
#1

In Our Last Exciting Episode

#2

Lessons From Model Checking
• To find bugs, we need specifications

– What are some good specifications?
• To convert a program into a model, we need

predicates/invariants and a theorem prover.
– Which are the important predicates? Invariants?
– What should we track when reasoning about a

program and what should we abstract?
– How does a theorem prover work?

• Simple algorithms (e.g., depth first search, pushing
facts along a CFG) can work well
– ... under what circumstances?

#3

The Big Lesson

•To reason about a program
(= “is it doing the right
thing? the wrong thing?”)
we must understand what
the program means!

#6

Medium-Range Plan
• Study a simple imperative language IMP

– Abstract syntax (today)
– Operational semantics (today)
– Denotational semantics
– Axiomatic semantics
– … and relationships between various

semantics (with proofs, peut-être)
– Today: operational semantics

•Follow along in Chapter 2 of Winskel

#7

Syntax of IMP
• Concrete syntax: The rules by which programs

can be expressed as strings of characters
– Keywords, identifiers, statement separators vs.

terminators (Niklaus!?), comments, indentation
(Guido!?)

• Concrete syntax is important in practice
– For readability (Larry!?), familiarity, parsing

speed (Bjarne!?), effectiveness of error recovery,
clarity of error messages (Robin!?)

• Well-understood principles
– Use finite automata and context-free grammars
– Automatic lexer/parser generators

#8

(Note On Post-LALR Advances)

• If-as-and-when you find yourself making a
new language, consider GLR (elkhound)
instead of LALR(1) (bison)

• Scott McPeak, George G. Necula:
Elkhound: A Fast, Practical GLR Parser
Generator. CC 2004: pp. 73-88

• As fast as LALR(1), more natural, handles
basically all of C++, etc.

#9

Abstract Syntax

• We ignore parsing issues and study
programs given as abstract syntax trees
– I provide the parser in the homework …

• An abstract syntax tree is (a subset of)
the parse tree of the program
– Ignores issues like comment conventions
– More convenient for formal and algorithmic

manipulation
– All research papers use ASTs, etc.

#10

IMP Abstract Syntactic Entities

• int integer constants (n Z)

• bool bool constants (true, false)
• L locations of variables (x, y)
• Aexp arithmetic expressions (e)
• Bexp boolean expressions (b)
• Com commands (c)

– (these also encode the types)

#11

Abstract Syntax (Aexp)
• Arithmetic expressions (Aexp)

 e ::= n for n Z

 | x for x L

 | e1 + e2 for e1, e2 Aexp

 | e1 - e2 for e1, e2 Aexp

 | e1 * e2 for e1, e2 Aexp

• Notes:
– Variables are not declared
– All variables have integer type
– No side-effects (in expressions)

#12

Abstract Syntax (Bexp)
• Boolean expressions (Bexp)
 b ::= true
 | false

 | e1 = e2 for e1, e2 Aexp

 | e1 e2 for e1, e2 Aexp

 | b for b Bexp

 | b1 b2 for b1, b2 Bexp

 | b1 b2 for b1, b2 Bexp

#14

Abstract Syntax (Com)
• Commands (Com)
 c ::= skip
 | x := e xL eAexp
 | c1 ; c2 c1,c2Com

 | if b then c1 else c2 c1,c2Com bBexp

 | while b do c cCom bBexp
• Notes:

– The typing rules are embedded in the syntax definition
– Other parts are not context-free and need to be checked

separately (e.g., all variables are declared)
– Commands contain all the side-effects in the language
– Missing: pointers, function calls, what else?

#15

Why Study Formal Semantics?

• Language design (denotational)
• Proofs of correctness (axiomatic)
• Language implementation (operational)
• Reasoning about programs
• Providing a clear behavioral specification
• “All the cool people are doing it.”

– You need this to understand PL research
• “First one’s free.”

