

summer(spawn fib (n-l)); 
summsr(spawn fib (n-2)); 
sync; 
return (x); 

lt 
> 

Figure 2: Using an inlet to compute the nth Fibonnaci number. 

x = spawn foo (y) ; 

Occasionally, one would like to incorporate the returned 
value into the parent’s frame in a more complex way. Cilk 
provides an inlet feature for this purpose, which was in- 
spired in part by the inlet feature of TAM [lo]. 

An inlet is essentially a C function internal to a Cilk pro- 
cedure. In the normal syntax of Cilk, the spawning of a 
procedure must occur as a separate statement and not in an 
expression. An exception is made to this rule if the spawn 
is performed as an argument to an inlet call. In this case, 
the procedure is spawned, and when it returns, the inlet is 
invoked. In the meantime, control of the parent procedure 
proceeds to the statement following the inlet call. In princi- 
ple, inlets can take multiple spawned arguments, but Cilk-5 
has the restriction that exactly one argument to an inlet 
may be spawned and that this argument must be the first 
argument. If necessary, this restriction is easy to program 
around. 

Figure 2 illustrates how the f ib0 function might be coded 
using inlets. The inlet summer 0 is defined to take a returned 
value result and add it to the variable x in the frame of the 
procedure that does the spawning. All the variables of f ib() 

are available within summer 0, since it is an internal function 
of fib().2 

No lock is required around the accesses to x by summer, 
because Cilk provides atomicity implicitly. The concern is 
that the two updates might occur in parallel, and if atomic- 
ity is not imposed, an update might be lost. Cilk provides 
implicit atomicity among the “threads” of a procedure in- 
stance, where a thread is a maximal sequence of instruc- 
tions ending with a spawn, sync, or return (either explicit 
or implicit) statement. An inlet is precluded from containing 
spawn and sync statements, and thus it operates atomically 
as a single thread. Implicit atomicity simplifies reasoning 

aThe C elision of a Cilk progranl with inlets is not ANSI C, because 
ANSI C does not support internal C functions. Cilk is based on Gnu 
C technology, however, which does provide tbis support. 

about concurrency and nondeterminism without requiring 
locking, declaration of critical regions, and the like. 

Cilk provides syntactic sugar to produce certain commonly 
used inlets implicitly. For example, the statement x += 
spawn fib(n-1) conceptually generates an inlet similar to 
the one in Figure 2. 

Sometimes, a procedure spawns off parallel work which it 
later discovers is unnecessary. This “speculative” work can 
be aborted in Cilk using the abort primitive inside an in- 
let. A common use of abort occurs during a parallel search, 
where many possibilities are searched in parallel. As soon as 
a solution is found by one of the searches, one wishes to abort 
any currently executing searches as soon as possible so as not 
to waste processor resources. The abort statement, when 
executed inside an inlet, causes all of the already-spawned 
children of the procedure to terminate. 

We considered using “futures” [19] with implicit synchro- 
nization, as well as synchronizing on specific variables, in- 
stead of using the simple spawn and sync statements. We 
realized from the work-first principle, however, that differ- 
ent synchronization mechanisms could have an impact only 
on the critical-path of a computation, and so this issue was 
of secondary concern. Consequently, we opted for imple- 
mentation simplicity. Also, in systems that support re- 
laxed memory-consistency models, the explicit sync state- 
ment can be used to ensure that all side-effects from previ- 
ously spawned subprocedures have occurred. 

In addition to the control synchronization provided by 
sync, Cilk programmers can use explicit locking to syn- 
chronize accesses to data, providing mutual exclusion and 
atomicity. Data synchronization is an overhead borne on 
the work, however, and although we have striven to min- 
imize these overheads, fine-grain locking on contemporary 
processors is expensive. We are currently investigating how 
to incorporate atomicity into the Cilk language so that pro- 
tocol issues involved in locking can be avoided at the user 
level. To aid in the debugging of Cilk programs that use 
locks, we have been developing a tool called the “Nonde- 
terminator” [7, 131, which detects common synchronization 
bugs called data races. 

3 The work-first principle 

This section justifies the work-first principle stated in Sec- 
tion 1 by showing that it follows from three assumptions. 
First, we assume that Cilk’s scheduler operates in practice 
according to the theoretical analysis presented in [3, 51. Sec- 
ond, we assume that in the common case, ample “parallel 
slackness” [28] exists, that is, the average parallelism of a 
Cilk program exceeds the number of processors on which we 
run it by a sufficient margin. Third, we assume (as is indeed 
the case) that every Cilk program has a C elision against 
which its one-processor performance can be measured. 

The theoretical analysis presented in [3, 51 cites two funda- 

214 



mental lower bounds as to how fast a Cilk program can run. 
Let us denote by Tp the execution time of a given computa- 
tion on P processors. Then, the work of the computation is 
Tl and its critical-path length is Tm. For a computation with 
Tl work, the lower bound Tp > Tl/P must hold, because at 
most P units of work can be executed in a single step. In 
addition, the lower bound Tp > Too must hold, since a finite 
number of processors cannot execute faster than an infinite 
number.’ 

