Earley Parsing
and Examples

Sometimes the second
one is even better!

We've got an

educational film for readers
aged nine to fifteen, who
out on message boards and rate
games that haven't come

Outline :m‘u % “YoUR [RIEND

Earley's Algorithm ‘NT_WE'--EN?'_'
- Chart States T | mé e 2
_ Operations
- Example

MyEarley.py fadiznisc
PA3.jison e ey
Grammar “Conflicts”’ft [T %,
- Shift/Reduce o el

>
~

i
\

9

Administrivia

o Midterm 1 will take place Wednesday in class
- Everything including today is fair game.
e Class vote, pick one option:

- You may bring one page of printed or hand-
written notes, front-and-back (= 2 sides).

- The test is open book: you may use any printed
materials including your printed notes and/or the
textbook and/or other printed readings.

e Think.

#4

In One Slide

e Earley parsers are top-down and use
dynamic programming. An Earley state
records incremental information: when
we started, what has been seen so far,
and what we expect to see. The Earley
chart holds a set of states for each
input position. Shift, reduce and closure
operations fill in the chart.

e YOu enjoy parsing. Parsing is easy and
fun.

#5

Review: Earley States

e Let X be a non-terminal

e Let a and b be (possibly-empty) sequences of
terminals and non-terminals

e Let X — ab be a production in your grammar

e Let j be a position in the input

e Each Earley Stateisatuple<X —-aeb, j>
- We are currently parsing an X

- We have seen a, we expect to see b

- We started parsing this X after seeing the first j
tokens from the input.

#6

Review: Earley Parse Table

e An Earley parsing table (or chart) is a one-
dimensional array. Each array element is a set
of Earley states.

- chart[i] holds the set of valid parsing states we
could be in after seeing the first i input tokens

« Then the string tok ...tok is in the language

of a grammar with start symbol S iff

- chart[n] contains < S — abe , 0 > for some
production rule S — ab in the grammar.

- We then say the parser accepts the string.

#7

Review: Filling In The Chart

e Three operations build up chart[n]

e The first is called shift or scan.
- |t corresponds to “seeing the next expected

token” or “helping to confirm the current
hypothesis” or “we're winning”.
e« Example:
- chart[1] contains <E—-E e+ E, 0>

- 2" token is “+” \

- Then put <E—-E +eE,0>inchart[2]

#8

Review: Filling In The Chart (2)

e The second operation is the closure or
predictor.

- It corresponds to “expanding rewrite rules” or
“substituting in the definitions of non-terminals”

e Suppose the grammar is:
S—-E E—-E+E|E-E| int
e If chart[0] has<S — « E, 0> then add
<E—-eeE+E,0>
<E—-eE-E,O0>
<E - eint, 0>

#9

Review: Filling In The Chart (3)

e The third operation is reduction or
completion.

- It corresponds to “finishing a grammar rewrite rule” or
“being done parsing a non-terminal” or “doing a rewrite
rule in reverse and then shifting over the non-terminal”.

e Suppose:

-E—-int |E+E|E-E|

- C
- C
T

nart[2] contains
nart[1] contains
nen chart[2] +=

) , input is “(int”

(E
<E—-inte 1>
<E_>\(‘

<E (

E'),O>

#10

Shift Practice

e chart[3] contains

<S—>Ee«,0> <E—-Ee--E,0>
<E—-Eee+E, 0O <E—-E-Ee«,0>
<E—>E0—E,2> <E—>EQ+E,2>

<E—-inte, 2>
e The 4™ token is “+”. What does shift bring in?

#11

Shift Practice

e chart[3] contains

<S—>Ee«,0> <E—-Ee--E,0>
<E—-Eee+E, 0O <E—-E-Ee«,0>
<E—>E0—E,2> <E—>EQ+E,2>

<E—-inte, 2>
e The 4™ token is “+”. What does shift bring in?
<E—-E+E, 0>
<E—-E+E,2>
... are both added to chart[4].

#12

Closure Practice

« Grammar is
- S—E E-E+E|E-E| (E)|int
e chart[4] contains:
<E—-E+E,0> <E—-E+E,2>
 What does the closure operation bring in?

Ernulatar Faor WWindows CE will nok run within another copy of
na Ernulator For Windaws CE,

You just had ko try, didn't waou?

K,

#13

Closure Practice

e Grammar is
- S—E E-E+E|E-E| (E)]|int
e chart[4] contains:
<E—-E+E,0> <E-E+E, 62>
 What does the closure operation bring in?
<E—-eE+E,4> <E—-e<E-E, 4>
<E—-e<(E),4> <E—eint, 4>
... are all added to chart[4].

