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In Our Last Exciting Episode
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Lessons From Model Checking
• To find bugs, we need specifications

– What are some good specifications?
• To convert a program into a model, we need 

predicates/invariants and a theorem prover.
– Which are the important predicates? Invariants?
– What should we track when reasoning about a 

program and what should we abstract? 
– How does a theorem prover work?

• Simple algorithms (e.g., depth first search, pushing 
facts along a CFG) can work well
– ... under what circumstances?
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The Big Lesson

•To reason about a program 
(= “is it doing the right 
thing? the wrong thing?”) 
we must understand what 
the program means!
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Medium-Range Plan
• Study a simple imperative language IMP

– Abstract syntax (today)
– Operational semantics (today)
– Denotational semantics
– Axiomatic semantics
– … and relationships between various 

semantics (with proofs, peut-être)
– Today: operational semantics 

•Follow along in Chapter 2 of Winskel
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Syntax of IMP
• Concrete syntax: The rules by which programs 

can be expressed as strings of characters
– Keywords, identifiers, statement separators vs. 

terminators (Niklaus!?), comments, indentation 
(Guido!?)

• Concrete syntax is important in practice
– For readability (Larry!?), familiarity, parsing 

speed (Bjarne!?), effectiveness of error recovery, 
clarity of error messages (Robin!?)

• Well-understood principles
– Use finite automata and context-free grammars
– Automatic lexer/parser generators
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(Note On Post-LALR Advances)

• If-as-and-when you find yourself making a 
new language, consider GLR (elkhound) 
instead of LALR(1) (bison)

• Scott McPeak, George G. Necula: 
Elkhound: A Fast, Practical GLR Parser 
Generator. CC 2004: pp. 73-88 

• As fast as LALR(1), more natural, handles 
basically all of C++, etc.
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Abstract Syntax

• We ignore parsing issues and study 
programs given as abstract syntax trees
– I provide the parser in the homework …

• An abstract syntax tree is (a subset of) 
the parse tree of the program
– Ignores issues like comment conventions
– More convenient for formal and algorithmic 

manipulation
– All research papers use ASTs, etc. 
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IMP Abstract Syntactic Entities

• int          integer constants (n  Z)

• bool       bool constants (true, false)
• L           locations of variables (x, y)
• Aexp   arithmetic expressions (e)
• Bexp      boolean expressions (b)
• Com        commands (c)

– (these also encode the types)
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Abstract Syntax (Aexp)
• Arithmetic expressions (Aexp)

     e ::=  n              for n  Z 

             | x             for x  L

             | e1 + e2   for e1, e2  Aexp

             | e1 - e2    for e1, e2  Aexp

             | e1 * e2    for e1, e2  Aexp

• Notes:
– Variables are not declared
– All variables have integer type
– No side-effects (in expressions)      
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Abstract Syntax (Bexp)
• Boolean expressions (Bexp)
     b ::= true  
             | false 

             | e1 = e2      for e1, e2  Aexp

             | e1  e2      for e1, e2  Aexp

             |  b          for b  Bexp

             | b1  b2      for b1, b2  Bexp

             | b1 b2      for b1, b2  Bexp
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Abstract Syntax (Com)
• Commands (Com)
     c ::=    skip
        | x := e                     xL  eAexp 
        | c1 ; c2                   c1,c2Com

        | if b then c1 else c2  c1,c2Com  bBexp

        | while b do c         cCom  bBexp
• Notes:

– The typing rules are embedded in the syntax definition
– Other parts are not context-free and need to be checked 

separately (e.g., all variables are declared)
– Commands contain all the side-effects in the language
– Missing: pointers, function calls, what else?
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Why Study Formal Semantics?

• Language design (denotational)
• Proofs of correctness (axiomatic)
• Language implementation (operational)
• Reasoning about programs
• Providing a clear behavioral specification
• “All the cool people are doing it.”

– You need this to understand PL research
• “First one’s free.” 
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Consider This Legal Java

x = 0;
try {
  x = 1;
  break mygoto;
} finally {
  x = 2;
  raise 

NullPointerException;
}
x = 3; 
mygoto: 
x = 4; 

• What happens when 
you execute this 
code?

• Notably, which 
assignments are 
executed? 
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14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is 

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then 

there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S. 
• If execution of the try block completes abruptly because of a throw of a value V, then there is 

a choice: 
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement, 

then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of 
the selected catch clause, and the Block of that catch clause is executed. Then there is a choice: 

• If the catch block completes normally, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes normally. 
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason. 

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice: 
– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is 

discarded). 

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, 
then the finally block is executed. Then there is a choice: 

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the 
value V. 

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and 
the throw of value V is discarded and forgotten). 

• If execution of the try block completes abruptly for any other reason R, then the finally block 
is executed. Then there is a choice: 

– If the finally block completes normally, then the try statement completes abruptly for reason R. 
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for 

reason S (and reason R is discarded). 
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Can’t we just nail this somehow?Can’t we just nail this somehow?
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Ouch! Confusing.

• Wouldn’t it be nice if we had some way 
of describing what a language (feature or 
program) means …
– More precisely than English
– More compactly than English
– So that you might build a compiler
– So that you might prove things about 

programs
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Analysis of IMP

• Questions to answer:

– What is the “meaning” of a given IMP 

expression/command?

– How would we go about evaluating IMP 

expressions and commands?

– How are the evaluator and the meaning related?
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Three Canonical Approaches

• Operational
– How would I execute this? 

• Axiomatic
– What is true after I 

execute this?
– Symbolic Execution

• Denotational
– What is this trying to 

compute? 



