Today's Cunning Plan

- Review, Truth, and Provability
- Large-Step Opsem Commentary
- Small-Step Contextual Semantics
 - Reductions, Redexes, and Contexts
- Applications and Recent Research

Bookkeeping

- Hookkeeper (wire ring that holds a fly-fishing hook in place)
- Tattooee
- Bookkeeper
 - Subbookkeeper (!)
- Sweettooth

60 Second Summary - Semantics

- A <u>formal semantics</u> is a system for assigning meanings to programs.
- For now, programs are IMP commands and expressions
- In <u>operational semantics</u> the meaning of a program is "what it evaluates to"
- Any opsem system gives <u>rules of</u> <u>inference</u> that tell you how to evaluate programs

Summary - Judgments

 Rules of inference allow you to derive judgments ("something that is knowable") like

- In state σ , expression e evaluates to n

- After evaluating command c in state σ the new state will be σ '
- State σ maps variables to values ($\sigma: L \to Z$)
- Inferences equivalent up to variable renaming:

$$\langle \mathbf{c}, \sigma \rangle \Downarrow \sigma' === \langle \mathbf{c}', \sigma_7 \rangle \Downarrow \sigma_8$$

Notation: Rules of Inference

- We express the evaluation rules as <u>rules</u> of inference for our judgment
 - called the <u>derivation rules</u> for the judgment
 - also called the <u>evaluation rules</u> (for operational semantics)
- In general, we have one rule for each language construct:

$$\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2$$
 $\langle e_1 + e_2, \sigma \rangle \Downarrow n_1 + n_2$
This is the only rule for $e_1 + e_2$

Evaluation By Inversion

- We must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively
- If there is exactly one rule for each kind of expression we say that the rules are <u>syntax-directed</u>
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp.

Summary - Rules

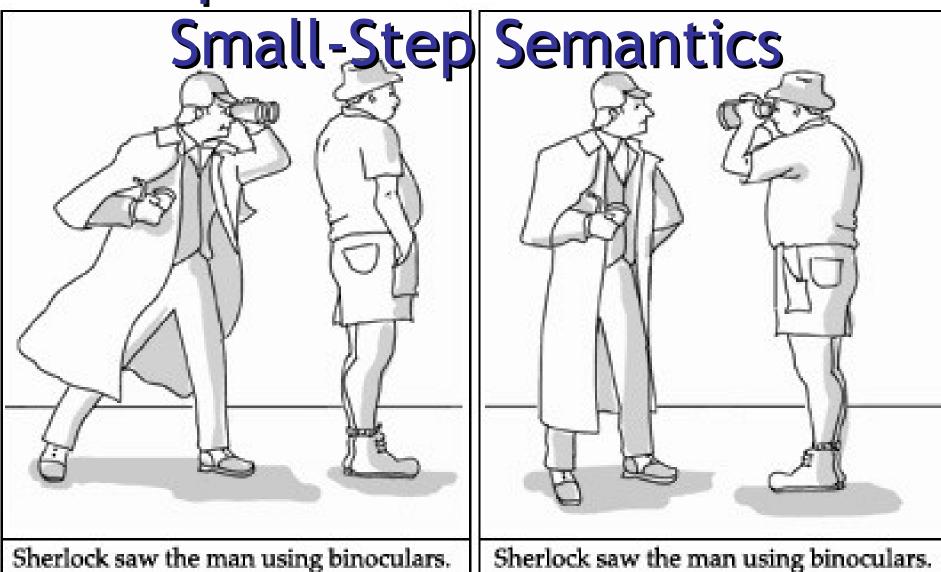
 Rules of inference list the hypotheses necessary to arrive at a conclusion

$$\langle e_1, \sigma \rangle \downarrow n_1 \quad \langle e_2, \sigma \rangle \downarrow n_2$$

 $\langle x, \sigma \rangle \downarrow \sigma(x)$ $\langle e_1 - e_2, \sigma \rangle \downarrow n_1 \text{ minus } n_2$

• A <u>derivation</u> involves interlocking (wellformed) instances of rules of inference

Operational Semantics



Provability

- Given an opsem system, $\langle e, \sigma \rangle \Downarrow n$ is **provable** *if there exists* a well-formed derivation with $\langle e, \sigma \rangle \Downarrow n$ as its conclusion
 - "well-formed" = "every step in the derivation is a valid instance of one of the rules of inference for this opsem system"
 - " \vdash <e, σ > \Downarrow n" = "it is provable that <e, σ > \Downarrow n"
- We would *like* truth and provability to be closely related

Truth?