Cilk’s randomized work-stealing scheduler [3, 51 executes 
a Cilk computation on P processors in expected time 

TP = TI/P + O(T,) , (1) 

assuming an ideal parallel computer. This equation resem- 
bles “Brent’s theorem” [6, 151 and is optimal to within a 
constant factor, since Tl/P and T, are both lower bounds. 
We call the first term on the right-hand side of Equation (1) 
the world term and the second term the critical-path term. 
Importantly, all communication costs due to Cilk’s scheduler 
are borne by the critical-path term, as are most of the other 
scheduling costs. To make these overheads explicit, we de- 
fine the critical-path overhead to be the smallest constant 
co3 such that 

TP <TI/P+c,T, . (2) 

The second assumption needed to justify the work-first 
principle focuses on the “common-case” regime in which a 
parallel program operates. Define the average parallelism 
as Tis = Tl/T,, which corresponds to the maximum pos- 
sible speedup that the application can obtain. Define also 
the parallel slackness [28] to be the ratio F/P. The as- 
sumption of parallel slackness is that PIP >> coo, which 
means that the number P of processors is much smaller than 
the average parallelism F. Under this assumption, it follows 
that TIIP >> cooToo, and hence from Inequality (2) that 

TP z Tl/P, and we obtain linear speedup. The critical- 
path overhead cm has little effect on performance when suffi- 
cient slackness exists, although it does determines how much 
slackness must exist to ensure linear speedup. 

Whether substantial slackness exists in common applica- 
tions is a matter of opinion and empiricism, but we suggest 
that slackness is the common case. The expressiveness of 
Cilk makes it easy to code applications with large amounts 
of parallelism. For modest-sized problems, many applica- 
tions exhibit an average parallelism of over 200, yielding sub- 
stantial slackness on contemporary SMP’s. Even on Sandia 
National Laboratory’s Intel Paragon, which contains 1824 
nodes, the *Socrates chess program (coded in Cilk-1) ran 
in its linear-speedup regime during the 1995 ICCA World 
Computer Chess Championship (where it placed second in 
a field of 24). Section 6 describes a dozen other diverse 
applications which were run on an b-processor SMP with 

‘This abstract model of execution time @ores real-life details, 
such as memory-hierarchy effects, but is nonetheless quite accurate [a]. 

considerable parallel slackness. The parallelisim of these ap- 
plications increases with problem size, thereby ensuring they 
will run well on large machines. 

The third assumption behind the work-first principle is 
that every Cilk program has a C elision against which its 
one-processor performance can be measured. Let us denote 
by TS the running time of the C elision. Then, we defme the 
work overhead by cl = Tl/Ts. Incorporating critical-path 
and work overheads into Inequality (2) yields 

TP 5 cJ’s/P + c,Too (3) 

= CITSIP , 

since we assume parallel slackness. 
We can now restate the work-first principle precisely. h&n- 

imize cl, even at the expense of a larger c,, because cl has a 
more direct impact on performance. Adopting the work-first 
principle may adversely affect the ability of an application 
to scale up, however, if the critical-path overhead coo is too 
large. But, as we shall see in Section 6, critical-path over- 
head is reasonably small in Cilkd, and many applications 
can be coded with large amounts of parallelism. 

The work-first principle pervades the Cilk-5 implementa- 
tion. The work-stealing scheduler guarantees that with high 
probability, only O(PT,) steal (migration) attempts occur 
(that is, O(T,) on average per processor), all costs for which 
are borne on the critical path. Consequently, the scheduler 
for Cilkd postpones as much of the scheduling cost as pos- 
sible to when work is being stolen, thereby removing it as 
a contributor to work overhead. This strategy of amortiz- 
ing costs against steal attempts permeates virtually every 
decision made in the design of the scheduler. 

4 Cilk’s compilation strategy 

This section describes how our cilk2c compiler generates C 
postsource from a Cilk program. As dictated by the work- 
first principle, our compiler and scheduler are designed to 
reduce the work overhead as much as possible. Our strategy 
is to generate two clones of each procedure--a fast clone and 
a slow clone. The fast clone operates much as does the C 
elision and has little support for parallelism. The slow clone 
has full support for parallelism, along with its concomitant 
overhead. We first describe the Cilk scheduling algorithm. 
Then, we describe how the compiler translates the Cilk lan- 
guage constructs into code for the fast and slow clones of 
each procedure. Lastly, we describe how the runtime sys- 
tem links together the actions of the fast and slow clones to 
produce a complete Cilk implementation. 

