
#1

Model CheckingModel Checking

#2

Double Header

• Two LecturesTwo Lectures
– Model Checking
– Software Model Checking
– SLAM and BLAST

• “Flying Boxes”
– It is traditional to describe this stuff (especially SLAM and

BLAST) with high-gloss animation.

• Some Key Players:
– Model Checking: Ed Clarke, Ken McMillan, Amir Pnueli
– SLAM: Tom Ball, Sriram Rajamani
– BLAST: Ranjit Jhala, Rupak Majumdar, Tom Henzinger

#3

Who are we again?
• We're going to find critical bugs in important

bits of software
– using PL techniques!

• You will be enthusiastic about this
– and thus want to learn the gritty details

#4

Take-Home Message

• Model checking is the exhaustive
exploration of the state space of a system,
typically to see if an error state is
reachable. It produces concrete counter-
examples.

• The state explosion problem refers to the
large number of states in the model.

• Temporal logic allows you to specify
properties with concepts like “eventually”
and “always”.

#5

Overarching Plan

• Model Checking (Today)
– Transition Systems (Models)
– Temporal Properties
– LTL and CTL
– (Explicit State) Model Checking
– Symbolic Model Checking

• Counterexample Guided Abstraction Refinement
– Safety Properties
– Predicate Abstraction (“c2bp”)

– Software Model Checking (“bebop”)

– Counterexample Feasibility (“newton”, “hw 5”)

– Abstraction Refinement (weakest pre, thrm prvr)

#6

Spoiler Space

• This stuff really works!

• Symbolic Model Checking is a massive
success in the model-checking field
– I know people who think Ken McMillan walks on

water in a “ha-ha-ha only serious” way
• SLAM took the PL world by storm

– Spawned multiple copycat projects
– Incorporated into Windows DDK as “static driver

verifier”

#7

Topic:
(Generic) Model CheckingModel Checking

• There are complete courses in model
checking; I will skim.
– Model Checking by Edmund C. Clarke, Orna

Grumberg, and Doron A. Peled, MIT press
– Symbolic Model Checking by Ken McMillan

#8

Model Checking

• Model checking is an automated technique
• Model checking verifies transition systems
• Model checking verifies temporal properties
• Model checking can be also used for

falsification by generating counter-examples
• Model Checker: A program that checks if a

(transition) system satisfies a (temporal)
property

#9

Verification vs. Falsification

• An automated verification tool
– can report that the system is verified (with a proof)
– or that the system was not verified (with ???)

• When the system was not verified it would be
helpful to explain why
– Model checkers can output an error counter-example: a

concrete execution scenario that demonstrates the error

• Can view a model checker as a falsification tool
– The main goal is to find bugs

• OK, so what can we verify or falsify?

#10

Temporal Properties

• Temporal Property: A property with time-related
operators such as “invariant” or “eventually”

• Invariant(p): is true in a state if property p is true
in every state on all execution paths starting at
that state
– The Invariant operator has different names in different

temporal logics:
• G, AG, ¤ (“goal” or “box” or “forall”)

• Eventually(p): is true in a state if property p is true
at some state on every execution path starting from
that state

• F, AF, } (“diamond” or “future” or “exists”)

#11

An Example Concurrent Program

• A simple concurrent mutual
exclusion program

• Two processes execute
asynchronously

• There is a shared variable
turn

• Two processes use the
shared variable to ensure
that they are not in the
critical section at the same
time

• Can be viewed as a
“fundamental” program:
any bigger concurrent one
would include this one

10: while True do
11: wait(turn = 0);
 // critical section// critical section
12: work(); turn := 1;
13: end while;

|| // concurrently with// concurrently with

20: while True do
21: wait(turn = 1);
 // critical section// critical section
22: work(); turn := 0;
23: end while

#12

Reachable States
of the Example Program

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Each state is a valuation
of all the variables:

turn and the two program
counters for two processes

Next: formalize
this intuition …

#13

Transition Systems
• In model checking the system being analyzed is

represented as a labeled transition system
T = (S, I, R, L)

– Also called a Kripke Structure
– S = Set of states // standard FSM
– I S = Set of initial states // standard FSM
– R S S = Transition relation // standard FSM
– L: S P(AP) = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”2AP)
– Atomic propositions capture basic properties
– For software, atomic props depend on variable values
– The labeling function labels each state with the set of

propositions true in that state

#14

What's in a
Label?