#16

Consider This Legal Java

x = 0;
try {
 x = 1;
 break mygoto;
} finally {
 x = 2;
 raise

NullPointerException;
}
x = 3;
mygoto:
x = 4;

• What happens when
you execute this
code?

• Notably, which
assignments are
executed?

#17

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then

there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S.
• If execution of the try block completes abruptly because of a throw of a value V, then there is

a choice:
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement,

then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of
the selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

• If the catch block completes normally, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is

discarded).

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the
value V.

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S (and reason R is discarded).

#18

Can’t we just nail this somehow?Can’t we just nail this somehow?

#19

Ouch! Confusing.

• Wouldn’t it be nice if we had some way
of describing what a language (feature or
program) means …
– More precisely than English
– More compactly than English
– So that you might build a compiler
– So that you might prove things about

programs

#20

Analysis of IMP

• Questions to answer:

– What is the “meaning” of a given IMP

expression/command?

– How would we go about evaluating IMP

expressions and commands?

– How are the evaluator and the meaning related?

#21

Three Canonical Approaches

• Operational
– How would I execute this?

• Axiomatic
– What is true after I

execute this?
– Symbolic Execution

• Denotational
– What is this trying to

compute?

#22

An Operational Semantics

• Specifies how expressions and commands should be
evaluated

• Depending on the form of the expression
– 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.
– e1 + e2 is evaluated by first evaluating e1 to n1 , then

evaluating e2 to n2 . (post-order traversal)
• The result of the evaluation is the literal representing n1 + n2.

– Similarly for e1 * e2

• Operational semantics abstracts the execution of a
concrete interpreter
– Important keywords are colored & underlined in this class.

#23

Semantics of IMP

• The meanings of IMP expressions depend on
the values of variables
– What does “x+5” mean? It depends on “x”!

• The value of variables at a given moment is
abstracted as a function from L to Z (a state)

– If x = 8 in our state, we expect “x+5” to mean 13

• The set of all states is = L Z

• We shall use to range over
– , a state, maps variables to values

#24

Program State

• The state is somewhat like “memory”
– It holds the current values of all variables

– Formally, : L Z

#25

Q: Cartoons (682 / 842)

•Why is Gargamel trying to
capture the Smurfs?

#26

Q: Computer Science

• This American Turing Award winner is
notable for his work in the theory of
algorithms, a max-flow solver, a
bipartite graph matcher, a string search
algorithm, and “Reducibility Among
Combinatorial Problems” in which he
proved 21 problems to be NP-complete.
He introduced the standard
methodology for proving problems to be
NP-complete.

#27

Notation: Judgment

• We write:

<e, > n

• To mean that e evaluates to n in state .
• This is a judgment. It asserts a relation

between e, and n.
• In this case we can view as a function

with two arguments (e and).

#28

Operational Semantics

• This formulation is called natural
operational semantics
– or big-step operational semantics
– the judgment relates the expression and

its “meaning”

• How should we define

<e1 + e2, > … ?

#29

Notation: Rules of Inference

• We express the evaluation rules as rules
of inference for our judgment
– called the derivation rules for the judgment
– also called the evaluation rules (for

operational semantics)

• In general, we have one rule for each
language construct:

<e1 + e2, > n1 + n2

<e1, > n1 <e2, > n2 This is the only
rule for e1 + e2

#30

Rules of Inference

Conclusion
Hypothesis1 … HypothesisN

` if b then e1 else e2 :
` b : bool ` e1 : ` e2 :

• For any given proof system, a finite
number of rules of inference (or schema)
are listed somewhere

• Rule instances should be easily checked
• What is the definition of “NP”?

#31

Derivation

• Tree-structured (conclusion at bottom)
• May include multiple sorts of rules-of-

inference
• Could be constructed, typically are not
• Typically verified in polynomial time

#32

Evaluation Rules (for Aexp)

<n, > n <x, > (x)

<e1 + e2, > n1 + n2

<e1, > n1 <e2, > n2

<e1 - e2, > n1 - n2

<e1, > n1 <e2, > n2

<e1 * e2, > n1 * n2

<e1, > n1 <e2, > n2

• This is called structural operational semantics
– rules defined based on the structure of the expression

• These rules do not impose an order of evaluation!