As in lazy task creation [24], in Cilk-5 each proces- 
sor, called a worker, maintains a ready deque (doubly- 
ended queue) of ready procedures (technically, procedure 
instances). Each deque has two ends, a head and a tail, 
from which procedures can be added or removed. A worker 
operates locally on the tail of its own deque, treating it much 
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1 int fib (int n) 

2 { 
3 fib-frame *f; 
4 f = alloc(sizeof(*f)); 
5 f->sig = fib-sig; 
6 if (n<2) I 
7 free(f, sizeof(* 
8 return n; 
9 > 

10 else { 
11 int x. y; 
12 f->entry = 1; 
13 f->n = n; 
14 *T = f; 
15 push0 ; 
16 x = fib h-1); 
17 if (pop(x) == FAILURE) 
18 return 0; 
19 . . . 

20 
21 k(f, sizeof(* 
22 return (x+y); 
23 ) 
24 1 

frame pointer 
allocate frame 
initialixe frame 

free frame 

save PC 
save live vars 
store fmme pointer 
push frame 
do C call 
POP frame 
frame stolen 
second spawn 
sync is free! 
free frame 

Figure 3: The fast clone generated by cilk2c for the fib proce- 
dure from Figure 1. The code for the second spawn is omitted. 
The functions allot and free are inlined calls to the runtime 
system’s fast memory allocator. The signature f ib-sig contains 
a description of the fib procedure, including a pointer to the slow 
clone. The push and pop calls are operations on the scheduling 
deque and are described in detail in Section 5. 

as C treats its call stack, pushing and popping spawned acti- 
vation frames. When a worker runs out of work, it becomes 
a thief and attempts to steal a procedure another worker, 
called its victim. The thief steals the procedure from the 
head of the victim’s deque, the opposite end from which the 
victim is working. 

When a procedure is spawned, the fast clone runs. When- 
ever a thief steals a procedure, however, the procedure is 
converted to a slow clone. The Cilk scheduler guarantees 
that the number of steals is small when sufficient slackness 
exists, and so we expect the fast clones to be executed most 
of the time. Thus, the work-first principle reduces to mini- 
mizing costs in the fast clone, which contribute more heavily 
to work overhead. Minimizing costs in the slow clone, al- 
though a desirable goal, is less important, since these costs 
contribute less heavily to work overhead and more to critical- 
path overhead. 

We minimize the costs of the fast clone by exploiting the 
structure of the Cilk scheduler. Because we convert a pro- 
cedure to its slow clone when it is stolen, we maintain the 
invariant that a fast clone has never been stolen. Further- 
more, none of the descendants of a fast clone have been 
stolen either, since the strategy of stealing from the heads 
of ready deques guarantees that parents are stolen before 
their children. As we shall see, this simple fact allows many 
optimizations to be performed in the fast clone. 

We now describe how our cilk2c compiler generates post- 
source C code for the fib procedure from Figure 1. An ex- 

ample of the postsource for the fast clone of fib is given 
in Figure 3. The generated C code has the same general 
structure as the C elision, with a few additional statements. 
In lines 4-5, an activation fMcme is allocated for fib and 
initialized. The Cilk runtime system uses activation frames 
to represent procedure instances. Using techniques similar 
to [16, 171, our inlined allocator typically takes only a few 
cycles. The frame is initialized in line 5 by storing a pointer 
to a static structure, called a signature, describing fib. 

The first spawn in fib is translated into lines 12-18. In 
lines 12-13, the state of the fib procedure is saved into 
the activation frame. The saved state includes the program 
counter, encoded as an entry number, and all live, dirty vari- 
ables. Then, the frame is pushed on the runtime deque in 
lines 14-15.4 Next, we call the fib routine as we would 
in C. Because the spawn statement itself compiles directly 
to its C elision, the postsource can exploit the optimization 
capabilities of the C compiler, including its ability to pass 
arguments and receive return values in registers rather than 
in memory. 

After fib returns, lines 17-18 check to see whether the 
parent procedure has been stolen. If it has, we return im- 
mediately with a dummy value. Since all of the ancestors 
have been stolen as well, the C stack quickly unwinds and 
control is returned to the runtime system.6 The protocol 
to check whether the parent procedure has been stolen is 
quite subtle-we postpone discussion of its implementation 
to Section 5. If the parent procedure has not been stolen, 
it continues to execute at line 19, performing the second 
spawn, which is not shown. 

In the fast clone, all sync statements compile to no-ops. 
Because a fast clone never has any children when it is exe- 
cuting, we know at compile time that all previously spawned 
procedures have completed. Thus, no operations are re- 
quired for a sync statement, as it always succeeds. For exarn- 
ple, line 20 in Figure 3, the translation of the sync statement 
is just the empty statement. Finally, in lines 21-22, fib deal- 
locates the activation frame and returns the computed result 
to its parent procedure. 

The slow clone is similar to the fast clone except that 
it provides support for parallel execution. When a proce- 
dure is stolen, control has been suspended between two of 
the procedure’s threads, that is, at a spawn or sync point. 
When the slow clone is resumed, it uses a goto statement 
to restore the program counter, and then it restores local 
variable state from the activation frame. A spawn statement 
is translated in the slow clone just as in the fast clone. For a 
sync statement, cilk2c inserts a call to the runtime system, 
which checks to see whether the procedure has any spawned 
children that have not returned. Although the parallel book- 

41f the shared memory is not sequentially consistent, a memory 
fence must be inserted between lines 14 and 15 to ensure that the 
surrounding writes are executed in the proper order. 