• We must decide in
advance which
facts are
important.

• We can have
“x=5” or “x=6”
but not “x”.

• Similarly for
relations (e.g.,
“x<y”, “x<z”).

#15

Properties of the Program
• Example: “In all the reachable states

(configurations) of the system, the two
processes are never in the critical section at
the same time”
– Equivalently, we can say that

• Invariant((pc1=12 pc2=22))

• Also: “Eventually the first process enters the
critical section”

• Eventually(pc1=12)

• “pc1=12”, “pc2=22” are atomic properties

#16

Temporal Logics

• There are four basic temporal operators:
• X p = Next p, p holds in the next state
• G p = Globally p, p holds in every state, p is

an invariant
• F p = Future p, p will hold in a future state,

p holds eventually
• p U q = p Until q, assertion p will hold until

q holds
• Precise meaning of these temporal

operators are defined on execution paths

#17

Execution Paths

• A path in a transition system is an infinite sequence
of states

(s0, s1, s2, ...), such that 8i0. (si, si+1) R
• A path (s0, s1, s2, ...) is an execution path if s0 I
• Given a path x = (s0, s1, s2, ...)

– xi denotes the ith state si
– xi

 denotes the ith suffix (si, si+1, si+2, ...)

• In some temporal logics one can quantify the paths
starting from a state using path quantifiers
– A : for all paths
– E : there exists a path

#18

Being Judgmental

• We write
x ² p

• “the path x makes the predicate p true”
– x is a path in a transition system
– p is a temporal logic predicate

• Example:
A x. x ² G ((pc1=12 pc2=22))

#19

Linear Time Logic (LTL)
• LTL properties are constructed from atomic

propositions in AP; logical operators , , ; and
temporal operators X, G, F, U.

• The semantics of LTL properties is defined on
paths:

Given a path x:

x ² p iff L(x0, p) // atomic prop

x ² X p iff x1 ² p // next

x ² F p iff 9i0. xi ² p // future

x ² G p iff 8i0. xi ² p // globally

x ² p U q iff 9i0. xi ² q and 8j<i. xj ² p // until

#20

Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states I satisfy p

• Example LTL formulas:
– Invariant((pc1=12 pc2=22)):

G((pc1=12 pc2=22))
– Eventually(pc1=12):

F(pc1=12)

#21

Computation Tree Logic (CTL)
• In CTL temporal properties use path quantifiers

– A : for all paths
– E : there exists a path

• The semantics of CTL properties is defined on
states:

Given a path x
s ² p iff L(s, p)

s0 ² EX p iff 9 a path (s0, s1, s2, ...). s1 ² p
s0 ² AX p iff 8 paths (s0, s1, s2, ...). s1 ² p

s0 ² EG p iff 9 a path (s0, s1, s2, ...). 8i0. si ² p

s0 ² AG p iff 8 paths (s0, s1, s2, ...). 8i0. si ² p

#22

Linear vs. Branching Time

• LTL is a linear time logic
– When determining if a path satisfies an LTL formula we

are only concerned with a single path
• CTL is a branching time logic

– When determining if a state satisfies a CTL formula we
are concerned with multiple paths

– In CTL the computation is not viewed as a single path but
as a computation tree which contains all the paths

– The computation tree is obtained by unrolling the
transition relation

• The expressive powers of CTL and LTL are
incomparable (LTL µ CTL*, CTL µ CTL*)
– Basic temporal properties can be expressed in both logics
– Not in this lecture, sorry! (Take a class on Modal Logics)

#23

Remember the Example

This is a
labeled

transition
system.

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

#24

Linear vs. Branching Time

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

One path starting at state
(turn=0,pc1=10,pc2=20)

t=0
10,20

t=0
10,21

t=0
11,21

t=0
12,21

t=0
10,21

t=0
11,21

t=1
10,21

.

