Top-Down Parsing
Earley Parsing

s SOET - | SPEE ; S =
AT e e | ENFORCEDT BY. [P0 e S IRIEIR oo 0

3 - - el e, ca -

: Y I v w - =

g 1' 5 - Mt s a5 " - = PR II""!H"[I.'LII"I“ ;
2k - : -- v . -= = - I_l_i' ‘IIEfIEI_I]:I P

e

#2

SHAFFER: WHY LETTERMAN LEFT HISUN. JOB

Motivating Question ewswe ak
; AMERlCAPUNKD - val
‘ Your &
» Given this grammar G: | tNé"]

" ELE+T PreS|dent

‘P ’Ur Exclusive

“E-T | 3&)

- T 5> T*int ¢
- T - int M\I\HNHWHM\HH\\nm
-T > (E)
o Is the string int * (int + int) in L(G)?
- Give a derivation or prove that it is not.

#3

Revenge of Theory

 How do we tell if DFA P is equal to DFA Q?
- We can do: “is DFA P empty?” *

o How?

- We can do: “P :=not Q”
e How?

- We can do: “P := Q intersect R”
o How?

- So do: “is P intersect not Q empty?”

e Does this work for CFG X and CFG Y?
e Can we tell if sisin CFG X?

#4

Outline

e Recursive Descent Parsing
- Left Recursion

e Historical Approaches
- LL, LR, LALR

e Dynamic Programming

e Earley's Algorithm
- Chart States

- Operations D IV IN AT IgO N

- Example

#5

In One Slide

A top-down parser starts to work from the initial grammar rules
(rather than from the initial tokens). A recursive descent parser
exhaustively tries all productions in the grammar. It is top-down,
may backtrack and cannot handle left-recursive grammars. Left
recursion can be eliminated. Historical approaches such as LL, LR
and LALR cannot handle all context-free grammars. They can be
efficient.

Dynamic programming is a problem-solving technique based on
optimal substructure: solutions to subproblems yield solutions to
overall problems.

Earley parsers are top-down and use dynamic programming. An
Earley state records incremental information: when we started,
what has been seen so far, and what we expect to see. The
Earley chart holds a set of states for each input position. Shift,
reduce and closure operations fill in the chart.

You enjoy parsing. Parsing is easy and fun. 46

In One Slide

o A top-down parser starts to work from the initial grammar rules
(rather than from the initial tokens). A recursive descent parser

AS REQUESTED, I FIT
MY PRESENTATION ON
ONE POLJERFOINT
SLIDE

I HAD TO USE ALL OF
THE WHITE SPACE, BUT
I THINK IT WAS WORTH
IT TO FIT EVERYTHING
ON ONE PAGE.

ITS ACTUALLY ONLY
OME BULLET POINT,.
BUT ITS A LONG
OME.

www.dilbert.com scottsdaras ®sol.oom

3308 B 2008 Soott Adams. inc. /T, by UES, inc
E

o Earley parsers are top-down and use dynamic programming. An
Earley state records incremental information: when we started,
what has been seen so far, and what we expect to see. The
Earley chart holds a set of states for each input position. Shift,
reduce and closure operations fill in the chart.

e You enjoy parsing. Parsing is easy and fun.

#7

Intro to Top-Down Parsing

e Terminals are seen in order
of appearance in the token \

stream: /R

constructed
- From the top
- From left to right

t, t, t, t, t , B ot
The parse tree is . !
t, ot

Recursive Descent Parsing

e« We’ll try recursive descent parsing first
- “Try all productions exhaustively, backtrack”

e Consider the grammar
E-T+E | T
T (E) | int | int*T
e Token stream is: int * int
 Start with top-level non-terminal E

e Try the rules for E in order

#9

Recursive Descent Example

OTryEO—>T1+E2 T (E) | int | int*T

Input = int * int

e« Then try arule for T, —» (E;)
- But (does not match input token int
e Try T, - int . Token matches.
- But + after T, does not match input token *
e Try T, - int* T,
- This will match but + after T, will be unmatched

« Have exhausted the choices for T,

- Backtrack to choice for E, 410

Recursive Descent Example (2)

T-(E) | int | int*T

Input = int * int

® Tl'y EO — T1

« Follow same steps as before for T.

- And succeed with T, - int*T,and T, - int

- With the following parse tree

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Recursive Descent Parsing

« Parsing: given a string of tokens t, t, ... t
find its parse tree

e Recursive descent parsing: Try all the
productions exhaustively
- At a given moment the fringe of the parse tree
is:t, ..t AL

- Try all the productions for A: if A - BCis a
production, the new fringeist, t, ...t B C ..

n?

