
The Implementation of the Cilk-5 Multithreaded Language

Matte0 Frigo Charles E. Leiserson Keith H. Randall

MIT Laboratory for Computer Science
545 Technology Square

Cambridge, Massachusetts 02139
{athena,cel,randall}@lcs.mit.edu

Abstract

The fifth release of the multithreaded language Cilk uses a
provably good “work-stealing” scheduling algorithm similar
to the first system, but the language has been completely re-
designed and the runtime system completely reengineered.
The efficiency of the new implementation was aided by a
clear strategy that arose from a theoretical analysis of the
scheduling algorithm: concentrate on minimizing overheads
that contribute to the work, even at the expense of overheads
that contribute to the critical path. Although it may seem
counterintuitive to move overheads onto the critical path,
this “work-first” principle has led to a portable Cilk-5 im-
plementation in which the typical cost of spawning a parallel
thread is only between 2 and 6 times the cost of a C function
call on a variety of contemporary machines. Many Cilk pro-
grams run on one processor with virtually no degradation
compared to equivalent C programs. This paper describes
how the work-first principle was exploited in the design of
Cilk-5’s compiler and its runtime system. In particular, we
present Cilk-5’s novel “two-clone” compilation strategy and
its Dijkstra-like mutual-exclusion protocol for implementing
the ready deque in the work-stealing scheduler.

Keywords

Critical path, multithreading, parallel computing, program-
ming language, runtime system, work.

1 Introduction

Cilk is a multithreaded language for parallel programming
that generalizes the semantics of C by introducing linguistic
constructs for parallel control. The original Cilk-1 release
[3, 4, 181 featured a provably efficient, randomized, “work-
stealing” scheduler [3, 51, but the language was clumsy,
because parallelism was exposed “by hand” using explicit
continuation passing. The Cilk language implemented by

This research was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant N00014-94-1-0985.
Computing facilities were provided by the MIT Xolas Project, thanks
to a generous equipment donation from Sun Microsystems.

Permission tc make digital or hard copies of all or pan of thii wcrk for
pereonsl or classroom US* is grantad without 1~ provided that
copies are not made M distributed lot profit 01 commercial advan-
taps and that copies bear thie notiw and tha full citation on ti fit paw.
To copy otherwise, to republish. tc post on l rwnn OT tc
redistribute to lists, requires prior spadfic pwniwicn end/w a fu.
SIGPLAN ‘SE Montreal, Canada
8 1998 ACM 0-89791~987-4/98/0006...$5,00

our latest Cilk-5 release [8] still uses a theoretically efficient
scheduler, but the language has been simplified considerably.
It employs call/return semantics for parallelism and features
a linguistically simple “inlet” mechanism for nondeterminis-
tic control. Cilk-5 is designed to run efficiently on contem-
porary symmetric multiprocessors (SMP’s), which feature
hardware support for shared memory. We have coded many
applications in Cilk, including the *Socrates and Cilkchess
chess-playing programs which have won prizes in interna-
tional competitions.

The philosophy behind Cilk development has been to
make the Cilk language a true parallel extension of C, both
semantically and with respect to performance. On a paral-
lel computer, Cilk control constructs allow the program to
execute in parallel. If the Cilk keywords for parallel control
are elided from a Cilk program, however, a syntactically and
semantically correct C program results, which we call the C
elision (or more generally, the serial elision) of the Cilk
program. Cilk is a faithful extension of C, because the C
elision of a Cilk program is a correct implementation of the
semantics of the program. Moreover, on one processor, a
parallel Cilk program “scales down” to run nearly as fast as
its C elision.

Unlike in Cilk-1, where the Cilk scheduler was an identifi-
able piece of code, in Cilk-5 both the compiler and runtime
system bear the responsibility for scheduling. To obtain ef-
ficiency, we have, of course, attempted to reduce scheduling
overheads. Some overheads have a larger impact on execu-
tion time than others, however. A theoretical understanding
of Cilk’s scheduling algorithm [3, 51 has allowed us to iden-
tify and optimize the common cases. According to this ab-
stract theory, the performance of a Cilk computation can be
characterized by two quantities: its work, which is the to-
tal time needed to execute the computation serially, and its
critical-path length, which is its execution time on an in-
finite number of processors. (Cilk provides instrumentation
that allows a user to measure these two quantities.) Within
Cilk’s scheduler, we can identify a given cost as contribut-
ing to either work overhead or critical-path overhead. Much
of the efficiency of Cilk derives from the following principle,
which we shall justify in Section 3.

212

The work-first principle: Minimize the schedul-
ing overhead borne by the world of a computation.
Specifically, move overheads out of the work and
onto the critical path.

The work-first principle played an important role during the
design of earlier Cilk systems, but Cilk-5 exploits the prin-
ciple more extensively.

The work-first principle inspired a “two-clone” strategy
for compiling Cilk programs. Our cilk2c compiler [23] is a
type-checking, source-to-source translator that transforms a
Cilk source into a C postsource which makes calls to Cilk’s
runtime library. The C postsource is then run through the
gee compiler to produce object code. The cilk2c compiler
produces two clones of every Cilk procedure-a “fast” clone
and a “slow” clone. The fast clone, which is identical in
most respects to the C elision of the Cilk program, executes
in the common case where serial semantics suffice. The slow
clone is executed in the infrequent case that parallel seman-
tics and its concomitant bookkeeping are required. All com-
munication due to scheduling occurs in the slow clone and
contributes to critical-path overhead, but not to work over-
head.

The work-first principle also inspired a Dijkstra-like [ll],
shared-memory, mutual-exclusion protocol as part of the
runtime load-balancing scheduler. Cilk’s scheduler uses a
“work-stealing” algorithm in which idle processors, called
thieves, “steal” threads from busy processors, called vic-
tims. Cilk’s scheduler guarantees that the cost of steal-
ing contributes only to critical-path overhead, and not to
work overhead. Nevertheless, it is hard to avoid the mutual-
exclusion costs incurred by a potential victim, which con-
tribute to work. To minimize work overhead, instead of using
locking, Cilk’s runtime system uses a Dijkstra-like protocol,
which we call the THE protocol, to manage the runtime
deque of ready threads in the work-stealing algorithm. An
added advantage of the THE protocol is that it allows an
exception to be signaled to a working processor with no ad-
ditional work overhead, a feature used in Cilk’s abort mech-
anism.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the basic features of the Cilk language. Sec-
tion 3 justifies the work-first principle. Section 4 describes
how the two-clone strategy is implemented, and Section 5
presents the THE protocol. Section 6 gives empirical evi-
dence that the Cilk-5 scheduler is efficient. Finally, Section 7
presents related work and offers some conclusions.