‘The setjmp/longjmp facility of C could have been used as well, but 
our unwinding strategy is simpler. 
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keeping in a slow clone is substantial, it contributes little to 
work overhead, since slow clones are rarely executed. 

The separation between fast clones and slow clones also 
allows US to compile inlets and abort statements efficiently 
in the fast clone. An inlet call compiles as efficiently as an 
ordinary spawn. For example, the code for the inlet call from 
Figure 2 compiles similarly to the following Cilk code: 

tmp = spawn fibh-1); 
summer(tmp) ; 

Implicit inlet calls, such as x += spawn f ib(n-l), compile 
directly to their C elisions. An abort statement compiles to 
a no-op just as a sync statement does, because while it is 
executing, a fast clone has no children to abort. 

The runtime system provides the glue between the fast and 
slow clones that makes the whole system work. It includes 
protocols for stealing procedures, returning values between 
processors, executing inlets, aborting computation subtrees, 
and the like. All of the costs of these protocols can be amor- 
tized against the critical path, so their overhead does not 
significantly affect the running time when sufficient parallel 
slackness exists. The portion of the stealing protocol exe- 
cuted by the worker contributes to work overhead, however, 
thereby ‘warranting a careful implementation. We discuss 
this protocol in detail in Section 5. 

The work overhead of a spawn in Cilk-5 is only a few reads 
and writes in the fast clone-3 reads and 5 writes for the fib 
example. We will experimentally quantify the work overhead 
in Section 6. Some work overheads still remain in our im- 
plementation, however, including the allocation and freeing 
of activation frames, saving state before a spawn, pushing 
and popping of the frame on the deque, and checking if a 
procedure has been stolen. A portion of this work overhead 
is due to the fact that Cilk-5 is duplicating the work the C 
compiler performs, but as Section 6 shows, this overhead is 
small. Although a production Cilk compiler might be able 
eliminate this unnecessary work, it would likely compromise 
portability. 

In Cilk-4, the precursor to Cilk-5, we took the work-first 
principle to the extreme. Cilk-4 performed stack-based al- 
location of activation frames, since the work overhead of 
stack allocation is smaller than the overhead of heap ahoca- 
tion. Because of the “cactus stack” 1251 semantics of the Cilk 
stack,6 however, Cilk-4 had to manage the virtual-memory 
map on each processor explicitly, as was done in [27]. The 
work overhead in Cilk-4 for frame allocation was little more 
than that of incrementing the stack pointer, but whenever 
the stack pointer overflowed a page, an expensive user-level 
interrupt ensued, during which Cilk-4 would modify the 
memory map. Unfortunately, the operating-system mech- 
anisms supporting these operations were too slow and un- 
predictable, and the possibility of a page fault in critical sec- 

6Suppose a procedure A spawns two children B and C. The two 
children can reference objects in A’s activation frame, but B and C 
do not see each other’s frame. 

tions led to complicated protocols. Even though these over- 
heads could be charged to the critical-path term, in practice, 
they became so large that the critical-path term contributed 
significantly to the running time, thereby violating the as- 
sumption of parallel slackness. A one-processor execution of 
a program was indeed fast, but insufficient slackness some- 
times resulted in poor parallel performance. 

In Cilk-5, we simplified the allocation of activation frames 
by simply using a heap. In the common case, a frame is 
allocated by removing it from a free list. Deallocation is 
performed by inserting the frame into the free list. No user- 
level management of virtual memory is required, except for 
the initial setup of shared memory. Heap allocation con- 
tributes only slightly more than stack allocation to the work 
overhead, but it saves substantially on the critical path term. 
On the downside, heap allocation can potentially waste more 
memory than stack allocation due to fragmentation. For a 
careful analysis of the relative merits of stack and heap based 
allocation that supports heap allocation, see the paper by 
Appel and Shao [l]. For an equally careful analysis that 
supports stack allocation, see [22]. 

Thus, although the work-first principle gives a general un- 
derstanding of where overheads should be borne, our expe- 
rience with Cilk-4 showed that large enough critical-path 
overheads can tip the scales to the point where the assump- 
tions underlying the principle no longer hold. We believe 
that Cilk-5 work overhead is nearly as low as possible, given 
our goal of generating portable C output from our compiler.’ 
Other researchers have been able to reduce overheads even 
more, however, at the expense of portability. For example, 
lazy threads (141 obtains efficiency at the expense of im- 
plementing its own calling conventions, stack layouts, etc. 
Although we could in principle incorporate such machine- 
dependent techniques into our compiler, we feel that Cilk-5 
strikes a good balance between performance and portability. 
We also feel that the current overheads are sufficiently low 
that other problems, notably minimizing overheads for data 
synchronization, deserve more attention. 