.

.

t=0
10,21

t=0
11,21

.

.

.

.

.

.

.

.

.

A computation tree
starting at state
(turn=0,pc1=10,pc2=20)

t=1
10,20

t=0
12,21

.

.

.

.

.

.

Branching Time
View

Linear Time
View

#25

LTL Satisfiability Examples

p does not hold p holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

. . .

. . .

#26

CTL Examples
p does not hold

p holds

.

.

.

.

.

.

.

.

.

.

.

.

At state s:
EF p, EX (EX p),
AF (p), p holds

AF p, AG p,
AG (p), EX p,
EG p, p does not hold

s

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p,
EX (EX p),
EX p, EG p, p holds

AG p, AG (p),
AF (p) does not hold

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p,
AG p, EG p,
Ex p, AX p, p holds

EG (p), EF (p),
does not hold

.

.

.

.

.

.

Q: General (468 / 842)

•This country's automobile
stickers use the abbreviation
CH (Confederatio Helvetica).
The 1957 Max Miedinger
typeface Helvetica is also
named for this country.

Q: Computer Science

• This American computer scientist
won the Turing Award for granular
database locking and two-tier
transaction commit semantics. He
was reported missing while sailing in
2007.

#29

Model Checking Complexity

• Given a transition system T = (S, I, R, L) and a CTL
formula f
– One can check if a state of the transition system satisfies

the temporal logic formula f in O(|f| (|S| + |R|)) time

• Given a transition system T = (S, I, R, L) and an LTL
formula f
– One can check if the transition system satisfies the

temporal logic formula f in O(2|f| (|S| + |R|)) time

• Model checking procedures can generate counter-
examples without increasing the complexity of
verification (= “for free”)

#30

Which is slower?

#31

State Space Explosion

• The complexity of model checking increases
linearly with respect to the size of the
transition system (|S| + |R|)

• However, the size of the transition system
(|S| + |R|) is exponential in the number of
variables and number of concurrent
processes

• This exponential increase in the state space
is called the state space explosion
– Dealing with it is one of the major challenges in

model checking research

#32

Explicit-State Model Checking

• One can show the complexity results using
depth first search algorithms
– The transition system is a directed graph
– CTL model checking is multiple depth first

searches (one for each temporal operator)
– LTL model checking is one nested depth first

search (i.e., two interleaved depth-first-
searches)

– Such algorithms are called explicit-state model
checking algorithms (details on next slides)

#33

Temporal Properties Fixpoints
• States that satisfy AG(p) are all the states which

are not in EF(p) (= the states that can reach p)
• Compute EF(p) as the fixpoint of Func: 2S 2S

• Given Z µ S,
– Func(Z) = p reach-in-one-step(Z)
– or Func(Z) = p EX(Z)

• Actually, EF(p) is the least-fixpoint of Func
– smallest set Z such that Z = Func(Z)
– to compute the least fixpoint, start the iteration from

Z=, and apply the Func until you reach a fixpoint
– This can be computed (unlike most other fixpoints)

This is called the
inverse image of Z

#34

Pictoral Backward Fixpoint

• • •• • • ppInitial
states

initial states that violate AG(p)
= initial states that satisfy EF(p)

states that can reach p = EF(p)
= states that violate AG(p)

Inverse Image of p = EX(p)

This fixpoint computation can be used for:

• verification of EF(p)

• or falsification of AG(p)

… and a similar forward
fixpoint handles the other

cases

#35

Symbolic Model Checking

• Symbolic Model Checking represent state sets and
the transition relation as Boolean logic formulas
– Fixpoint computations manipulate sets of states rather

than individual states
– Recall: we needed to compute EX(Z), but Z µ S

• Forward and backward fixpoints can be computed
by iteratively manipulating these formulas
– Forward, inverse image: Existential variable elimination
– Conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check
• Use an efficient data structure for manipulation of

Boolean logic formulas
– Binary Decision Diagrams (BDDs)

#36

Binary Decision Diagrams (BDDs)

• Efficient representation for boolean
functions (a set can be viewed as a function, hw0)

• Disjunction, conjunction complexity: at most
quadratic

• Negation complexity: constant
• Equivalence checking complexity: constant

or linear
• Image computation complexity: can be

exponential

#37

Symbolic Model Checking
Using BDDs

• SMV (Symbolic Model Verifier) was the first CTL
model checker to use a BDD representation

• It has been successfully used in verification
– of hardware specifications, software specifications,

protocols, etc.