2 The Cilk language

This section presents a brief overview of the Cilk extensions
to C as supported by Cilk-5. (For a complete description,
consult the Cilk-5 manual [8].) The key features of the lan-
guage are the specification of parallelism and synchroniza-
tion, through the spawn and sync keywords, and the speci-
fication of nondeterminism, using inlet and abort.

#include tstdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
c

if (n(2) return n;
else c

int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y) ;

lt
1

cilk int main (int argc, char *argv[l)
{

int n. result;
n = atoi(argvC11);
result. = spawn fib(n);
sync ;
printf (“Result: %d\n”, result) ;
return 0:

Figure 1: A simple Cilk program to compute the nth Fibonacci
number in parallel (using a very bad algorithm).

The basic Cilk language can be understood from an exam-
ple. Figure 1 shows a Cilk program that computes the nth
Fibonacci number.’ Observe that the program would be an
ordinary C program if the three keywords cilk, spawn, and
sync are elided.

The keyword cilk identifies fib as a Cilk procedure,
which is the parallel analog to a C function. Parallelism
is created when the keyword spawn precedes the invocation
of a procedure. The semantics of a spawn differs from a
C function call only in that the parent can continue to ex-
ecute in parallel with the child, instead of waiting for the
child to complete as is done in C. Cilk’s scheduler takes the
responsibility of scheduling the spawned procedures on the
processors of the parallel computer.

A Cilk procedure cannot safely use the values returned by
its children until it executes a sync statement. The sync
statement is a local “barrier,” not a global one as, for ex-
ample, is used in message-passing programming. In the Fi-
bonacci example, a sync statement is required before the
statement return (x+y> to avoid the anomaly that would
occur if x and y are summed before they are computed. In
addition to explicit synchronization provided by the sync
statement, every Cilk procedure syncs implicitly before it
returns, thus ensuring that all of its children terminate be-
fore it does.

Ordinarily, when a spawned procedure returns, the re-
turned value is simply stored into a variable in its parent’s
frame:

‘This program USES an inefficient algoritlnn which runs in exponen-
tial time. Although logarithmic-time methods are known [9, p. 8501,
this program nevertheless provides a good didactic example.

213

cilk int fib (int n)
c

int x = 0;
inlet void summsr (int result)

x += result;
return;

1

if (nt2) return n;
else c

summer(spawn fib (n-l));
summsr(spawn fib (n-2));
sync;
return (x);

lt
>

Figure 2: Using an inlet to compute the nth Fibonnaci number.

x = spawn foo (y) ;

Occasionally, one would like to incorporate the returned
value into the parent’s frame in a more complex way. Cilk
provides an inlet feature for this purpose, which was in-
spired in part by the inlet feature of TAM [lo].

An inlet is essentially a C function internal to a Cilk pro-
cedure. In the normal syntax of Cilk, the spawning of a
procedure must occur as a separate statement and not in an
expression. An exception is made to this rule if the spawn
is performed as an argument to an inlet call. In this case,
the procedure is spawned, and when it returns, the inlet is
invoked. In the meantime, control of the parent procedure
proceeds to the statement following the inlet call. In princi-
ple, inlets can take multiple spawned arguments, but Cilk-5
has the restriction that exactly one argument to an inlet
may be spawned and that this argument must be the first
argument. If necessary, this restriction is easy to program
around.

Figure 2 illustrates how the f ib0 function might be coded
using inlets. The inlet summer 0 is defined to take a returned
value result and add it to the variable x in the frame of the
procedure that does the spawning. All the variables of f ib()

are available within summer 0, since it is an internal function
of fib().2

No lock is required around the accesses to x by summer,
because Cilk provides atomicity implicitly. The concern is
that the two updates might occur in parallel, and if atomic-
ity is not imposed, an update might be lost. Cilk provides
implicit atomicity among the “threads” of a procedure in-
stance, where a thread is a maximal sequence of instruc-
tions ending with a spawn, sync, or return (either explicit
or implicit) statement. An inlet is precluded from containing
spawn and sync statements, and thus it operates atomically
as a single thread. Implicit atomicity simplifies reasoning

aThe C elision of a Cilk progranl with inlets is not ANSI C, because
ANSI C does not support internal C functions. Cilk is based on Gnu
C technology, however, which does provide tbis support.

about concurrency and nondeterminism without requiring
locking, declaration of critical regions, and the like.

Cilk provides syntactic sugar to produce certain commonly
used inlets implicitly. For example, the statement x +=
spawn fib(n-1) conceptually generates an inlet similar to
the one in Figure 2.

Sometimes, a procedure spawns off parallel work which it
later discovers is unnecessary. This “speculative” work can
be aborted in Cilk using the abort primitive inside an in-
let. A common use of abort occurs during a parallel search,
where many possibilities are searched in parallel. As soon as
a solution is found by one of the searches, one wishes to abort
any currently executing searches as soon as possible so as not
to waste processor resources. The abort statement, when
executed inside an inlet, causes all of the already-spawned
children of the procedure to terminate.

We considered using “futures” [19] with implicit synchro-
nization, as well as synchronizing on specific variables, in-
stead of using the simple spawn and sync statements. We
realized from the work-first principle, however, that differ-
ent synchronization mechanisms could have an impact only
on the critical-path of a computation, and so this issue was
of secondary concern. Consequently, we opted for imple-
mentation simplicity. Also, in systems that support re-
laxed memory-consistency models, the explicit sync state-
ment can be used to ensure that all side-effects from previ-
ously spawned subprocedures have occurred.

In addition to the control synchronization provided by
sync, Cilk programmers can use explicit locking to syn-
chronize accesses to data, providing mutual exclusion and
atomicity. Data synchronization is an overhead borne on
the work, however, and although we have striven to min-
imize these overheads, fine-grain locking on contemporary
processors is expensive. We are currently investigating how
to incorporate atomicity into the Cilk language so that pro-
tocol issues involved in locking can be avoided at the user
level. To aid in the debugging of Cilk programs that use
locks, we have been developing a tool called the “Nonde-
terminator” [7, 131, which detects common synchronization
bugs called data races.

3 The work-first principle

This section justifies the work-first principle stated in Sec-
tion 1 by showing that it follows from three assumptions.
First, we assume that Cilk’s scheduler operates in practice
according to the theoretical analysis presented in [3, 51. Sec-
ond, we assume that in the common case, ample “parallel
slackness” [28] exists, that is, the average parallelism of a
Cilk program exceeds the number of processors on which we
run it by a sufficient margin. Third, we assume (as is indeed
the case) that every Cilk program has a C elision against
which its one-processor performance can be measured.