#22

An Operational Semantics

• Specifies how expressions and commands should be 
evaluated

• Depending on the form of the expression
– 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.
– e1 + e2 is evaluated by first evaluating e1 to n1 , then 

evaluating e2 to n2 . (post-order traversal)
• The result of the evaluation is the literal representing n1 + n2.

– Similarly for e1 * e2

• Operational semantics abstracts the execution of a 
concrete interpreter
– Important keywords are colored & underlined in this class.
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Semantics of IMP

• The meanings of IMP expressions depend on 
the values of variables 
– What does “x+5” mean? It depends on “x”!

• The value of variables at a given moment is 
abstracted as a function from L to Z (a state)

– If x = 8 in our state, we expect “x+5” to mean 13

• The set of all states is  = L  Z 

• We shall use  to range over 
–  , a state, maps variables to values
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Program State

• The state  is somewhat like “memory”
– It holds the current values of all variables

– Formally,  : L  Z 
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Q:  Cartoons  (682 / 842) 

•Why is Gargamel trying to 
capture the Smurfs?  
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Q:  Computer Science

• This American Turing Award winner is 
notable for his work in the theory of 
algorithms, a max-flow solver, a 
bipartite graph matcher, a string search 
algorithm, and “Reducibility Among 
Combinatorial Problems” in which he 
proved 21 problems to be NP-complete. 
He introduced the standard 
methodology for proving problems to be 
NP-complete.
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Notation: Judgment

• We write:

<e, >  n

• To mean that e evaluates to n in state .
• This is a judgment. It asserts a relation 

between e,  and n. 
• In this case we can view  as a function 

with two arguments (e and ).
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Operational Semantics

• This formulation is called natural 
operational semantics
– or big-step operational semantics
– the  judgment relates the expression and 

its “meaning”

• How should we define 

<e1 + e2, >  … ?
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Notation: Rules of Inference

• We express the evaluation rules as rules 
of inference for our judgment
– called the derivation rules for the judgment
– also called the evaluation rules (for 

operational semantics)

• In general, we have one rule for each 
language construct:

<e1 + e2, >   n1 + n2

<e1, >  n1    <e2, >  n2 This is the only
rule for e1 + e2
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Rules of Inference

Conclusion
Hypothesis1 … HypothesisN

` if b then e1 else e2 : 
` b : bool      ` e1 :       ` e2 : 

• For any given proof system, a finite 
number of rules of inference (or schema) 
are listed somewhere

• Rule instances should be easily checked
• What is the definition of “NP”?
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Derivation

• Tree-structured (conclusion at bottom)
• May include multiple sorts of rules-of-

inference
• Could be constructed, typically are not
• Typically verified in polynomial time
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Evaluation Rules (for Aexp)

<n, >  n <x, >  (x)

<e1 + e2, >  n1 + n2

<e1, >  n1     <e2, >  n2

<e1 - e2, >  n1 - n2

<e1, >  n1     <e2, >  n2

<e1 * e2, >  n1 * n2

<e1, >  n1     <e2, >  n2

• This is called structural operational semantics
– rules defined based on the structure of the expression

• These rules do not impose an order of evaluation!
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(show: candidate Ç rule)

Evaluation Rules (for Bexp)

<true, >  true

<false, > false

<b1  b2, >  true
<b1, >  true     <b2, >  true

<b1  b2, >  false
<b1, >  false

<b1  b2, >  false
<b2, >  false

<e1 = e2, >  n1 = n2

<e1, >  n1     <e2, >  n2

<e1  e2, >  n1  n2

<e1, >  n1     <e2, >  n2
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How to Read the Rules?

• Forward (top-down) = inference rules
– if we know that the hypothesis 

judgments hold then we can infer that 
the conclusion judgment also holds

– If we know that                                   
<e1, >  5 and                                   
<e2 , >  7, then we can infer that      
 <e1 + e2 , >  12
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How to Read the Rules?

• Backward (bottom-up) = evaluation rules
– Suppose we want to evaluate e1 + e2, i.e., 

find n s.t. e1 + e2  n is derivable using the 
previous rules

– By inspection of the rules we notice that the 
last step in the derivation of e1 + e2  n must 
be the addition rule
• the other rules have conclusions that would not 

match e1 + e2  n 

• this is called reasoning by inversion on the 
derivation rules
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Evaluation By Inversion

• Thus we must find n1 and n2 such that            
e1  n1 and e2  n2 are derivable
– This is done recursively

• If there is exactly one rule for each kind of 
expression we say that the rules are syntax-
directed
– At each step at most one rule applies
– This allows a simple evaluation procedure as 

above (recursive tree-walk) 
– True for our Aexp but not Bexp. Why?
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Evaluation of Commands

• The evaluation of a Com may have side 
effects but has no direct result
– What is the result of evaluating a command ?

• The “result” of a Com is a new state: 

<c, >  ’

– But the evaluation of Com might not 
terminate! Danger Will Robinson! (huh?)
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Com Evaluation Rules 1

<skip, >   <c1 ; c2, >  ’’
<c1, >  ’     <c2, ’>  ’’

<if b then c1 else c2, >  ’
<b, >  true     <c1, >  ’

<if b then c1 else c2, >  ’
<b, >  false     <c2, >  ’
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Com Evaluation Rules 2

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, >  [x := n]

<e, >  n

• Let’s do while together
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Com Evaluation Rules 3

<while b do c, >  
<b, >  false

Def: [x:= n](x) = n
[x:= n](y) = (y)<x := e, >  [x := n]

<e, >  n

<while b do c,  >  ’
<b, >  true   <c; while b do c, >  ’
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Homework

• Homework 0 Due Today
• Homework 1 Due In One Week

• Reading! 
– If this wasn't intuitive, try some of the 

optional readings for more context. 
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