5 implemention of work-stealing 

In this section, we describe Cilk-5’s work-stealing mecha- 
nism, which is based on a Dijkstra-like [ll], shared-memory, 
mutual-exclusion protocol called the “THE” protocol. In 
accordance with the work-first principle, this protocol has 
been designed to minimize work overhead. For example, on 
a 167-megahertz UltraSPARC I, the fib program with the 
THE protocol runs about 25% faster than with hardware 
locking primitives. We first present a simplified version of 
the protocol. Then, we discuss the actual implementation, 
which allows exceptions to be signaled with no additional 
overhead. 

‘Although the runtime system requires some effort to port between 
architectures, the compiler requires oo changes whatsoever for differ- 
ent platform. 
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Several straightforward mechanisms might be considered 
to implement a work-stealing protocol. For example, a thief 
might interrupt a worker and demand attention from this 
victim. This strategy presents problems for two reasons. 
First, the mechanisms for signaling interrupts are slow, and 
although an interrupt would be borne on the critical path, 
its large cost could threaten the assumption of parallel slack- 
ness. Second, the worker would necessarily incur some over- 
head on the work term to ensure that it could be safely 

interrupted in a critical section. As an alternative to send- 
ing interrupts, thieves could post steal requests, and workers 
could periodically poll for them. Once again, however, a cost 
accrues to the work overhead, this time for polling. Tech- 
niques are known that can limit the overhead of polling [12], 
but they require the support of a sophisticated compiler. 

The work-first principle suggests that it is reasonable to 
put substantial effort into minimizing work overhead in the 
work-stealing protocol. Since Cilk-5 is designed for shared- 
memory machines, we chose to implement work-stealing 
through shared-memory, rather than with message-passing, 
as might otherwise be appropriate for a distributed-memory 
implementation. In our implementation, both victim and 
thief operate directly through shared memory on the victim’s 
ready deque. The crucial issue is how to resolve the race con- 
dition that arises when a thief tries to steal the same frame 
that its victim is attempting to pop. One simple solution 
is to add a lock to the deque using relatively heavyweight 
hardware primitives like Compare-And-Swap or Test-And- 
Set. Whenever a thief or worker wishes to remove a frame 
from the deque, it first grabs the lock. This solution has 
the same fundamental problem as the interrupt and polling 
mechanisms just described, however. Whenever a worker 
pops a frame, it pays the heavy price to grab a lock, which 
contributes to work overhead. 

Consequently, we adopted a solution that employs Di- 
jkstra’s protocol for mutual exclusion [ll], which assumes 
only that reads and writes are atomic. Because our proto- 
col uses three atomic shared variables T, H, and E, we call 
it the THE protocol. The key idea is that actions by the 
worker on the tail of the queue contribute to work overhead, 
while actions by thieves on the head of the queue contribute 
only to critical-path overhead. Therefore, in accordance with 
the work-first principle, we attempt to move costs from the 
worker to the thief. To arbitrate among different thieves 
attempting to steal from the same victim, we use a hard- 
ware lock, since this overhead can be amortized against the 
critical path. To resolve conflicts between a worker and the 
sole thief holding the lock, however, we use a lightweight 
Dijkstra-like protocol which contributes minimally to work 
overhead. A worker resorts to a heavyweight hardware lock 
only when it encounters an actual conflict with a thief, in 
which case we can charge the overhead that the victim incurs 
to the critical path. 

In the rest of this section, we describe the THE protocol 

Worker/Victim Thief 
1 push0 I 1 steal0 C 
2 T++; 2 lock(L) ; 
3 1 3 li++; 

4 if (H > T) { 
4 pop0 I 5 H-m. 
5 T--; 6 u&k(L) ; 
6 if (ii > T) I 7 return FAILURE; 
7 T++ ; 8 > 
8 lock(L) ; 9 unlock(L) ; 
9 T--; 10 return SUCCESS; 

10 if (ii > T) i 11 1 
11 T++; 
12 unlock(L) ; 
13 return FAILURE; 
14 > 
15 unlock(L) ; 
16 It 
17 return SUCCESS; 
18 1 

Figure 4: Pseudocode of a simplified version of the THE protocol. 
The left part of the figure shows the actions performed by the 
victim, and the right part shows the actions of the thief. None 
of the actions besides reads and writes are assumed to be atomic. 
For example, T-- ; can be implemented as tmp = T; tmp = trap - 
I; T = trap;. 

in detail. We first present a simplified protocol that uses 
only two shared variables T and H designating the tail and 
the head of the deque, respectively. Later, we extend the 
protocol with a third variable E that allows exceptions to be 
signaled to a worker. The exception mechanism is used to 
implement Cilk’s abort statement. Interestingly, this exten- 
sion does not introduce any additional work overhead. 