The theoretical analysis presented in [3, 51 cites two funda-

214

mental lower bounds as to how fast a Cilk program can run.
Let us denote by Tp the execution time of a given computa-
tion on P processors. Then, the work of the computation is
Tl and its critical-path length is Tm. For a computation with
Tl work, the lower bound Tp > Tl/P must hold, because at
most P units of work can be executed in a single step. In
addition, the lower bound Tp > Too must hold, since a finite
number of processors cannot execute faster than an infinite
number.’

Cilk’s randomized work-stealing scheduler [3, 51 executes
a Cilk computation on P processors in expected time

TP = TI/P + O(T,) , (1)

assuming an ideal parallel computer. This equation resem-
bles “Brent’s theorem” [6, 151 and is optimal to within a
constant factor, since Tl/P and T, are both lower bounds.
We call the first term on the right-hand side of Equation (1)
the world term and the second term the critical-path term.
Importantly, all communication costs due to Cilk’s scheduler
are borne by the critical-path term, as are most of the other
scheduling costs. To make these overheads explicit, we de-
fine the critical-path overhead to be the smallest constant
co3 such that

TP <TI/P+c,T, . (2)

The second assumption needed to justify the work-first
principle focuses on the “common-case” regime in which a
parallel program operates. Define the average parallelism
as Tis = Tl/T,, which corresponds to the maximum pos-
sible speedup that the application can obtain. Define also
the parallel slackness [28] to be the ratio F/P. The as-
sumption of parallel slackness is that PIP >> coo, which
means that the number P of processors is much smaller than
the average parallelism F. Under this assumption, it follows
that TIIP >> cooToo, and hence from Inequality (2) that

TP z Tl/P, and we obtain linear speedup. The critical-
path overhead cm has little effect on performance when suffi-
cient slackness exists, although it does determines how much
slackness must exist to ensure linear speedup.

Whether substantial slackness exists in common applica-
tions is a matter of opinion and empiricism, but we suggest
that slackness is the common case. The expressiveness of
Cilk makes it easy to code applications with large amounts
of parallelism. For modest-sized problems, many applica-
tions exhibit an average parallelism of over 200, yielding sub-
stantial slackness on contemporary SMP’s. Even on Sandia
National Laboratory’s Intel Paragon, which contains 1824
nodes, the *Socrates chess program (coded in Cilk-1) ran
in its linear-speedup regime during the 1995 ICCA World
Computer Chess Championship (where it placed second in
a field of 24). Section 6 describes a dozen other diverse
applications which were run on an b-processor SMP with

‘This abstract model of execution time @ores real-life details,
such as memory-hierarchy effects, but is nonetheless quite accurate [a].

considerable parallel slackness. The parallelisim of these ap-
plications increases with problem size, thereby ensuring they
will run well on large machines.

The third assumption behind the work-first principle is
that every Cilk program has a C elision against which its
one-processor performance can be measured. Let us denote
by TS the running time of the C elision. Then, we defme the
work overhead by cl = Tl/Ts. Incorporating critical-path
and work overheads into Inequality (2) yields

TP 5 cJ’s/P + c,Too (3)

= CITSIP ,

since we assume parallel slackness.
We can now restate the work-first principle precisely. h&n-

imize cl, even at the expense of a larger c,, because cl has a
more direct impact on performance. Adopting the work-first
principle may adversely affect the ability of an application
to scale up, however, if the critical-path overhead coo is too
large. But, as we shall see in Section 6, critical-path over-
head is reasonably small in Cilkd, and many applications
can be coded with large amounts of parallelism.

The work-first principle pervades the Cilk-5 implementa-
tion. The work-stealing scheduler guarantees that with high
probability, only O(PT,) steal (migration) attempts occur
(that is, O(T,) on average per processor), all costs for which
are borne on the critical path. Consequently, the scheduler
for Cilkd postpones as much of the scheduling cost as pos-
sible to when work is being stolen, thereby removing it as
a contributor to work overhead. This strategy of amortiz-
ing costs against steal attempts permeates virtually every
decision made in the design of the scheduler.

4 Cilk’s compilation strategy

This section describes how our cilk2c compiler generates C
postsource from a Cilk program. As dictated by the work-
first principle, our compiler and scheduler are designed to
reduce the work overhead as much as possible. Our strategy
is to generate two clones of each procedure--a fast clone and
a slow clone. The fast clone operates much as does the C
elision and has little support for parallelism. The slow clone
has full support for parallelism, along with its concomitant
overhead. We first describe the Cilk scheduling algorithm.
Then, we describe how the compiler translates the Cilk lan-
guage constructs into code for the fast and slow clones of
each procedure. Lastly, we describe how the runtime sys-
tem links together the actions of the fast and slow clones to
produce a complete Cilk implementation.

As in lazy task creation [24], in Cilk-5 each proces-
sor, called a worker, maintains a ready deque (doubly-
ended queue) of ready procedures (technically, procedure
instances). Each deque has two ends, a head and a tail,
from which procedures can be added or removed. A worker
operates locally on the tail of its own deque, treating it much

215

1 int fib (int n)

2 {
3 fib-frame *f;
4 f = alloc(sizeof(*f));
5 f->sig = fib-sig;
6 if (n<2) I
7 free(f, sizeof(*
8 return n;
9 >

10 else {
11 int x. y;
12 f->entry = 1;
13 f->n = n;
14 *T = f;
15 push0 ;
16 x = fib h-1);
17 if (pop(x) == FAILURE)
18 return 0;
19 . . .

20
21 k(f, sizeof(*
22 return (x+y);
23)
24 1

frame pointer
allocate frame
initialixe frame

free frame

save PC
save live vars
store fmme pointer
push frame
do C call
POP frame
frame stolen
second spawn
sync is free!
free frame

Figure 3: The fast clone generated by cilk2c for the fib proce-
dure from Figure 1. The code for the second spawn is omitted.
The functions allot and free are inlined calls to the runtime
system’s fast memory allocator. The signature f ib-sig contains
a description of the fib procedure, including a pointer to the slow
clone. The push and pop calls are operations on the scheduling
deque and are described in detail in Section 5.

as C treats its call stack, pushing and popping spawned acti-
vation frames. When a worker runs out of work, it becomes
a thief and attempts to steal a procedure another worker,
called its victim. The thief steals the procedure from the
head of the victim’s deque, the opposite end from which the
victim is working.