• SMV verifies finite state systems
– It supports both synchronous and asynchronous

composition
– It can handle boolean and enumerated variables
– It can handle bounded integer variables using a binary

encoding of the integer variables
• It is not very efficient in handling integer variables although this

can be fixed

#38

Where’s the Beef
• To produce the explicit counter-example, use the

“onion-ring method”
– A counter-example is a valid execution path
– For each Image Ring (= set of states), find a state and

link it with the concrete transition relation R
– Since each Ring is “reached in one step from previous

ring” (e.g., Ring#3 = EX(Ring#4)) this works
– Each state z comes with L(z) so you know what is true at

each point (= what the values of variables are)

• • •• • • ppInitial
states

1

2

3
4

#39

Building Up To:
SoftwareSoftware Model Checking via Model Checking via

Counter-Example Guided Counter-Example Guided
Abstraction RefinementAbstraction Refinement

• There are easily two dozen
SLAM/BLAST/MAGIC papers; I will skim.

#40

Key Terms

• CEGAR = Counterexample guided abstraction
refinement. A successful software model-
checking approach. Sometimes called
“Iterative Abstraction Refinement”.

• SLAM = The first CEGAR project/tool.
Developed at MSR.

• Lazy Abstraction = A CEGAR optimization
used in the BLAST tool from Berkeley.

• Other terms: c2bp, bebop, newton,
npackets++, MAGIC, flying boxes, etc.

#41

So … what is Counterexample
Guided Abstraction Refinement?
– Theorem Proving?
– Dataflow Analysis?
– Model Checking?

#46

One Ring To Rule Them All?

#47

Combining Strengths
Theorem Proving

- Need loop invariants
(will find automatically)
+ Behaviors encoded in logic
(used to refine abstraction)
+ Theorem provers
(used to compute successors,

refine abstraction)

Program Analysis

- Imprecise
(will be precise)
+ Abstraction
(will shrink the state space

we must explore)

Model Checking
- Finite-state model, state explosion
(will find small good model)
+ State Space Exploration
(used to get a path sensitive analysis)
+ Counterexamples
(used to find relevant facts, refine abstraction)

SLAMSLAM

#48

Homework

• Read Lazy Abstraction
• Optionally read TAR

	Model Checking
	Double Header
	Slide 3
	Take-Home Message
	Overarching Plan
	Spoiler Space
	Topic: (Generic) Model Checking
	Slide 8
	Verification vs. Falsification
	Temporal Properties
	An Example Concurrent Program
	Reachable States of the Example Program
	Transition Systems
	Slide 14
	Properties of the Program
	Temporal Logics
	Execution Paths
	Slide 18
	Linear Time Logic (LTL)
	Satisfying Linear Time Logic
	Computation Tree Logic (CTL)
	Linear vs. Branching Time
	Remember the Example
	Slide 24
	LTL Satisfiability Examples
	CTL Examples
	Q: General (468 / 842)
	Slide 28
	Model Checking Complexity
	Slide 30
	State Space Explosion
	Explicit-State Model Checking
	Temporal Properties Fixpoints
	Pictoral Backward Fixpoint
	Symbolic Model Checking
	Binary Decision Diagrams (BDDs)
	Symbolic Model Checking Using BDDs
	Where’s the Beef
	Building Up To: Software Model Checking via Counter-Example Guided Abstraction Refinement
	Key Terms
	Slide 41
	Verification by Theorem Proving
	Slide 43
	Verification by Program Analysis
	Verification by Model Checking
	Slide 46
	Combining Strengths
	Homework