The pseudocode of the simplified THE protocol is shown 
in Figure 4. Assume that shared memory is sequentially 
consistent [2O].s The code assumes that the ready deque is 
implemented as an array of frames. The head and tail of 
the deque are determined by two indices T and II, which axe 
stored in shared memory and are visible to all processors. 
The index T points to the first unused element in the array, 
and H points to the first frame on the deque. Indices grow 
from the head towards the tail so that under normal con- 
ditions, we have T 1 H. Moreover, each deque has a lock L 
implemented with atomic hardware primitives or with OS 
calls. 

The worker uses the deque as a stack. (See Section 4.) 
Before a spawn, it pushes a frame onto the tail of the deque. 
After a spawn, it pops the frame, unless the frame has been 
stolen. A thief attempts to steal the frame at the head of 
the deque. Only one thief at the time may steal from the 
deque, since a thief grabs L as its first action. As can be 
seen from the code, the worker alters T but not H, whereas 
the thief only increments H and does not alter T. 

The only possible interaction between a thief and its vic- 

sIf the shared memory is not sequentially consistent, a memory 
fence must be inserted between lines 6 and 6 of the worker/victim 
code and between lines 3 and 4 of the thief code to ensure that these 
instructions are executed in the proper order. 
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Thief 

H=T 

Victim 

(a) (b) Cc) 

Figure 5: The three cases of the ready deque in the simplified THE 
protocol. A shaded entry indicates the presence of a frame at a 
certain position in the deque. The head and the tail are marked 
by T and H. 

tim occurs when the thief is incrementing H while the vic- 
tim is decrementing T. Consequently, it is always safe for 
a worker to append a new frame at the end of the deque 
(push) without worrying about the actions of the thief. For 
a pop operations, there are three cases, which are shown in 
Figure 5. In case (a), the thief and the victim can both get 
a frame from the deque. In case (b), the deque contains only 
one frame. If the victim decrements T without interference 
from thieves, it gets the frame. Similarly, a thief can steal 
the frame as long as its victim is not trying to obtain it. If 
both the thief and the victim try to grab the frame, however, 
the protocol guarantees that at least one of them discovers 
that H > T. If the thief discovers that H > T, it restores 
H to its original value and retreats. If the victim discovers 
that H > T, it restores T to its original value and restarts the 
protocol after having acquired L. With L acquired, no thief 
can steal from this deque so the victim can pop the frame 
without interference (if the frame is still there). Finally, in 
case (c) the deque is empty. If a thief tries to steal, it will 
always fail. If the victim tries to pop, the attempt fails and 
control returns to the Cilk runtime system. The protocol 
cannot deadlock, because each process holds only one lock 
at a time. 

We now argue that the THE protocol contributes little to 
the work overhead. Pushing a frame involves no overhead 
beyond updating T. In the common case where a worker 
can succesfully pop a frame, the pop protocol performs only 
6 operations-2 memory loads, 1 memory store, 1 decre- 
ment, 1 comparison, and 1 (predictable) conditional branch. 
Moreover, in the common case where no thief operates on 

the deque, both H and T can be cached exclusively by the 
worker. The expensive operation of a worker grabbing the 
lock L occurs only when a thief is simultaneously trying to 
steal the frame being popped. Since the number of steal 
attempts depends on T,, not on TI, the relatively heavy 
cost of a victim grabbing L can be considered as part of the 
critical-path overhead coo and does not influence the work 
overhead cl. 

We ran some experiments to determine the relative per- 
formance of the THE protocol versus the straightforward 
protocol in which pop just locks the deque before accessing 
it. On a 167-megahertz UltraSPARC I, the THE protocol 
is about 25yo faster than the simple locking protocol. This 
machine’s memory model requires that a memory fence in- 
struction (membar) be inserted between lines 5 and 6 of the 
pop pseudocode. We tried to quantify the performance im- 
pact of the membar instruction, but in all our experiments 
the execution times of the code with and without membar 
are about the same. On a 200-megahertz Pentium Pro run- 
ning Linux and gee 2.7.1, the THE protocol is only about 
5% faster than the locking protocol. On this processor, the 
THE protocol spends about half of its time in the memory 
fence. 

Because it replaces locks with memory synchronization, 
the THE protocol is more “nonblocking” than a straightfor- 
ward locking protocol. Consequently, the THE protocol is 
less prone to problems that arise when spin locks are used 
extensively. For example, even if a worker is suspended 
by the operating system during the execution of pop, the 
infrequency of locking in the THE protocol means that a 
thief can usually complete a steal operation on the worker’s 
deque. Recent work by Arora et al. [2] has shown that a 
completely nonblocking work-stealing scheduler can be im- 
plemented. Using these ideas, Lisiecki and Medina [21] have 
modified the Cilk-5 scheduler to make it completely non- 
blocking. Their experience is that the THE protocol greatly 
simplifies a nonblocking implementation. 