When a procedure is spawned, the fast clone runs. When-
ever a thief steals a procedure, however, the procedure is
converted to a slow clone. The Cilk scheduler guarantees
that the number of steals is small when sufficient slackness
exists, and so we expect the fast clones to be executed most
of the time. Thus, the work-first principle reduces to mini-
mizing costs in the fast clone, which contribute more heavily
to work overhead. Minimizing costs in the slow clone, al-
though a desirable goal, is less important, since these costs
contribute less heavily to work overhead and more to critical-
path overhead.

We minimize the costs of the fast clone by exploiting the
structure of the Cilk scheduler. Because we convert a pro-
cedure to its slow clone when it is stolen, we maintain the
invariant that a fast clone has never been stolen. Further-
more, none of the descendants of a fast clone have been
stolen either, since the strategy of stealing from the heads
of ready deques guarantees that parents are stolen before
their children. As we shall see, this simple fact allows many
optimizations to be performed in the fast clone.

We now describe how our cilk2c compiler generates post-
source C code for the fib procedure from Figure 1. An ex-

ample of the postsource for the fast clone of fib is given
in Figure 3. The generated C code has the same general
structure as the C elision, with a few additional statements.
In lines 4-5, an activation fMcme is allocated for fib and
initialized. The Cilk runtime system uses activation frames
to represent procedure instances. Using techniques similar
to [16, 171, our inlined allocator typically takes only a few
cycles. The frame is initialized in line 5 by storing a pointer
to a static structure, called a signature, describing fib.

The first spawn in fib is translated into lines 12-18. In
lines 12-13, the state of the fib procedure is saved into
the activation frame. The saved state includes the program
counter, encoded as an entry number, and all live, dirty vari-
ables. Then, the frame is pushed on the runtime deque in
lines 14-15.4 Next, we call the fib routine as we would
in C. Because the spawn statement itself compiles directly
to its C elision, the postsource can exploit the optimization
capabilities of the C compiler, including its ability to pass
arguments and receive return values in registers rather than
in memory.

After fib returns, lines 17-18 check to see whether the
parent procedure has been stolen. If it has, we return im-
mediately with a dummy value. Since all of the ancestors
have been stolen as well, the C stack quickly unwinds and
control is returned to the runtime system.6 The protocol
to check whether the parent procedure has been stolen is
quite subtle-we postpone discussion of its implementation
to Section 5. If the parent procedure has not been stolen,
it continues to execute at line 19, performing the second
spawn, which is not shown.

In the fast clone, all sync statements compile to no-ops.
Because a fast clone never has any children when it is exe-
cuting, we know at compile time that all previously spawned
procedures have completed. Thus, no operations are re-
quired for a sync statement, as it always succeeds. For exarn-
ple, line 20 in Figure 3, the translation of the sync statement
is just the empty statement. Finally, in lines 21-22, fib deal-
locates the activation frame and returns the computed result
to its parent procedure.

The slow clone is similar to the fast clone except that
it provides support for parallel execution. When a proce-
dure is stolen, control has been suspended between two of
the procedure’s threads, that is, at a spawn or sync point.
When the slow clone is resumed, it uses a goto statement
to restore the program counter, and then it restores local
variable state from the activation frame. A spawn statement
is translated in the slow clone just as in the fast clone. For a
sync statement, cilk2c inserts a call to the runtime system,
which checks to see whether the procedure has any spawned
children that have not returned. Although the parallel book-

41f the shared memory is not sequentially consistent, a memory
fence must be inserted between lines 14 and 15 to ensure that the
surrounding writes are executed in the proper order.

‘The setjmp/longjmp facility of C could have been used as well, but
our unwinding strategy is simpler.

216

keeping in a slow clone is substantial, it contributes little to
work overhead, since slow clones are rarely executed.

The separation between fast clones and slow clones also
allows US to compile inlets and abort statements efficiently
in the fast clone. An inlet call compiles as efficiently as an
ordinary spawn. For example, the code for the inlet call from
Figure 2 compiles similarly to the following Cilk code:

tmp = spawn fibh-1);
summer(tmp) ;

Implicit inlet calls, such as x += spawn f ib(n-l), compile
directly to their C elisions. An abort statement compiles to
a no-op just as a sync statement does, because while it is
executing, a fast clone has no children to abort.

The runtime system provides the glue between the fast and
slow clones that makes the whole system work. It includes
protocols for stealing procedures, returning values between
processors, executing inlets, aborting computation subtrees,
and the like. All of the costs of these protocols can be amor-
tized against the critical path, so their overhead does not
significantly affect the running time when sufficient parallel
slackness exists. The portion of the stealing protocol exe-
cuted by the worker contributes to work overhead, however,
thereby ‘warranting a careful implementation. We discuss
this protocol in detail in Section 5.

The work overhead of a spawn in Cilk-5 is only a few reads
and writes in the fast clone-3 reads and 5 writes for the fib
example. We will experimentally quantify the work overhead
in Section 6. Some work overheads still remain in our im-
plementation, however, including the allocation and freeing
of activation frames, saving state before a spawn, pushing
and popping of the frame on the deque, and checking if a
procedure has been stolen. A portion of this work overhead
is due to the fact that Cilk-5 is duplicating the work the C
compiler performs, but as Section 6 shows, this overhead is
small. Although a production Cilk compiler might be able
eliminate this unnecessary work, it would likely compromise
portability.

In Cilk-4, the precursor to Cilk-5, we took the work-first
principle to the extreme. Cilk-4 performed stack-based al-
location of activation frames, since the work overhead of
stack allocation is smaller than the overhead of heap ahoca-
tion. Because of the “cactus stack” 1251 semantics of the Cilk
stack,6 however, Cilk-4 had to manage the virtual-memory
map on each processor explicitly, as was done in [27]. The
work overhead in Cilk-4 for frame allocation was little more
than that of incrementing the stack pointer, but whenever
the stack pointer overflowed a page, an expensive user-level
interrupt ensued, during which Cilk-4 would modify the
memory map. Unfortunately, the operating-system mech-
anisms supporting these operations were too slow and un-
predictable, and the possibility of a page fault in critical sec-

6Suppose a procedure A spawns two children B and C. The two
children can reference objects in A’s activation frame, but B and C
do not see each other’s frame.

tions led to complicated protocols. Even though these over-
heads could be charged to the critical-path term, in practice,
they became so large that the critical-path term contributed
significantly to the running time, thereby violating the as-
sumption of parallel slackness. A one-processor execution of
a program was indeed fast, but insufficient slackness some-
times resulted in poor parallel performance.