#33
(show: candidate Ç rule)

Evaluation Rules (for Bexp)

<true, > true

<false, > false

<b1 b2, > true
<b1, > true <b2, > true

<b1 b2, > false
<b1, > false

<b1 b2, > false
<b2, > false

<e1 = e2, > n1 = n2

<e1, > n1 <e2, > n2

<e1 e2, > n1 n2

<e1, > n1 <e2, > n2

#34

How to Read the Rules?

• Forward (top-down) = inference rules
– if we know that the hypothesis

judgments hold then we can infer that
the conclusion judgment also holds

– If we know that
<e1, > 5 and
<e2 , > 7, then we can infer that
 <e1 + e2 , > 12

#35

How to Read the Rules?

• Backward (bottom-up) = evaluation rules
– Suppose we want to evaluate e1 + e2, i.e.,

find n s.t. e1 + e2 n is derivable using the
previous rules

– By inspection of the rules we notice that the
last step in the derivation of e1 + e2 n must
be the addition rule
• the other rules have conclusions that would not

match e1 + e2 n

• this is called reasoning by inversion on the
derivation rules

#36

Evaluation By Inversion

• Thus we must find n1 and n2 such that
e1 n1 and e2 n2 are derivable
– This is done recursively

• If there is exactly one rule for each kind of
expression we say that the rules are syntax-
directed
– At each step at most one rule applies
– This allows a simple evaluation procedure as

above (recursive tree-walk)
– True for our Aexp but not Bexp. Why?

#37

Evaluation of Commands

• The evaluation of a Com may have side
effects but has no direct result
– What is the result of evaluating a command ?

• The “result” of a Com is a new state:

<c, > ’

– But the evaluation of Com might not
terminate! Danger Will Robinson! (huh?)

#38

Com Evaluation Rules 1

<skip, > <c1 ; c2, > ’’
<c1, > ’ <c2, ’> ’’

<if b then c1 else c2, > ’
<b, > true <c1, > ’

<if b then c1 else c2, > ’
<b, > false <c2, > ’

#39

Com Evaluation Rules 2

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, > [x := n]

<e, > n

• Let’s do while together

#40

Com Evaluation Rules 3

<while b do c, >
<b, > false

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, > [x := n]

<e, > n

<while b do c, > ’
<b, > true <c; while b do c, > ’

#41

Homework

• Homework 0 Due Today
• Homework 1 Due In One Week

• Reading!
– If this wasn't intuitive, try some of the

optional readings for more context.

	Slide 1
	Slide 2
	Slide 3
	A Simple Imperative Language Operational Semantics (= “meaning”)
	Homework #1 Out Today
	Medium-Range Plan
	Syntax of IMP
	(Note On Recent Research)
	Abstract Syntax
	IMP Abstract Syntactic Entities
	Abstract Syntax (Aexp)
	Abstract Syntax (Bexp)
	“Boolean”
	Abstract Syntax (Com)
	Why Study Formal Semantics?
	Consider This Java
	14.20.2 Execution of try-catch-finally
	Slide 18
	Ouch! Confusing.
	Analysis of IMP
	Three Canonical Approaches
	An Operational Semantics
	Semantics of IMP
	Slide 24
	Q: Cartoons (682 / 842)
	Slide 26
	Notation: Judgment
	Operational Semantics
	Notation: Rules of Inference
	Rules of Inference
	Derivation
	Evaluation Rules (for Aexp)
	Evaluation Rules (for Bexp)
	How to Read the Rules?
	Slide 35
	Evaluation By Inversion
	Evaluation of Commands
	Com Evaluation Rules 1
	Com Evaluation Rules 2
	Com Evaluation Rules 3
	Homework