The simplified THE protocol can be extended to support 
the signaling of exceptions to a worker. In Figure 4, the 
index H plays two roles: it marks the head of the deque, and 
it marks the point that the worker cannot cross when it pops. 
These places in the deque need not be the same. In the full 
THE protocol, we separate the two functions of H into two 
variables: H, which now only marks the head of the deque, 
and E, which marks the point that the victim cannot cross. 
Whenever E > T, some exceptional condition has occurred, 
which includes the frame being stolen, but it can also be used 
for other exceptions. For example, setting E = 00 causes the 
worker to discover the exception at its next pop. In the 
new protocol, E replaces H in line 6 of the worker/victim. 
Moreover, lines 7-15 of the worker/victim are replaced by 
a call to an exception handler to determine the type of 
exception (stolen frame or otherwise) and the proper action 
to perform. The thief code is also modified. Before trying to 
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Figure 6: The performance of example Cilk programs. Times are in seconds and are accurate to within about 10%. The serial programs 
are C elisions of the Cilk programs, except for those programs that are starred (*), where the parallel program implements a different 
algorithm than the serial program. Programs labeled by a dagger (t) are nondeterministic, and thus, the running time on one processor 
is not the same as the work performed by the computation. For these programs, the value for Ti indicates the actual work of the 
computation on 8 processors, and not the running time on one processor. 

steal, the thief increments E. If there is nothing to steal, the 
thief restores E to the original value. Otherwise, the thief 
steals frame H and increments H. From the point of view of 
a worker, the common case is the same as in the simplified 
protocol: it compares two pointers (E and T rather than H 
and T). 

The exception mechanism is used to implement abort. 
When a Cilk procedure executes an abort instruction, the 
runtime system serially walks the tree of outstanding descen- 
dants of that procedure. It marks the descendants as aborted 
and signals an abort exception on any processor working on 
a descendant. At its next pop, an aborted procedure will 
discover the exception, notice that it has been aborted, and 
return immediately. It is conceivable that a procedure could 
run for a long time without executing a pop and discovering 
that it has been aborted. We made the design decision to 
accept the possibility of this unlikely scenario, figuring that 
more cycles were likely to be lost in work overhead if we 
abandoned the THE protocol for a mechanism that solves 
this minor problem. 

6 Benchmarks 

In this section, we evaluate the performance of Cilk-5. We 

show that on 12 applications, the work overhead cl is close 
to 1, which indicates that the Cilk-5 implementation exploits 
the work-first principle effectively. We then present a break- 
down of Cilk’s work overhead cl on four machines. Finally, 
we present experiments showing that the critical-path over- 
head cm is reasonably small as well. 

Figure 6 shows a table of performance measurements taken 
for 12 Cilk programs on a Sun Enterprise 5000 SMP with 8 
167-megahertz UltraSPARC processors, each with 512 kilo- 
bytes of L2 cache, 16 kilobytes each of Ll data and instruc- 
tion caches, running Solaris 2.5. We compiled our programs 
with gee 2.7.2 at optimization level -03. For a full descrip- 
tion of these programs, see the Cilk 5.1 manual [8]. The 
table shows the work of each Cilk program TI, the critical 
path T,, and the two derived quantities 7 and cr. The ta- 

ble also lists the running time T8 on 8 processors, and the 
speedup Tl/Ts relative to the one-processor execution time, 
and speedup Ts/TB relative to the serial execution time. 

For the 12 programs, the average parallelism F is in most 
cases quite large relative to the number of processors on a 
typical SMP. These measurements validate our assumption 

of parallel slackness, which implies that the work term dom- 
inates in Inequality (4). For instance, on 1024 x 1024 matri- 

ces, notempmul runs with an average parallelism of 1970- 
yielding adequate parallel slackness for up to several hun- 
dred processors. For even larger machines, one normally 
would not run such a small problem. For notempmul, as well 
as the other 11 applications, the average parallelism grows 
with problem size, and thus sufficient parallel slackness is 
likely to exist even for much larger machines, as long as the 
problem sizes are scaled appropriately. 

The work overhead cl is only a few percent larger than 
1 for most programs, which shows that our design of Cilk-5 
faithfully implements the work-first principle. The two cases 
where the work overhead is larger (cilksort and cholesky) 
are due to the fact that we had to change the serial algo- 
rithm to obtain a parallel algorithm, and thus the compar- 
ison is not against the C elision. For example, the serial C 
algorithm for sorting is an in-place quicksort, but the par- 
allel algorithm cilksort requires an additional temporary 
array which adds overhead beyond the overhead of Cilk it- 
self. Similarly, our parallel Cholesky factorization uses a 
quadtree representation of the sparse matrix, which induces 
more work than the linked-list representation used in the 
serial C algorithm. Finally, the work overhead for fib is 
large, because fib does essentially no work besides spawn- 
ing procedures. Thus, the overhead cl = 3.63 for fib gives a 
good estimate of the cost of a Cilk spawn versus a traditional 
C function call. With such a small overhead for spawning, 
one can understand why for most of the other applications, 
which perform significant work for each spawn, the overhead 
of Cilk-5’s scheduling is barely noticeable compared to the 
10% “noise” in our measurements. 
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Figure 7: Breakdown of overheads for fib running on one pro- 
cessor on various architectures. The overheads are normalized to 
the running time of the serial C elision. The three overheads are 
for saving the state of a procedure before a spawn, the allocation 
of activation frames for procedures, and the THE protocol. Ab- 
solute times are given for the per-spawn running time of the C 
elision. 