- "A Vorlon said understanding is a threeedged sword. Your side, their side and the truth."
 - Sheridan, Babylon 5, Into The Fire
- We will not formally define "truth" yet
- Instead we appeal to your intuition

- <2+2,
$$\sigma$$
> ψ 4

-- should be true

-
$$\langle 2+2, \sigma \rangle \downarrow 5$$

-- should be false

Completeness

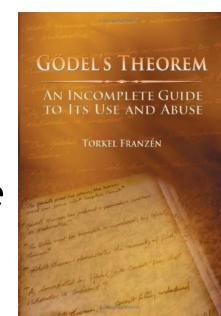
- A proof system (like our operational semantics) is <u>complete</u> if every true judgment is provable.
- If we replaced the subtract rule with:

$$\langle e_1, \sigma \rangle \Downarrow n \qquad \langle e_2, \sigma \rangle \Downarrow 0$$

 $\langle e_1 - e_2, \sigma \rangle \Downarrow n$

• Our opsem would be <u>incomplete</u>:

<4-2, σ > \downarrow 2 -- true but not provable



Consistency

- A proof system is **consistent** (or **sound**) if every provable judgment is true.
- If we *replaced* the subtract rule with:

$$\langle e_1, \sigma \rangle \Downarrow n_1 \qquad \langle e_2, \sigma \rangle \Downarrow n_2$$

 $\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 + 3$

Our opsem would be <u>inconsistent</u> (or <u>unsound</u>):

-
$$<6-1$$
, $\sigma> \downarrow 9$ -- false but provable

"A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines." -- Ralph Waldo Emerson, *Essays. First Series. Self-Reliance*.

Desired Traits

- Typically a system (of operational semantics) is always complete (unless you forget a rule)
- If you are not careful, however, your system may be unsound
- Usually that is <u>very bad</u>
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however
- In this class your work should be complete and consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here.

What do you mean, "bad"?

Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.

With That In Mind

We now return to opsem for IMP

$$e, \sigma > \psi n$$

A continuous continuous

Def:
$$\sigma[x:=n](x) = n$$

 $\sigma[x:=n](y) = \sigma(y)$

```
<br/>b, \sigma> \psi false
```

<while b do c, σ > ψ σ

b,
$$\sigma$$
> \forall true \sigma> \forall σ '

<while b do c, $\sigma > \psi \sigma'$

Command Evaluation Notes

- The order of evaluation is important
 - c₁ is evaluated before c₂ in c₁; c₂
 - c₂ is not evaluated in "if true then c₁ else c₂"
 - c is not evaluated in "while false do c"
 - b is evaluated first in "if b then c₁ else c₂"
 - this is explicit in the evaluation rules
- Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time

Command Evaluation Trials

- The evaluation rules are <u>not syntax-directed</u>
 - See the rules for while, ∧
 - The evaluation might not terminate
- Recall: the evaluation rules suggest an interpreter
- Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does not terminate
 - When there is no σ ' such that $\langle c, \sigma \rangle \Downarrow \sigma$ '
 - But that is true also of ill-formed or erroneous commands (in a richer language)!
- It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)

Semantics Solution

- Small-step semantics addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states
- Not quite as easy as large-step natural semantics, though
- Contextual semantics is a small-step semantics where the atomic execution step is a <u>rewrite</u> of the program

Contextual Semantics

- We will define a relation $\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle$
 - c' is obtained from c via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 - one from which we cannot make further progress
 - For IMP the terminal command is "skip"
 - As long as the command is not "skip" we can make further progress
 - some commands *never* reduce to skip (e.g., "while true do skip")

Contextual Derivations

- In small-step contextual semantics, derivations are not tree-structured
- A <u>contextual semantics derivation</u> is a sequence (or list) of atomic rewrites:

$$\langle x+(7-3),\sigma \rangle \rightarrow \langle x+(4),\sigma \rangle \rightarrow \langle 5+4,\sigma \rangle \rightarrow \langle 9,\sigma \rangle$$

What is an Atomic Reduction?

- What is an atomic reduction step?
 - Granularity is a choice of the semantics designer
- How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue

Q: Computer Science

 This American computer scientist won the 2009 Turing award for her work on design of programming language sand software methodology that led to the development of object-oriented programming. In addition to the first high-level language to support distributed programs and notable results on Byzantine fault tolerance, she is perhaps best known for her formulation of objectoriented subtyping.

Correcting English Prose

- 4. Lizzy drank in the sight of him like a thirst craven man consumes water.
- 421. "I go here, silly," said Kimi with a proud expression. "And how I might ask? Your scores were not legible for this school."
- 312. Every member of the Thespians, or anyone who has ever acted in one of our school plays was a pre-Madonna, mellow-dramatic; over-actor and I didn't want to be one of them.
- 198. Nobody goes into Donovan's Layer, For they sence evil. But Livvy doesn't she see's something no one else does.