#14

Reduction Practice

e chart[4] contains:
<E—-E+E,0> <E—-E+E,2>
<E—-eeE+E,4> <E—-eeE-E,4>
<E—-e(E),4> <E— eint, 4>
e chart[5] contains:
-<E—-inte, 4>

 What does the reduce operator bring in?

#15

Reduction Practice

e chart[4] contains:
<E—-E+E,0> <E—-E+eE, 2>
<E—-eE+E, 4> <E—-eE-E, 4>
<E—-<(E),4> <E- eint, 4>

e chart[5] contains:
-<E—-inte, 4>

 What does the reduce operator bring in?
<E—-E+E+,0> <E—-E+Ee«, 2>
<E—-Ee+E, 4> <E—-Ee-E, 4>

- ... are all added to chart[5]. (Plus more in a bit!)

Earley Parsing Algorithm

o Input: CFG G, Tokens toktok

n

e Work:
chart[0] ={<S — eab, 0>}
fori=0ton
repeat

use shift, reduce and closure on chart[i]
until no new states are added
e Qutput:

- true iff <S — abe , 0 > in chart[n]
#17

Massive Earley Example

No Plan Survives First Contact Intact

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N \

#19

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#20

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#21

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#22

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(i‘)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(eA),0
F— «id(A) ,0 A—eN ,2

A—e 2
Closure on A

#23

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(i‘)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(eA),0
F— «id(A) ,0 A—eN ,2

A—se 2
N—eid ,2
N—eid,N ,2

#24

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

N—eid ,2
N—eid,N ,2
F—id(Ae) ,0

#25

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(¥A~)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide ,2
F— «id(A) ,0 A—eN ,2 N—ide,N ,2
A—e 2
N—eid ,2
N—eid,N ,2
F—id(Ae) ,0

#26

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ids ,2

F—eid(A) ,0 A—oN ,2 N—ide,N ,2

N—eid,N ,2
F—id(Ae) ,0

Reduce
on N

#27

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(¥A~)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ids ,2

F—eid(A) ,0 A—eN , N—ide,N ,2
A—e 2 A—Ne ,2
N—eid,2 \ F—id(As),0

N-—eid,N ,2 Reduce
F—id(Ae) ,0 on A

#28

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2

F— «id(A) ,0 A—eN ;2 N—ide,N ,2
A—e 2 A—Ne ,2
N—eid,2 F—id(Ae),0
N—eid,N ,2

F—id(Ae) ,0

#29

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2

F—e«id(A) ,0 A—eN ,2 N—ide,N,2 N—-eid,4
A—e 2 A—Ne ,2 N—eid,N ,4
N—eid,2 F—id(Ae),0
N—eid,N ,2

F—id(Ae) ,0

#30

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

F— «id(A) ,0

F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ids ,4
A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N 4
A—e ,2 A—Ns ,2 N—eid,N ,4
N—eid,2 F—id(As),0
N—eid,N ,2
F—id(As) ,0

#31

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2 N-—ide ,4

F—e«id(A) ,0 A—eN ,2 N—ide,N,2 N—-eid,4
A—e 2 A—Ne ,2 N—eid,N ,4
N—eid,2 F—id(Ae),0
N—eid,N ,2
F—id(Ae) ,0

N—ide,N ,4
N—id,Ne ,2

#32

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2 N-—ide ,4

F— «id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N 4
A—e 2 A—Ne ,2 N—eid,N ,4 N—id,Ne ,2
N—eid,2 \ F—id(Ae),0 A—Ne ,2
N—-eid,N ,2 Reduce
F—id(As) ,0 on N

#33

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2 N-—ide 4

F— «id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N,4

A—e 2 A—Ne |2 N—eid,N,4 N-—id,Ne , 2
N— eid ,2 F—id(Ae) ,0 A—Ne ;2
N—eid,N ,2 F—id(Ae) ,0
(A) Reduce
F—id(Ae) ,0 on A

#34

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide ,4 F—id(A)s,0

F—«id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N,4
A—e ,2 A—Ne ,2 N—eid,N,4 N—id,Ne ,2
N—eid,2 F—id(Ae),0 A—Ne ,2
N—eid,N ,2 F—id(Ae) ,0
F—id(As) ,0

#35

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide ,4 F—id(A)s,0

F—eid(A) ,0 A—eN ,2 N—ide,N,2 N-eid, b4 N—ide,N,4 S—F.,0
A—e 2 A—Ne ,2 N—eid,N,4 N-—id,Ne ,2