In Cilk-5, we simplified the allocation of activation frames
by simply using a heap. In the common case, a frame is
allocated by removing it from a free list. Deallocation is
performed by inserting the frame into the free list. No user-
level management of virtual memory is required, except for
the initial setup of shared memory. Heap allocation con-
tributes only slightly more than stack allocation to the work
overhead, but it saves substantially on the critical path term.
On the downside, heap allocation can potentially waste more
memory than stack allocation due to fragmentation. For a
careful analysis of the relative merits of stack and heap based
allocation that supports heap allocation, see the paper by
Appel and Shao [l]. For an equally careful analysis that
supports stack allocation, see [22].

Thus, although the work-first principle gives a general un-
derstanding of where overheads should be borne, our expe-
rience with Cilk-4 showed that large enough critical-path
overheads can tip the scales to the point where the assump-
tions underlying the principle no longer hold. We believe
that Cilk-5 work overhead is nearly as low as possible, given
our goal of generating portable C output from our compiler.’
Other researchers have been able to reduce overheads even
more, however, at the expense of portability. For example,
lazy threads (141 obtains efficiency at the expense of im-
plementing its own calling conventions, stack layouts, etc.
Although we could in principle incorporate such machine-
dependent techniques into our compiler, we feel that Cilk-5
strikes a good balance between performance and portability.
We also feel that the current overheads are sufficiently low
that other problems, notably minimizing overheads for data
synchronization, deserve more attention.

5 implemention of work-stealing

In this section, we describe Cilk-5’s work-stealing mecha-
nism, which is based on a Dijkstra-like [ll], shared-memory,
mutual-exclusion protocol called the “THE” protocol. In
accordance with the work-first principle, this protocol has
been designed to minimize work overhead. For example, on
a 167-megahertz UltraSPARC I, the fib program with the
THE protocol runs about 25% faster than with hardware
locking primitives. We first present a simplified version of
the protocol. Then, we discuss the actual implementation,
which allows exceptions to be signaled with no additional
overhead.

‘Although the runtime system requires some effort to port between
architectures, the compiler requires oo changes whatsoever for differ-
ent platform.

217

Several straightforward mechanisms might be considered
to implement a work-stealing protocol. For example, a thief
might interrupt a worker and demand attention from this
victim. This strategy presents problems for two reasons.
First, the mechanisms for signaling interrupts are slow, and
although an interrupt would be borne on the critical path,
its large cost could threaten the assumption of parallel slack-
ness. Second, the worker would necessarily incur some over-
head on the work term to ensure that it could be safely

interrupted in a critical section. As an alternative to send-
ing interrupts, thieves could post steal requests, and workers
could periodically poll for them. Once again, however, a cost
accrues to the work overhead, this time for polling. Tech-
niques are known that can limit the overhead of polling [12],
but they require the support of a sophisticated compiler.

The work-first principle suggests that it is reasonable to
put substantial effort into minimizing work overhead in the
work-stealing protocol. Since Cilk-5 is designed for shared-
memory machines, we chose to implement work-stealing
through shared-memory, rather than with message-passing,
as might otherwise be appropriate for a distributed-memory
implementation. In our implementation, both victim and
thief operate directly through shared memory on the victim’s
ready deque. The crucial issue is how to resolve the race con-
dition that arises when a thief tries to steal the same frame
that its victim is attempting to pop. One simple solution
is to add a lock to the deque using relatively heavyweight
hardware primitives like Compare-And-Swap or Test-And-
Set. Whenever a thief or worker wishes to remove a frame
from the deque, it first grabs the lock. This solution has
the same fundamental problem as the interrupt and polling
mechanisms just described, however. Whenever a worker
pops a frame, it pays the heavy price to grab a lock, which
contributes to work overhead.

Consequently, we adopted a solution that employs Di-
jkstra’s protocol for mutual exclusion [ll], which assumes
only that reads and writes are atomic. Because our proto-
col uses three atomic shared variables T, H, and E, we call
it the THE protocol. The key idea is that actions by the
worker on the tail of the queue contribute to work overhead,
while actions by thieves on the head of the queue contribute
only to critical-path overhead. Therefore, in accordance with
the work-first principle, we attempt to move costs from the
worker to the thief. To arbitrate among different thieves
attempting to steal from the same victim, we use a hard-
ware lock, since this overhead can be amortized against the
critical path. To resolve conflicts between a worker and the
sole thief holding the lock, however, we use a lightweight
Dijkstra-like protocol which contributes minimally to work
overhead. A worker resorts to a heavyweight hardware lock
only when it encounters an actual conflict with a thief, in
which case we can charge the overhead that the victim incurs
to the critical path.

In the rest of this section, we describe the THE protocol

Worker/Victim Thief
1 push0 I 1 steal0 C
2 T++; 2 lock(L) ;
3 1 3 li++;

4 if (H > T) {
4 pop0 I 5 H-m.
5 T--; 6 u&k(L) ;
6 if (ii > T) I 7 return FAILURE;
7 T++ ; 8 >
8 lock(L) ; 9 unlock(L) ;
9 T--; 10 return SUCCESS;

10 if (ii > T) i 11 1
11 T++;
12 unlock(L) ;
13 return FAILURE;
14 >
15 unlock(L) ;
16 It
17 return SUCCESS;
18 1

Figure 4: Pseudocode of a simplified version of the THE protocol.
The left part of the figure shows the actions performed by the
victim, and the right part shows the actions of the thief. None
of the actions besides reads and writes are assumed to be atomic.
For example, T-- ; can be implemented as tmp = T; tmp = trap -
I; T = trap;.

in detail. We first present a simplified protocol that uses
only two shared variables T and H designating the tail and
the head of the deque, respectively. Later, we extend the
protocol with a third variable E that allows exceptions to be
signaled to a worker. The exception mechanism is used to
implement Cilk’s abort statement. Interestingly, this exten-
sion does not introduce any additional work overhead.

The pseudocode of the simplified THE protocol is shown
in Figure 4. Assume that shared memory is sequentially
consistent [2O].s The code assumes that the ready deque is
implemented as an array of frames. The head and tail of
the deque are determined by two indices T and II, which axe
stored in shared memory and are visible to all processors.
The index T points to the first unused element in the array,
and H points to the first frame on the deque. Indices grow
from the head towards the tail so that under normal con-
ditions, we have T 1 H. Moreover, each deque has a lock L
implemented with atomic hardware primitives or with OS
calls.

The worker uses the deque as a stack. (See Section 4.)
Before a spawn, it pushes a frame onto the tail of the deque.
After a spawn, it pops the frame, unless the frame has been
stolen. A thief attempts to steal the frame at the head of
the deque. Only one thief at the time may steal from the
deque, since a thief grabs L as its first action. As can be
seen from the code, the worker alters T but not H, whereas
the thief only increments H and does not alter T.