- Backtrack if the fringe doesn’t match the string
- Stop when there are no more non-terminals

#12

When Recursive Descent
Does Not Work

e Consider a production S - S a:

- In the process of parsing S we try the above rule
- What goes wrong?

The page at http:/hwww.youtube.com says: | om

zomething unexpected happened, please smash head against kevboard, when done, you may run
= ., around in circles, wave your hands, and scream.

th sel

SRR S

Dlaaca Matas Wihon wr

#13

When Recursive Descent
Does Not Work

e Consider a production S - S a:
- In the process of parsing S we try the above rule
- What goes wrong?

e A left-recursive grammar has
S -*Sa for some «

Recursive descent does not work in such cases
- It goes into an infinite loop

#14

What's Wrong With That Picture?

| .
o — |
— \
.
§

#15

Elimination of Left Recursion

e Consider the left-recursive grammar
S-Sa|B

* S generates all strings starting with a 3 and
followed by a humber of o

e Can rewrite using right-recursion
SLPBT
ToaT]|E

#16

Example of
Eliminating Left Recursion

e Consider the grammar
S-1]|SO0
(B=1anda=0)
It can be rewritten as
S 1T
T-0T]|e

More Left Recursion Elimination

e In general
S So, |..|Sa, |B|.|B,

o All strings derived from S start with one of
B,,...,B,, and continue with several instances

of a,,...,a_

e Rewrite as
S-B,T]|...|B, T
Too,T|...|laT]|e

#18

General Left Recursion

e« The grammar

A-SB
is also left-recursive because Signs
S -7 S B a And some of them are not

e This left-recursion can also be eliminated
e See book, Section 2.3

e Detecting and eliminating left recursion are
popular test questions

#19

Summary of Recursive Descent

e Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically

e Unpopular because of backtracking

- Thought to be too inefficient (repetition)
» We can avoid backtrackingl .

- Sometimes ... i

Sometimes Things Are Perfect

e The “.ml-lex” format you emit in PA2
e Will be the input for PA3

- actually the reference “.ml-lex” will be used

e It can be “parsed” directly
- You always know just what to do next

e Ditto with the “.ml-ast” output of PA3
o Just write a few mutually-recursive functions
e They read in the input, one line at a time

#21

Historical Approaches

In the past, 1/0 was slow and memory was small. Many
sacrifices were made to optimize parsing.

- Basic idea: “If we don't handle all grammars, we can go
faster on simpler grammars.” Also: table — no backtrack.

LL(k) - Left to right scan of input, Leftmost derivation,
predict using k tokens. Parse by making a table.

LR(k) - Left to right scan of input, Rightmost derivation,
predict using k tokens. Parse by making a table.

LALR(k) - Left to right scan of input, Rightmost derivation,
predict using k tokens. Parse by making a table, but merge
some states in that table. Yacc, bison, etc. use LALR(1).

#22

The Sacrifice

e LL(1) languages can be LL(1) parsed

- A language Q is LL(1) if there exists an LL(1)
table such the LL(1) parsing algorithm using that
table accepts exactly the strings in Q

- Essentially, the table has to be perfect: no entry
can be ambiguous or multiply defined.

e Sadly, LL(1) != CFG.
e Sadly, LR(1) !'= CFG.
e Sadly, LALR(1) != CFG.

- See textbook for definitive Venn diagram.

#23

The Sacrifice

that

ntry

e Sadly, LL(1) != CFG.
e Sadly, LR(1) != CFG.
e Sadly, LALR(1) != CFG.

- See textbook for definitive Venn diagram.

#24

Q: Books (727 / 842)

« Name 5 of the 9 major
characters in A. A. Milne's 1926
books about a "bear of very
little brain” who composes
poetry and eats honey.

Dynamic Programming

e “Program” = old word for “table of entries”
- cf. the program (= “schedule”) at a concert

« Dynamic Programming means
- “Fill in a chart or table at run-time.”
- Same idea as memoization.

e Works when the problem has the optimal
substructure property

- Solution to Big Problem can be constructed from
solutions to Smaller Subproblems.

e Shortest path, spell checking, ...