N—eid ,2 F—id(Ae) ,0 A—Ne ;2
(A) Reduce

N—eid,N ,2 F—id(Ae) ,0 on F

F—id(As) ,0

#36

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

F— «id(A) ,0

F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide,4 F—id(A)e,0

A—eN ,2 N—ide,N,2 N-—-eid 4 N—ide,N,4 S—Fe ,0

A—e ,2 A—Ne ,2 N—eid,N,4 N—id,Ne ,2
N—eid,2 F—id(Ae),0 A—Ne ,2
N—eid,N ,2 F—id(Ae) ,0
F—id(As) ,0

#37

Let's Implement It

e We'll use Python and Functional Programming

e Recall: List Comprehensions

>>> range(10)

[O! 1! 2! 3! 4! 5! 6! 7! 8! 9]

>>> [x*x for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> [x for x in range(10) if x > 5]
[6! 7! 8! 9]

>>> [x*x for x in range(10) if x > 5]
[36, 49, 64, 81]

#38

iy f};a__,.-'.r
T
W,

//

i
Y,
s .-f.n’.-"'r

mming

T LEARNED IT LAST
NIGHT! EVERYTHING
15 SO SIMPLE!

/

HELLD WORLD 1§ JusT
print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITEGPACE?

COME JoIN US!
FROGRAMMING
1S FUN AGAIN!
IT'S A WHOLE
NEL/ WORLD

\ UP HERE!

BUT HOW ARE
YOU FLYING?

I JUsT TYPED
import D-l‘ri'Tgmm‘iy
THAT'S 1T? [

... L ALSO SAMPLED
EVERYTHING 1N THE

MEMCINE CABINET +

FOR COMPARISON.
[

BUT I THINK THIS

1S THE PYTHON.

5]

#39

Data Structure Decisions

e For brevity, we'll use Lists and Tuples.

- Named Tuples in Python 3, Classes, etc
grammar = [

"s", ["F"1),

Tad®, T, TAT, T)TDD,
". L 1),

,» ['N"1),

1d™, 1D,

F
A
A"
N
N®, [Fid%, 7,7, "N D,

-
(
-
(
(

]
tOkenS —_ [|l_idl| , ll(ll ; ll_idll, II,II ; Il_idll, Il)ll]
X—)ab.Cd, _i — (“X” ; [lla” ; ”b”] ; [HC!! ; ”d”] ,_i)

#40

Initialization

By convention, the starting rule 1is
the first rule in the grammar.
start_rule = grammar[0]

The starting parse state is "S -> . abcd , from 0"
start_state = (start_rule[0], [], start_rule[l], 0)

The parsing chart is a one-dimensional array,
initially empty.
chart = {}

i range(len(tokens)+1): chart[i] = []

Start by placing the starting state in chart[0].
chart[0] = [start_state]

#41

Shift

If chart[i] contains "X -> ab.cd , from j"

and c i1s token[i] then add:

"X -> abc.d , from j" to chart[i+1]
(tokens, 1, x, ab, cd, j):

cd <> [] tokens[i] == cd[0]:
c = cd[0]
d = cd[1:]

abc = ab + [c]
new_chart_state = (x, abc, d, j)
new_chart_index = 1 + 1

[(new_chart_index, new_chart_state)]

[]

#42

H H H HHHH

Closure

If chart[i] contains "X -> ab.cd , from j":
and cd 1s not empty
and ¢ is a non-terminal
and there is a grammar rule "c -> pqr"
Then add:
"¢ -> . pqr , from i"
to chart[i]
closure(grammar,i,X,ab,cd,j):
[(G, (rulelO],[],rule[1],71)) \
rule grammar \
cd <> [] cd[0] == rule[0]]

#43

Reduction

If chart[i] contains "X -> ab. , from j"
(that 1s: cd is empty)
and chart[j] contains "Y -> pq.Xr , from k"
Then add
"Y -> pgX.r , from k" to chart[i]
reduction(chart,i,x,ab,cd, j):
[(1, (Jstate[0], jstate[l] + [x],
(jstate[2])[1:]1, jstate[3]))
jstate chart[jl
cd == [] jstate[2] <> []
(jstate[2])[0] == x]

#44

Main Loop

Step 2: Dynamic Programming
i range(len(tokens)):
Apply shift, closure and reduction until
no new parsing states are added to the chart.
apply_shift_closure_reduction():
any ([
add_to_chart(chart,
shift(tokens,i,x,ab,cd,j) +
closure(grammar,i,x,ab,cd,j) +
reduction(chart,i,x,ab,cd,j))
x, ab, cd, j chart[i]]):
apply_shift_closure_reduction()
do it again if any changes

apply_shift_closure_reduction()
#45

Example

grammar3 = [
's", ["E"D,
C"e”, ["e", "-", "E" D),
("e", ["E", "+", "E" 1),
'e", ["C", "e", MO" D,
("e", ["int"D),