The only possible interaction between a thief and its vic-

sIf the shared memory is not sequentially consistent, a memory
fence must be inserted between lines 6 and 6 of the worker/victim
code and between lines 3 and 4 of the thief code to ensure that these
instructions are executed in the proper order.

218

Thief

H=T

Victim

(a) (b) Cc)

Figure 5: The three cases of the ready deque in the simplified THE
protocol. A shaded entry indicates the presence of a frame at a
certain position in the deque. The head and the tail are marked
by T and H.

tim occurs when the thief is incrementing H while the vic-
tim is decrementing T. Consequently, it is always safe for
a worker to append a new frame at the end of the deque
(push) without worrying about the actions of the thief. For
a pop operations, there are three cases, which are shown in
Figure 5. In case (a), the thief and the victim can both get
a frame from the deque. In case (b), the deque contains only
one frame. If the victim decrements T without interference
from thieves, it gets the frame. Similarly, a thief can steal
the frame as long as its victim is not trying to obtain it. If
both the thief and the victim try to grab the frame, however,
the protocol guarantees that at least one of them discovers
that H > T. If the thief discovers that H > T, it restores
H to its original value and retreats. If the victim discovers
that H > T, it restores T to its original value and restarts the
protocol after having acquired L. With L acquired, no thief
can steal from this deque so the victim can pop the frame
without interference (if the frame is still there). Finally, in
case (c) the deque is empty. If a thief tries to steal, it will
always fail. If the victim tries to pop, the attempt fails and
control returns to the Cilk runtime system. The protocol
cannot deadlock, because each process holds only one lock
at a time.

We now argue that the THE protocol contributes little to
the work overhead. Pushing a frame involves no overhead
beyond updating T. In the common case where a worker
can succesfully pop a frame, the pop protocol performs only
6 operations-2 memory loads, 1 memory store, 1 decre-
ment, 1 comparison, and 1 (predictable) conditional branch.
Moreover, in the common case where no thief operates on

the deque, both H and T can be cached exclusively by the
worker. The expensive operation of a worker grabbing the
lock L occurs only when a thief is simultaneously trying to
steal the frame being popped. Since the number of steal
attempts depends on T,, not on TI, the relatively heavy
cost of a victim grabbing L can be considered as part of the
critical-path overhead coo and does not influence the work
overhead cl.

We ran some experiments to determine the relative per-
formance of the THE protocol versus the straightforward
protocol in which pop just locks the deque before accessing
it. On a 167-megahertz UltraSPARC I, the THE protocol
is about 25yo faster than the simple locking protocol. This
machine’s memory model requires that a memory fence in-
struction (membar) be inserted between lines 5 and 6 of the
pop pseudocode. We tried to quantify the performance im-
pact of the membar instruction, but in all our experiments
the execution times of the code with and without membar
are about the same. On a 200-megahertz Pentium Pro run-
ning Linux and gee 2.7.1, the THE protocol is only about
5% faster than the locking protocol. On this processor, the
THE protocol spends about half of its time in the memory
fence.

Because it replaces locks with memory synchronization,
the THE protocol is more “nonblocking” than a straightfor-
ward locking protocol. Consequently, the THE protocol is
less prone to problems that arise when spin locks are used
extensively. For example, even if a worker is suspended
by the operating system during the execution of pop, the
infrequency of locking in the THE protocol means that a
thief can usually complete a steal operation on the worker’s
deque. Recent work by Arora et al. [2] has shown that a
completely nonblocking work-stealing scheduler can be im-
plemented. Using these ideas, Lisiecki and Medina [21] have
modified the Cilk-5 scheduler to make it completely non-
blocking. Their experience is that the THE protocol greatly
simplifies a nonblocking implementation.

The simplified THE protocol can be extended to support
the signaling of exceptions to a worker. In Figure 4, the
index H plays two roles: it marks the head of the deque, and
it marks the point that the worker cannot cross when it pops.
These places in the deque need not be the same. In the full
THE protocol, we separate the two functions of H into two
variables: H, which now only marks the head of the deque,
and E, which marks the point that the victim cannot cross.
Whenever E > T, some exceptional condition has occurred,
which includes the frame being stolen, but it can also be used
for other exceptions. For example, setting E = 00 causes the
worker to discover the exception at its next pop. In the
new protocol, E replaces H in line 6 of the worker/victim.
Moreover, lines 7-15 of the worker/victim are replaced by
a call to an exception handler to determine the type of
exception (stolen frame or otherwise) and the proper action
to perform. The thief code is also modified. Before trying to

219

Program
fib
blockedmul
notempmul
atraasen

*cilkaort
tqueens
tknapaack

1U
*&&sky

heat
fft
Barnes-But

Sile
35

1024
1024
1024

4,100,000
22
30

2048
BCSSTK32
4096 x 512

220
2’O

Tl TC.3
12.77 0.0005
29.9 0.0044
29.7 0.015
20.2 0.58

5.4
150.

75.8 0.0014
155.8 0.42

1427. 3.4
62.3 0.16

4.3 0.0020
124. 0.15

0.0049
0.0015

P
25540

6730
1970

35
1108

96898
54143

370
420
384

2145
853

c1
3.63
1.05
1.05
1.01
1.21
0.99
1.03
1.02
1.25
1.08
0.93
1.02

Ts
1.60
4.3
3.9
3.54
0.90

18.8
9.5

20.3
208.

9.4
0.77

16.5

3-g
7:o
7.6
5.7
6.0
8.0
8.0
7.7
6.9
6.6
5.6
7.5

Ts/Ts
2.2
6.6
7.2
5.6
5.0
8.0
7.7
7.5
5.5
6.1
6.0
7.4

Figure 6: The performance of example Cilk programs. Times are in seconds and are accurate to within about 10%. The serial programs
are C elisions of the Cilk programs, except for those programs that are starred (*), where the parallel program implements a different
algorithm than the serial program. Programs labeled by a dagger (t) are nondeterministic, and thus, the running time on one processor
is not the same as the work performed by the computation. For these programs, the value for Ti indicates the actual work of the
computation on 8 processors, and not the running time on one processor.

steal, the thief increments E. If there is nothing to steal, the
thief restores E to the original value. Otherwise, the thief
steals frame H and increments H. From the point of view of
a worker, the common case is the same as in the simplified
protocol: it compares two pointers (E and T rather than H
and T).

The exception mechanism is used to implement abort.
When a Cilk procedure executes an abort instruction, the
runtime system serially walks the tree of outstanding descen-
dants of that procedure. It marks the descendants as aborted
and signals an abort exception on any processor working on
a descendant. At its next pop, an aborted procedure will
discover the exception, notice that it has been aborted, and
return immediately. It is conceivable that a procedure could
run for a long time without executing a pop and discovering
that it has been aborted. We made the design decision to
accept the possibility of this unlikely scenario, figuring that
more cycles were likely to be lost in work overhead if we
abandoned the THE protocol for a mechanism that solves
this minor problem.