#26

Simple Dynamic Programming

e Dynamic Programming for Fibonacci
- N 1 2 3 4 5 6
- Chart 1 1 2 3 5 8
- chart[N] = chart[N-1] + chart[N-2]
- Reduces runtime of Fibo from Bad to Linear

- n

I.-""_"‘-.I Failed to insert optional class information: Error was ToString() takes at
‘Nl |east 2147483647 arguments (1 given)

Lok |

#27

Dynamic Programming for Parsing

e Dynamic Programming for Fibonacci
- N 1 2 3 4 5 6
- Chart 1 1 2 3 5 8
- chart[N] = chart[N-1] + chart[N-2]
- Reduces runtime of Fibo from Bad to Linear
e Dynamic Programming for Parsing

- N 1 2 3 4 5 6
- Tokens X + (Yy * Z
- Chart < I'll explain in a minute >

- chart[N] = “list of possible parses of tokens 1...N”
#28

Earley's Algorithm

e Earley’s Algorithm is an incremental left-to-
right top-down parsing algorithm that works
on arbitrary context-free grammars.

e Systematic Hypothesis Testing

- Before processing token #X, it has already
considered all hypotheses consistent with tokens
#1 to #X-1.

- Substructure: parsing token #X is solved in terms

of parsing sequences of tokens from #1 to #X-1
#29

About Jay
I3 1 o | =

Jay Earley, Ph.D., is a transformational psychologist, group leader,
psychotherapist, coach, author, teacher, and theorist.

Jay is trained in Internal Family Systems Therapy and assists with
professional trainings in IFS. He leads IFS Classes for the general public
which teach IFS as a practice for self-help and peer counseling. He is
active in the IFS community and has presented a number of workshops
at IFS annual conferences. He also teaches classes on Communication
from the Heart, based on IFS, interactive groups, and the Pattemn
System.

He is nationally known for his innovation in the group psychotherapy field.
His book, Interactive Group Therapy: Integrating Interpersonal, Action-
Oriented, and Psychodynamic Approaches, Brunner/Mazel, describes his
group therapy method in which people leamn interpersonal relationship
skills by working directly on their relationships with each other. During his ten years on the east
coast, Jay was Director of the Group Therapy Center of Long Island, where he trained group
therapists in this method. He has written a number of articles on interactive groups and made
numerous presentations at regional and national psychotherapy conferences. He continues to lead
interactive therapy groups in the Bay Area.

Jay offers Life Purpose Coaching and Change Agent Coaching, on finding your life purpose and
making a difference in the world. He has been writing about and leading workshops on Life Purpose
since 1984. He has collected his writings on life purpose into an ebook Finding Your Life Purpose.

Jay also has a Ph.D. in computer science from Camegie-Mellon University and was formerly on the

U.C. Berkeley faculty, where he published 12 computer science papers, one of which was voted one

of the best 25 papers of the quarter century by the Communications of the A.C.M.

#30

Parsing State

e Earley is incremental and left-to-right
e ConsiderrE-E+E|E*E| (E) | int

e We use a “¢” to mark “where we are now”
e Example: E - E+ o E

- lam trying to parseE — E +E
- | have already seen E + (before the dot)
- | expect to see E (after the dot)

e General form: X — a e b
- a, b: sequences of terminals and non-terminals

#31

Dot Example

eE—-E+E|E*E]| (E) | Int

e Input so far: int +
e Current state: E—-E++E

#32

Dotty Example

eE—~E+E|E*E| (E)|int

 Input so far: (int)
e State could be: E—-(E)e
E E
E 4 ¥V oa 4 YV a
2V 4 E + E E * E
CE) FV 4 » T4
Y (E) (E)
int \/ \/
int int

e But also: E—>Ee«+E
e Or: E-E«*E

#33

Origin Positions

eE—~E+E|E*E| (E)|int

« Example Input-So-Far #1: int
- Possible Current State: E—int e
o« Example Input-So-Far #2: int + int
- Possible Current State: E—inte

e Must track the input position just before the
matching of this production began.

#34

Origin Positions

eE—~E+E|E*E| (E)|int

« Example Input-So-Far #1: int

- Possible Current State: E—inte, fromO
o« Example Input-So-Far #2: int + int

- Possible Current State: E—int e, from?2

e Must track the input position just before the
matching of this production began.

int + int
0 1 2 3

#35

Earley States

e Let X be a non-terminal

e Let a and b be (possibly-empty) sequences of
terminals and non-terminals

e Let X — ab be a production in your grammar

e Let j be a position in the input

e Each Earley Stateisatuple<X —-aeb, j>
- We are currently parsing an X

- We have seen a, we expect to see b

- We started parsing this X after seeing the first j

tokens from the input.
#36

Introducing: Parse Tables

Rolemaster

A table for every occasion

#37

Earley Parse Table (= Chart)

e An Earley parsing table (or chart) is a one-
dimensional array. Each array element is a set
of Earley states.