]
tokens3 = ["int", "-", "int"]
chart[0]
S > . E , from 0
E-> .E-E , from O
E-> .E+E , from O
E-> . (CE) , from O
E -> . 1int , from 0
chart[1]
E -> 1int . , from O
S -> E . , from O

String Accepted: True
#46

PA3 in JavaScript: parser.jison

%token PLUS MINUS INT
%left PLUS MINUS
%start program

%%
program: exp EOF { return $1; }

"plus_node", $1, $3]; }
"minus_node", $1,$3]; }
["int_node",
Number(yytext) 1; }

exp: exp PLUS exp { $$
| exp MINUS exp { $%
| INT { $%

#47

PA3 in JavaScript: main.js

var cl_lex = [
["INT', "11"] ,
['pPLUS'] ,
["INT', "22"] ,
["MINUS'] ,
["INT', "33"] ,
['EOF'] ,

]

var token_count = 0

var parser =
require(”./parser") .parser;

parser.lexer = {
lex : function() {
var cl_lex_entry =
cl_lex[token_count++] ;
var token = cl_lex_entry[0] ;
var lexeme = cl_lex_entry[1l] ;
parser.lexer.yytext = lexeme ;
token;

3,
setInput : function(str) { }

}

var final_ast = parser.parse("");

console.log(final_ast);

#48

PA3 in JavaScript Output:

$ node main.js
["minus_node’,
["plus_node’, b
["int_node', 11], @ @

["int_node', 22] // \\
1, 2

["int_node', 33]

#49

PA3 Not Shown Here

e Reading in the .cl-lex file
e Handling line number information
e Printing out the AST in the desired format

e Adding parsing rules for whole classes and not
just simple expressions

e Massive testing effort
- diff vs. “cool --parse” requires “almost done”

e Dealing with ambiguity (“conflicts”)
- Let's do this one now.

#50

Conflicts

o Add “%token NEG” and “exp: NEG exp”.
e Oh noes:

Conflict in grammar: multiple actions possible when lookahead token s
PLUS in state 8

- reduce by rule: exp -> NEG exp
- shift token (then go to state 6)

Conflict in grammar: multiple actions possible when lookahead token is
MINUS 1n state 8

- reduce by rule: exp -> NEG exp
- shift token (then go to state 7)

States with conflicts:

State 8
exp -> NEG exp . #1ookaheads= EOF PLUS MINUS
exp -> exp . PLUS exp

exp -> exp . MINUS exp -

Co

« Add “%token NEG” a
« Oh noes: o W EXCEPT B |'F

conflict in grammar: multiple act¥? &8 ' U 4
PLUS in state 8 w S IJQAII‘,.
- reduce by rule: exp -> NEG exp {58 | S
- shift token (then go to state 6]

Conflict in grammar: multiple act
MINUS in state 8

- reduce by rule: exp -> NEG exp
- shift token (then go to state 7:

Domestic

Violence
. M THIS A
MEIGHBORHOCOD J.

-I" i lrhl Hrrllr.

-k

ll-lti--ilniiil#-'.
. e e

States with conflicts:
State 8
exp -> NEG exp . #1ookal
exp -> exp . PLUS exp

exp -> exp . MINUS exp 4o

Conflict Interpretation

e S0 some table entry has all three:
- exp — NEG exp .
- exp — exp . PLUS exp
- exp — exp . MINUS exp

 What would the input have to look like to get
to that table entry?

Internet Explorer

] Question of the day: Which technological invention do you think has impacted our

b " lives more - the telephone or the internet?

Bilhy You know you can post Polls on facebook now, right?
IE, Always a litle behind the times.
2 seconds ago - Like

#53

Conflict Interpretation

e S0 some table entry has all three:
- exp — NEG exp .
- exp — exp . PLUS exp
- exp — exp . MINUS exp

 What would the input have to look like to get
to that table entry?

- NEG INT . PLUS INT

#54

Conflict Interpretation

e S0 some table entry has all three:
- exp — NEG exp .
- exp — exp . PLUS exp
- exp — exp . MINUS exp

 What would the input have to look like to get
to that table entry?

- NEG INT . PLUS INT g \@
ONTONT ONT

#55

Conflict Solution

e Shift/Reduce

- Carefully specify precedence and associativity of
operators (and sometimes of random tokens).

o In last example, NEG has higher precedence than PLUS

or MINUS.
e Reduce/Reduce

- Rewrite grammar to avoid gross ambiguity:

List — List List
List — Element
List —

List — Element List
List —

#56

Homework

e Midterm 1 Tomorrow In Class

« WA3 (written homework) due Monday
e PA3 due Monday

#57

	Top-Down Parsing
	Slide 2
	Slide 3
	Slide 4
	In One Slide
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Homework