Redexes

- A <u>redex</u> is a syntactic expression or command that can be reduced (transformed) in one atomic step
- Redexes are defined via a grammar:

```
r := x (x \in L)

| n_1 + n_2 |

| x := n

| skip; c

| if true then c_1 else c_2

| if false then c_1 else c_2

| while b do c
```

- For brevity, we mix exp and command redexes
- Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

Local Reduction Rules for IMP

- One for each redex: $\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle$
 - means that in state σ , the redex r can be replaced in one step with the expression e

```
\langle x, \sigma \rangle \rightarrow \langle \sigma(x), \sigma \rangle
\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n_1, \sigma \rangle where n = n_1 plus n_2
                                                                                     if n_1 = n_2
\langle n_1 = n_2, \sigma \rangle \rightarrow \langle true, \sigma \rangle
\langle x := n, \sigma \rangle \rightarrow \langle skip, \sigma[x := n] \rangle
\langle skip; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle
<if true then c_1 else c_2, \sigma > \rightarrow \langle c_1, \sigma \rangle
<if false then c_1 else c_2, \sigma > \rightarrow \langle c_2, \sigma \rangle
<while b do c, \sigma > \rightarrow
                        <if b then c; while b do c else skip, \sigma >
```

The Global Reduction Rule

- General idea of contextual semantics
 - Decompose the current expression into the redex-to-reduce-next and the remaining program
 - The remaining program is called a <u>context</u>
 - Reduce the redex "r" to some other expression "e"
 - The resulting (reduced) expression consists of "e" with the original context

As A Picture (1)

```
(Context)
...
x := 2+2;
print x
```

Step 1: Find The Redex

As A Picture (2)

```
(Context)
...
x := 2+2 (redex);
print x
```

Step 1: Find The Redex

Step 2: Reduce The Redex

As A Picture (3)

```
(Context)
...
x := 2+2 (redex);
print x

4 (reduced)
```

Step 1: Find The Redex

Step 2: Reduce The Redex

As A Picture (4)

```
(Context)
...
x := 4;
print x
```

Step 1: Find The Redex

Step 2: Reduce The Redex

Step 3: Replace It In The Context

Contextual Analysis

- We use H to range over contexts
- We write H[r] for the expression obtained by placing redex r in context H
- Now we can define a <u>small step</u>

If
$$\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle$$

then $\langle H[r], \sigma \rangle \rightarrow \langle H[e], \sigma' \rangle$

Contexts

- A <u>context</u> is like an expression (or command) with a marker • in the place where the <u>redex</u> goes
- Examples:
 - To evaluate "(1 + 3) + 2" we use the redex 1 + 3 and the context "• + 2"
 - To evaluate "if x > 2 then c₁ else c₂" we use the redex x and the context "if > 2 then c₁ else c₂"

Context Terminology

- A context is also called an "expression with a hole"
- The marker is sometimes called a hole
- H[r] is the expression obtained from H by replacing • with the redex r

"Avoid context and specifics; generalize and keep repeating the generalization." -- Jack Schwartz

Contextual Semantics Example

• x := 1; x := x + 1 with initial state [x:=0]

<comm, state=""></comm,>	Redex •	Context
< x := 1; x := x+1, [x := 0] >	x := 1	•; x := x+1
<skip; :="1]" [x="" x=""></skip;>	skip; x := x+1	•
<x :="1]" [x=""></x>	X	x := • + 1
What happens next?		

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

<comm, state=""></comm,>	Redex •	Context
<x :="0]" [x="" x=""></x>	x := 1	•; x := x+1
<skip; :="1]" [x="" x=""></skip;>	skip; x := x+1	•
<x :="1]" [x=""></x>	X	x := • + 1
<x +="" 1,="" :="1]" [x=""></x>	1 + 1	X := •
<x :="1]" [x=""></x>	x := 2	•
<skip, :="2]" [x=""></skip,>		

More On Contexts

Contexts are defined by a grammar:

```
H::= • | n + H
| H + e
| x := H
| if H then c<sub>1</sub> else c<sub>2</sub>
| H; c
```

- A context has exactly one marker
- A redex is never a value

What's In A Context?