- chart[i] holds the set of valid parsing states we
could be in after seeing the first i input tokens

#38

Earley Parse Table (= Chart)

e An Earley parsing table (or chart) is a one-
dimensional array. Each array element is a set
of Earley states.

- chart[i] holds the set of valid parsing states we
could be in after seeing the first i input tokens

« Then the string tok ...tok is in the language

of a grammar with start symbol S iff

- chart[n] contains < S — abe , 0 > for some
production rule S — ab in the grammar.

- We then say the parser accepts the string.
#39

Earley Parsing Algorithm

e Input:
- Grammar G (start symbol S, productions X — ab)
- Input Tokens tok ...tok

e Work:
chart[0] ={<S — eab, 0>}
fori=0ton
complete chart[i] using G and chart[0]...chart][i]
e QOutput:
- true iff <S — abe , 0 > in chart[n]

n

#40

Filling In The Chart

e Three operations build up chart[n]

e The first is called shift or scan.
- |t corresponds to “seeing the next expected

token” or “helping to confirm the current
hypothesis” or “we're winning”.
e« Example:
- chart[1] contains <E—-E e+ E, 0>

- 2" token is “+” \

- Then put <E—-E +eE,0>inchart[2]

#41

Formal shift operation

« Whenever
- chart[i] contains < X — ab ecd, j>
- ¢ is a terminal (not a non-terminal)
- the (i+1)" input token is c
e The shift operation
- Adds < X — abc « d, j > to chart[i+1]

#42

Filling In The Chart (2)

e The second operation is the closure or
predictor.

- It corresponds to “expanding rewrite rules” or
“substituting in the definitions of non-terminals”

e Suppose the grammar is:
S—-E E—-E+E| E-E| int

e If chart[0] has<S — « E, 0 > then add
<E—-eeE+E,0>
<E—-eE-E,O0>

<E - eint, 0>
#43

Formal closure operation

« Whenever
- chart[i] contains < X — ab ecd, j>
- € is a non-terminal
- The grammar contains<c —-pqr>

e The closure operation
- Adds<c — epqr,i>tochart[i]

- Note<c — e pqgr,i>because “we started
parsing this ¢ after seeing the first i tokens from
the input.”

#44

Filling In The Chart (3)

e The third operation is reduction or
completion.

- It corresponds to “finishing a grammar rewrite rule” or
“being done parsing a non-terminal” or “doing a rewrite
rule in reverse and then shifting over the non-terminal”.

e Suppose:
-E—-int|E+E|E-E | (E
- chart[2] contains <E—-inte, 1>
. T~
- chart[1] contains <E — (
- Then chart[2] += <E — (

) , input is “(int”

E'),O>

#45

Formal reduce operation

 Whenever
- chart[i] contains <X —-ab e, j>
(The dot must be all the way to the right!)
- chart[j] contains <Y —-qeXr, k>
e The reduce operation
- Adds <Y — gqX er, k > to chart]i]

- Note<Y — g X «r, k >because “we started
parsing this Y after seeing the first k tokens from
the input.”

#46

This is easy and fun.

e This is not as hard as it may seem.

ﬁ? cos@ =7

gdo-? [¢e-?

{03 - o™=
MD normal opproach

(s useless }?ere.

e Let's go practice it!

#47

Shift Practice

e chart[3] contains

<S—>Ee«,0> <E—-Ee--E,0>
<E—-Eee+E, 0O <E—-E-Ee«,0>
<E—>E0—E,2> <E—>EQ+E,2>

<E—-inte, 2>
e The 4™ token is “+”. What does shift bring in?

#48

Shift Practice

e chart[3] contains

<S—>Ee«,0> <E—-Ee--E,0>
<E—-Eee+E, 0O <E—-E-Ee«,0>
<E—>E0—E,2> <E—>EQ+E,2>

<E—-inte, 2>
e The 4™ token is “+”. What does shift bring in?
<E—-E+E, 0>
<E—-E+E,2>
... are both added to chart[4].

#49

Closure Practice

« Grammar is
- S—E E-E+E|E-E| (E)|int
e chart[4] contains:
<E—-E+E,0> <E—-E+E,2>
 What does the closure operation bring in?

Ernulatar Faor WWindows CE will nok run within another copy of
na Ernulator For Windaws CE,

You just had ko try, didn't waou?