6 Benchmarks

In this section, we evaluate the performance of Cilk-5. We

show that on 12 applications, the work overhead cl is close
to 1, which indicates that the Cilk-5 implementation exploits
the work-first principle effectively. We then present a break-
down of Cilk’s work overhead cl on four machines. Finally,
we present experiments showing that the critical-path over-
head cm is reasonably small as well.

Figure 6 shows a table of performance measurements taken
for 12 Cilk programs on a Sun Enterprise 5000 SMP with 8
167-megahertz UltraSPARC processors, each with 512 kilo-
bytes of L2 cache, 16 kilobytes each of Ll data and instruc-
tion caches, running Solaris 2.5. We compiled our programs
with gee 2.7.2 at optimization level -03. For a full descrip-
tion of these programs, see the Cilk 5.1 manual [8]. The
table shows the work of each Cilk program TI, the critical
path T,, and the two derived quantities 7 and cr. The ta-

ble also lists the running time T8 on 8 processors, and the
speedup Tl/Ts relative to the one-processor execution time,
and speedup Ts/TB relative to the serial execution time.

For the 12 programs, the average parallelism F is in most
cases quite large relative to the number of processors on a
typical SMP. These measurements validate our assumption

of parallel slackness, which implies that the work term dom-
inates in Inequality (4). For instance, on 1024 x 1024 matri-

ces, notempmul runs with an average parallelism of 1970-
yielding adequate parallel slackness for up to several hun-
dred processors. For even larger machines, one normally
would not run such a small problem. For notempmul, as well
as the other 11 applications, the average parallelism grows
with problem size, and thus sufficient parallel slackness is
likely to exist even for much larger machines, as long as the
problem sizes are scaled appropriately.

The work overhead cl is only a few percent larger than
1 for most programs, which shows that our design of Cilk-5
faithfully implements the work-first principle. The two cases
where the work overhead is larger (cilksort and cholesky)
are due to the fact that we had to change the serial algo-
rithm to obtain a parallel algorithm, and thus the compar-
ison is not against the C elision. For example, the serial C
algorithm for sorting is an in-place quicksort, but the par-
allel algorithm cilksort requires an additional temporary
array which adds overhead beyond the overhead of Cilk it-
self. Similarly, our parallel Cholesky factorization uses a
quadtree representation of the sparse matrix, which induces
more work than the linked-list representation used in the
serial C algorithm. Finally, the work overhead for fib is
large, because fib does essentially no work besides spawn-
ing procedures. Thus, the overhead cl = 3.63 for fib gives a
good estimate of the cost of a Cilk spawn versus a traditional
C function call. With such a small overhead for spawning,
one can understand why for most of the other applications,
which perform significant work for each spawn, the overhead
of Cilk-5’s scheduling is barely noticeable compared to the
10% “noise” in our measurements.

220

466huh
Alpha 21164

2OOMI-h
PalUum Ro

167 MHz
Ultra SPARC I

195 MHz
MIPS RlOOOO

r . 0 1 2 3 4 i 6 7
ovaheads

Figure 7: Breakdown of overheads for fib running on one pro-
cessor on various architectures. The overheads are normalized to
the running time of the serial C elision. The three overheads are
for saving the state of a procedure before a spawn, the allocation
of activation frames for procedures, and the THE protocol. Ab-
solute times are given for the per-spawn running time of the C
elision.

We now present a breakdown of Cilk’s serial overhead cl
into its components. Because scheduling overheads are small
for most programs, we perform our analysis with the fib

program from Figure 1. This program is unusually sensi-
tive to scheduling overheads, because it contains little actual
computation. We give a breakdown of the serial overhead
into three components: the overhead of saving state before
spawning, the overhead of allocating activation frames, and
the overhead of the THE protocol.

Figure 7 shows the breakdown of Cilk’s serial overhead
for fib on four machines. Our methodology for obtaining
these numbers is as follows. First, we take the serial C fib
program and time its execution. Then, we individually add
in the code that generates each of the overheads and time
the execution of the resulting program. We attribute the
additional time required by the modified program to the
scheduling code we added. In order to verify our numbers,
we timed the fib code with all of the Cilk overheads added
(the code shown in Figure 3), and compared the resulting
time to the sum of the individual overheads. In all cases,
the two times differed by less than 10%.

Overheads vary across architectures, but the overhead of
Cilk is typically only a few times the C running time on this
spawn-intensive program. Overheads on the Alpha machine
are particularly large, because its native C function calls are
fast compared to the other architectures. The state-saving
costs are small for fib, because all four architectures have
write buffers that can hide the latency of the writes required.

We also attempted to measure the critical-path over-
head coo. We used the synthetic knary benchmark [4] to
synthesize computations artificially with a wide range of
work and critical-path lengths. Figure 8 shows the outcome
from many such experiments. The figure plots the measured

’ * . - -...I
0.1 1

Normalized Machine Size

Figure 8: Normalized speedup curve for Cilk-5. The horizontal
axis is the number P of processors and the vertical axis is the
speedup Tl/Tp, but, each data point has been normalized by di-
viding by Tl /Tm. The graph also shows the speedup predicted
by the formula Tp = Tl/P + Too.

speedup TllTp for each run against the machine size P for
that run. In order to plot different computations on the same
graph, we normalized the machine size and the speedup by
dividing these values by the average parallelism F = Tl/T,,
as was done in [4]. For each run, the horizontal position of
the plotted datum is the inverse of the slackness P/F, and
thus, the normalized machine size is 1.0 when the number of
processors is equal to the average parallelism. The vertical
position of the plotted datum is (Tl/Tp)/F = T,/Tp, which
measures the fraction of maximum obtainable speedup. As
can be seen in the chart, for almost all runs of this bench-
mark, we observed TP 5 Tl/P + l.OT,. (One exceptional
data point satisfies TP z Tl/P + l.O5T,.) Thus, although
the work-first principle caused us to move overheads to the
critical path, the ability of Cilk applications to scale up was
not significantly compromised.

7 Conclusion

We conclude this paper by examining some related work.
Mohr et al. [24] introduced lazy task creation in their im-

plementation of the Mul-T language. Lazy task creation
is similar in many ways to our lazy scheduling techniques.
Mohr et al. report a work overhead of around 2 when com-
paring with serial T, the Scheme dialect on which Mul-T
is based. Our research confirms the intuition behind their
methods and shows that work overheads of close to 1 are
achievable.