- Contexts specify precisely how to find the next redex
 - Consider e₁ + e₂ and its decomposition as H[r]
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and e_2 = $H_2[r]$
 - If $\underline{e_1}$ is not $\underline{n_1}$ then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique

Unique Next Redex: Proof By Handwaving Examples

- e.g. c = "c₁; c₂" either
 - c_1 = skip and then $c = H[skip; c_2]$ with $H = \bullet$
 - or c₁ ≠ skip and then c₁ = H[r]; so c = H'[r] with
 H' = H; c₂
- e.g. $c = \text{"if b then } c_1 \text{ else } c_2\text{"}$
 - either b = true or b = false and then c = H[r]with H = •
 - or b is not a value and b = H[r]; so c = H'[r] with
 H' = if H then c₁ else c₂

Context Decomposition

Decomposition theorem:

If c is not "skip" then there exist unique H and r such that c is H[r]

- "Exist" means <u>progress</u>
- "Unique" means determinism

Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of ^?
 - Define the following contexts, redexes and local reduction rules

```
H::= ... | H \wedge b_2

r::= ... | true \wedge b | false \wedge b

<true \wedge b, \sigma> \rightarrow <b, \sigma>

<false \wedge b, \sigma> \rightarrow <false, \sigma>
```

the local reduction kicks in before b₂ is evaluated

Contextual Semantics Summary

- Can view as representing the program counter
- The advancement rules for are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics: it allows a *mix* of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We'll do that when we study memory allocation, etc.

Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

```
P \vdash \langle \mathsf{E}[obj.fd], \mathcal{S} \rangle \hookrightarrow \langle \mathsf{E}[\mathcal{F}(fd)], \mathcal{S} \rangle
where \mathcal{F} = fields(\mathcal{S}(obj)) and fd \in dom(\mathcal{F})
```

$$P \vdash \langle E[obj.fd], S \rangle \rightarrow \langle E[F(fd)], S \rangle$$

- where F=fields(S(obj)) and fd ∈ dom(F)
- They use "E" for context, we use "H"
- They use "S" for state, we use " σ "

Lost In Translation

- P \vdash <H[obj.fd], σ > \rightarrow <H[F(fd)], σ >
 - Where $F=fields(\sigma(obj))$ and $fd \in dom(F)$

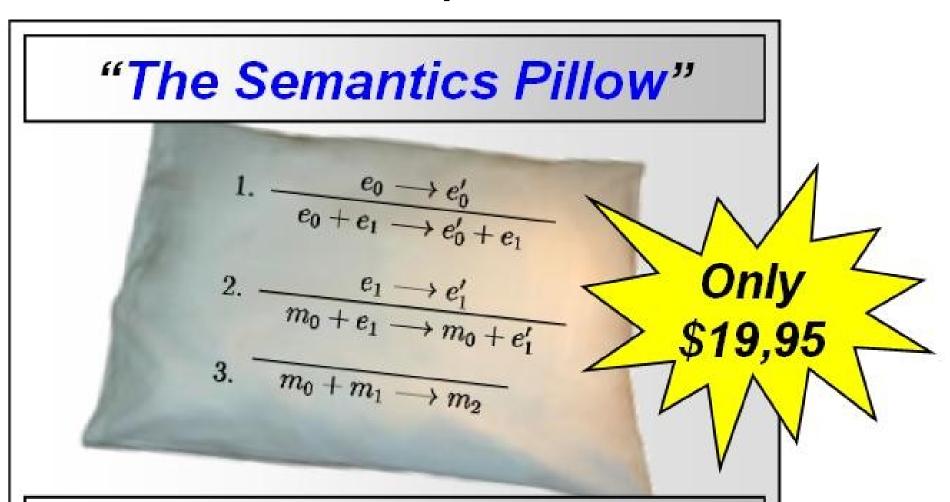
 They have "P ⊢", but that just means "it can be proved in our system given P"

- $\mathsf{H[obj.fd]}, \sigma \mathsf{>} \to \mathsf{H[F(fd)]}, \sigma \mathsf{>}$
 - Where F=fields(σ (obj)) and fd \in dom(F)

Lost In Translation 2

- $\mathsf{H[obj.fd]}, \sigma \mathsf{>} \to \mathsf{H[F(fd)]}, \sigma \mathsf{>}$
 - Where $F=fields(\sigma(obj))$ and $fd \in dom(F)$
- They model objects (like obj), but we do not (yet) let's just make fd a variable:
- $\mathsf{H}[\mathsf{fd}],\sigma \mathsf{>} \to \mathsf{H}[\mathsf{F}(\mathsf{fd})],\sigma \mathsf{>}$
 - Where $F=\sigma$ and $fd \in L$
- Which is just our variable-lookup rule:
- $\langle H[fd], \sigma \rangle \rightarrow \langle H[\sigma(fd)], \sigma \rangle$ (when $fd \in L$)

"Sleep On It"



"Learn while you sleep!"

Homework

- Homework 1 Due soon
- Reading!