We now present a breakdown of Cilk’s serial overhead cl 
into its components. Because scheduling overheads are small 
for most programs, we perform our analysis with the fib 

program from Figure 1. This program is unusually sensi- 
tive to scheduling overheads, because it contains little actual 
computation. We give a breakdown of the serial overhead 
into three components: the overhead of saving state before 
spawning, the overhead of allocating activation frames, and 
the overhead of the THE protocol. 

Figure 7 shows the breakdown of Cilk’s serial overhead 
for fib on four machines. Our methodology for obtaining 
these numbers is as follows. First, we take the serial C fib 
program and time its execution. Then, we individually add 
in the code that generates each of the overheads and time 
the execution of the resulting program. We attribute the 
additional time required by the modified program to the 
scheduling code we added. In order to verify our numbers, 
we timed the fib code with all of the Cilk overheads added 
(the code shown in Figure 3), and compared the resulting 
time to the sum of the individual overheads. In all cases, 
the two times differed by less than 10%. 

Overheads vary across architectures, but the overhead of 
Cilk is typically only a few times the C running time on this 
spawn-intensive program. Overheads on the Alpha machine 
are particularly large, because its native C function calls are 
fast compared to the other architectures. The state-saving 
costs are small for fib, because all four architectures have 
write buffers that can hide the latency of the writes required. 

We also attempted to measure the critical-path over- 
head coo. We used the synthetic knary benchmark [4] to 
synthesize computations artificially with a wide range of 
work and critical-path lengths. Figure 8 shows the outcome 
from many such experiments. The figure plots the measured 

’ * . - -...I 
0.1 1 

Normalized Machine Size 

Figure 8: Normalized speedup curve for Cilk-5. The horizontal 
axis is the number P of processors and the vertical axis is the 
speedup Tl/Tp, but, each data point has been normalized by di- 
viding by Tl /Tm. The graph also shows the speedup predicted 
by the formula Tp = Tl/P + Too. 

speedup TllTp for each run against the machine size P for 
that run. In order to plot different computations on the same 
graph, we normalized the machine size and the speedup by 
dividing these values by the average parallelism F = Tl/T,, 
as was done in [4]. For each run, the horizontal position of 
the plotted datum is the inverse of the slackness P/F, and 
thus, the normalized machine size is 1.0 when the number of 
processors is equal to the average parallelism. The vertical 
position of the plotted datum is (Tl/Tp)/F = T,/Tp, which 
measures the fraction of maximum obtainable speedup. As 
can be seen in the chart, for almost all runs of this bench- 
mark, we observed TP 5 Tl/P + l.OT,. (One exceptional 
data point satisfies TP z Tl/P + l.O5T,.) Thus, although 
the work-first principle caused us to move overheads to the 
critical path, the ability of Cilk applications to scale up was 
not significantly compromised. 

7 Conclusion 

We conclude this paper by examining some related work. 
Mohr et al. [24] introduced lazy task creation in their im- 

plementation of the Mul-T language. Lazy task creation 
is similar in many ways to our lazy scheduling techniques. 
Mohr et al. report a work overhead of around 2 when com- 
paring with serial T, the Scheme dialect on which Mul-T 
is based. Our research confirms the intuition behind their 
methods and shows that work overheads of close to 1 are 
achievable. 

The Cid language [26] is like Cilk in that it uses C as 
a base language and has a simple preprocessing compiler to 
convert parallel Cid constructs to C. Cid is designed to work 
in a distributed memory environment, and so it employs 
latency-hiding mechanisms which Cilk-5 could avoid. (We 
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are working on a distributed version of Cilk, however.) Both 
Cilk and Cid recognize the attractiveness of basing a parallel 
language on C so as to leverage C compiler technology for 
high-performance codes. Cilk is a faithful extension of C, 
however, supporting the simplifying notion of a C elision 
and allowing Cilk to exploit the C compiler technology more 
readily. 

TAM [IO] and Lazy Threads [14] also analyze many of 
the same overhead issues in a more general, “nonstrict” lan- 
guage setting, where the individual performances of a whole 
host of mechanisms are required for applications to obtain 
good overall performance. In contrast, Cilk’s multithreaded 
language provides an execution model based on work and 
critical-path length that allows us to focus our implemen- 
tation efforts by using the work-first principle. Using this 
principle as a guide, we have concentrated our optimizing 
effort on the common-case protocol code to develop an effi- 
cient and portable implementation of the Cilk language. 
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