
Graduate Programming Languages
Homework Assignment

Wes Weimer

Exercise 1: Bookkeeping. How long did this take you? Was it easy?
Tell me something about yourself that I do not already know. All non-
empty answers receive full credit. The usual submission mechanism applies:
submit your textual answers in a PDF file named after your UVA ID (e.g.,
mst3k.pdf) as well as mst3k-hw3.ml and test-mst3k.input (see below).

Exercise 2: Regular Expressions are commonly used as abstractions for
string matching. Here is an abstract grammar for regular expressions:

e ::= ”x” singleton — matches the character x
| empty skip — matches the empty string
| e1 e2 concatenation — matches e1 followed by e2

| e1 | e2 or — matches e1 or e2

| e∗ Kleene star — matches 0 or more occurrence of e

| . matches any single character
| [”x”− ”y”] matches any character between x and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The
last four cases can be defined in terms of the first five. We also give an
abstract grammar for strings (modeled as lists of characters):

s ::= nil empty string
| ”x” :: s string with first character x and other characters s

We write ”bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise
requires you to give large-step operational semantics rules of inference related
to regular expressions matching strings. We introduce a judgment:

` e matches s leaving s′

The interpretation of the judgment is that the regular expression e matches
some prefix of the string s, leaving the suffix s′ unmatched. If s′ = nil then

1

r matched s exactly. Examples:

` ”h”(”e”+) matches ”hello” leaving ”llo”

Note that this operational semantics may be considered non-deterministic
because we expect to be able to derive all three of the following:

` (”h” | ”e”)∗ matches ”hello” leaving ”ello”
` (”h” | ”e”)∗ matches ”hello” leaving ”hello”
` (”h” | ”e”)∗ matches ”hello” leaving ”llo”

Here are two rules of inference:

s = ”x” :: s′

` ”x” matches s leaving s′ ` empty matches s leaving s

Give large-step operational semantics rules of inference for the other three
primal regular expressions.

Exercise 3: We want to update our operational semantics for regular ex-
pressions to capture multiple suffices. We want our new operational seman-
tics to be deterministic — it return the set of all possible answers from the
single-answer operational semantics above. We introduce a new judgment:

` e matches s leaving S

And use rules of inference like the following:

` ”x” matches s leaving {s′ | s = ”x” :: s′} ` empty matches s leaving {s}

` e1 matches s leaving S ` e2 matches s leaving S ′

` e1 | e2 matches s leaving S ∪ S ′

You must do one of the following:

• either give operational semantics rules of inference for e∗ and e1e2. You
may not place a derivation inside a set constructor, as in: {x | ∃y. `
e matches x leaving y}. Each inference rules must have a finite and
fixed set of hypotheses.

• or argue in one or two sentences that it cannot be done correctly in the
given framework. Back up your argument by presenting two attempted
but “wrong” rules of inference and show that each one is either unsound
or incomplete with respect to our intuitive notion of regular expression
matching.

Part of doing research is getting stuck. When you get stuck, you must be
able to recognize whether “you are just missing something” or “the problem
is actually impossible”.

2

Exercise 4: Optional. In the class notes (marked as “optional material”
in the lecture slides) we defined an equivalence relation c1 ∼ c2 for IMP
commands. Computing equivalence turned out to be undecideable: c ∼ c iff
c halts. We can define a similar equivalence relation for regular expressions:
e1 ∼ e2 iff ∀s ∈ S. ` e1 matches s leaving S1 ∧ ` e2 matches s leaving S2 ⇒
S1 = S2 (note that we are using an “updated” operational semantics that
returns the set of all possible matched suffices, as in the previous problem).
You must either claim that e1 ∼ e2 is undecideable by reducing it to the
halting problem or explain in two or three sentences how to compute it or
write “I choose not to do this problem” (you will receive full credit). You
may assume that I am familiar with the relevant literature.

Exercise 5: Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given
DPLL-style CNF SAT solver with the given theory of bounded arithmetic.
In particular, you must update only the Main.solve function. Your updated
solver must be correct. This notably implies that it must correctly handle
all of the included test cases — we use diff for some testing, but if you
change only the listed method you should end up with the same answers as
the reference.

Why do the last two included tests take such a comparatively long time?
Impress me with your knowledge of DPLL(T) — feel free to use information
from the assigned reading or related papers, not just from the lecture slides.
I am looking for a reasonably detailed answer. Include a discussion of which
single module you would rewrite first to improve performance, as well as how
you would change that module.

Exercise 6: Submit mst3k-hw3.ml and test-mst3k.input files according
to the instructions in the code pack.

3