The Cid language [26] is like Cilk in that it uses C as
a base language and has a simple preprocessing compiler to
convert parallel Cid constructs to C. Cid is designed to work
in a distributed memory environment, and so it employs
latency-hiding mechanisms which Cilk-5 could avoid. (We

221

are working on a distributed version of Cilk, however.) Both
Cilk and Cid recognize the attractiveness of basing a parallel
language on C so as to leverage C compiler technology for
high-performance codes. Cilk is a faithful extension of C,
however, supporting the simplifying notion of a C elision
and allowing Cilk to exploit the C compiler technology more
readily.

TAM [IO] and Lazy Threads [14] also analyze many of
the same overhead issues in a more general, “nonstrict” lan-
guage setting, where the individual performances of a whole
host of mechanisms are required for applications to obtain
good overall performance. In contrast, Cilk’s multithreaded
language provides an execution model based on work and
critical-path length that allows us to focus our implemen-
tation efforts by using the work-first principle. Using this
principle as a guide, we have concentrated our optimizing
effort on the common-case protocol code to develop an effi-
cient and portable implementation of the Cilk language.

Acknowledgments

We gratefully thank all those who have contributed to Cilk
development, including Bobby Blumofe, Ien Cheng, Don
Dailey, Mingdong Feng, Chris Joerg, Bradley Kuszmaul,
Phil Lisiecki, Albert0 Medina, Rob Miller, Aske Plaat, Bin
Song, Andy Stark, Volker Strumpen, and Yuli Zhou. Many
thanks to all our users who have provided us with feedback
and suggestions for improvements. Martin Rinard suggested
the term “work-first.”

References

PI

PI

[31

I41

[51

PI

171

Andrew W. Appel and Zhong Shao. Empirical and analytic
study of stack versus heap cost for languages with closures.
Journal of Functional Programming, 6(1):47-74, 1996.
Nimar S. Arora, Robert, D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors. In
Proceedings of the Tenth Annual ACM Symposium on Par-
allel Aloon’thms and Architectures (SPAA). Puerto Vallarta,
Mexico; June 1998. To appear. ’ ”
Robert D. Blumofe. Executing Multithreaded Programs Ej-
ficiently. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Techno-
logy, September 1995.
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuss-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: An efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55-69, August
1996.
Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. In Pmceed-
ings of the 35th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 356-368, Santa Fe, New Mex-
ico, November 1994.
Richard P. Brent. The parallel evaluation of general arith-
metic expressions. Journal of the ACM, 21(2):201-206, April
1974.
Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson,
Keith H. Randall, and Andrew F. Stark. Detecting data
races in Cilk programs that use locks. In Proceedings of the
Tenth Annual ACM Symposium on Parallel Algorithms and

PI

PI

PO1

Pll

1121

P31

P41

D51

1161

1171

PI

P91

WI

PI

P21

[231

1241

[251

222

Architectures (SPAA), Puerto Vallarta, Mexico, June 1998.
To appear.
Cilk-5.1 (Beta 1) Reference Manual. Available on the Inter-
net fromhttp://theory.lcs.mit.edu/‘cilk.
Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rive& Introduction to Algorithms. The MIT Press, Cam-
bridge, Massachusetts, 1990.
David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten
von Eicken, and John Wawrzynek. Fine-grain parallelism
with minimal hardware support: A compiler-controlled
threaded abstract machine. In Proceedings of the Fourth
International Conference on Architectural Support for Pro-
gmmming Languages and Opemting Systems (ASPLOS),
pages 164-175, Santa Clara, California, April 1991.
E. W. Dijkstra. Solution of a problem in concurrent pro-
gramming control. Communications of the ACM, 8(9):569,
September 1965.
Marc Feeley. Polling efficiently on stock hardware. In Pro-
ceedings of the 1993 ACM SIGPLAN Conference on Func-
tional Programming and Computer Architecture, pages 179-
187, Copenhagen, Denmark, June 1993.
Mingdong Feng and Charles E. Leiserson. Efficient detection
of determinacy races in Cilk programs. In Proceedings of the
Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages l-11, Newport, Rhode Island,
June 1997.
S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy
threads: Implementing a fast parallel call. Journal of Paml-
lel and Distributed Computing, 37(1):5-20, August 1996.
R. L. Graham. Bounds on multiprocessing timing anoma-
lies. SIAM Journal on Apvlied Mathematics, 17(2):416-429,
March 1969.

__ .c

Dirk Grunwald. Heaps o’ stacks: Time and space efficient
threads without operating system support. Technical Report
CU-CS-750-94, University of Colorado, November 1994.
Dirk Grunwald and Richard Neves. Whole-program opti-
mization for time and space efficient threads. In Proceedings
of the Seventh International Conference on Architectural
Support for Programming Languages and Opemting Systems
(ASPLOS), pages 50-59, Cambridge, Massachusetts, Octo-
ber 1996.
Christopher F. Joerg. The Cilk System for Parallel Multi-
threaded Computing. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute
of Technology, January 1996.
Robert H. Halstead Jr. Multilisp: A language for concurrent
symbolic computation. ACM 7Wzsactions on Progmmming
Languages and Systems, 7(4):501-538, October 1985.
Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE ‘Darts-
actions on Computers, C-28(9):690-691, September 1979.
Phillip Lisiecki and Albert0 Medina. Personal communica-
tion.
James S. Miller and Guillermo J. Rozas. Garbage collection is
fast, but a stack is faster. Technical Report Memo 1462, MIT
Artificial Intelligence Laboratory, Cambridge, MA, 1994.
Robert C. Miller. A type-checking preprocessor for Cilk 2,
a multithreaded C language. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 1995.
Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr.
Lazy task creation: A technique for increasing the granular-
ity of parallel programs. IEEE ‘Dunsactions on Pamllel and
Distributed Systems, 2(3):264-280, July 1991.
Joel Moses. The function of FUNCTION in LISP or whv the
FUNARG problem should be called the environment prob-
lem. Technical Report memo AI-199, MIT Artificial Intelli-
gence Laboratory, June 1970.

[ZS] Rishiyur Sivaswami Nikhil. Parallel Symbolic Computing
in Cid. In Prvc. Wkehp. on Parallel Symbolic Computing,
Beaune, I%ance, Springer-Verlag LNCS 1068, pages 217-
242, October 1995.

[27] Per Stenstriim. VLSI support for a cactus stack oriented
memory organization. Proceedings of the Twenty-First An-
nual Hawaii International Conference on System Sciences,
volume 1, pages 211-220, January 1988.

[28] Leslie G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, August 1990.

223