K,

#50

Closure Practice

e Grammar is
- S—E E-E+E|E-E| (E)]|int
e chart[4] contains:
<E—-E+E,0> <E-E+E, 62>
 What does the closure operation bring in?
<E—-eE+E,4> <E—-e<E-E, 4>
<E—-e<(E),4> <E—eint, 4>
... are all added to chart[4].

#51

Reduction Practice

e chart[4] contains:
<E—-E+E,0> <E—-E+E,2>
<E—-eeE+E,4> <E—-eeE-E,4>
<E—-e(E),4> <E— eint, 4>
e chart[5] contains:
-<E—-inte, 4>

 What does the reduce operator bring in?

#52

Reduction Practice

e chart[4] contains:
<E—-E+E,0> <E—-E+eE, 2>
<E—-eE+E, 4> <E—-eE-E, 4>
<E—-<(E),4> <E- eint, 4>

e chart[5] contains:
-<E—-inte, 4>

 What does the reduce operator bring in?
<E—-E+E+,0> <E—-E+Ee«, 2>
<E—-Ee+E, 4> <E—-Ee-E, 4>

- ... are all added to chart[5]. (Plus more in a bit!) 453

Earley Parsing Algorithm

o Input: CFG G, Tokens toktok

n

e Work:
chart[0] ={<S — eab, 0>}
fori=0ton
repeat

use shift, reduce and closure on chart[i]
until no new states are added
e Qutput:

- true iff <S — abe , 0 > in chart[n]
#54

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(¥A~)
A — N KI
A— ¢

N — id id’?‘N
N —id, N \

#55

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N \

#56

Massive Earley Example

Grammar Input E
S—F id (id, id)

F—-id(A)

A—- N

A— ¢

N — id

chart[0] chart[1] cha

#57

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N \

#58

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#59

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#60

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

#61

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(i‘)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(eA),0
F— «id(A) ,0 A—eN ,2

A—e 2
Closure on A

#62

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(i‘)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(eA),0
F— «id(A) ,0 A—eN ,2

A—se 2
N—eid ,2
N—eid,N ,2

#63

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

F— «id(A) ,0

N—eid ,2
N—eid,N ,2
F—id(As) ,0

#64

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N-—ids ,2

F—«id(A) ,0 A—eN,2 N-—ide,N,2
A—e ,2
N— eid ,2
N— eid,N ,2
F—id(Ae) ,0

#65

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N-—ids ,2

F—«id(A) ,0 A—eN,2 N—ide,N,2

N—eid ,2

N-—¢id,N ,2 Reduce
F—id(Ae) ,0 onN

#66

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(¥A~)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N-—ids ,2
F— «id(A) ,0 A—oN

N—ide,N ,2

A—s 2 A—Ne ,2

N—eid,2 \F—id(Ae),0

N—e¢id,N ,2 Reduce
F—id(Ae),0 on A

#67

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2

F—eid(A) ,0 A—eN ,2 N—ide,N ,2
A—e 2 A—Ne ,2
N—eid,2 F—id(Ae),0

N—eid,N ,2
F—id(As) ,0

#68

Massive Earley Example

Grammar Input E

S—F id (id, id)

F—id(A) id(?)
A—- N KI
A— ¢

N — id id’?‘N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,sN,2

F—«id(A) ,0 A—eN ,2 N—ide,N,2 N—eid 4
A—e ,2 A—Ne ,2 N—eid,N ,4
N—eid,2 F—id(Ae),0

N—eid,N ,2
F—id(As) ,0

#69

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ids ,4

F—«id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N,4
A—e ,2 A—Ne ,2 N—eid,N ,4
N—eid,2 F—id(Ae),0
N—eid,N ,2
F—id(As) ,0

#70

Massive Earley Example

Grammar Input E
S—F id (id, id)

F=1d(A) id‘(4¥A~)
A - N KI
A— ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide ,2
F—«id(A) ,0 A—eN ,2 N—ide,N ,2
A—e ,2 A—Ne ,2
N—eid,2 F—id(Ae),0
N—eid,N ,2
F—id(As) ,0

#71

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ids ,4

F— «id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N 4
A—e ,2 A—Ne ,2 N—eid,N,4 N—id,Ne ,2
N—eid,2 \ F—id(Ae),0 A—Ne ,2
N—e¢id,N ,2 Reduce
F—id(Ae) ,0 on N

#72

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ids ,4

F—eid(A) ,0 A—eN ,2 N—ide,N,2 N-—-eid 4 N—ide,N ,4

A—e 2 A—Ne |2 N—eid,N,4 N-—id,Ne ,2
N—eid ,2 F—id(Ae) ,0 A—Ne ,2
N—eid,N,2 F—id(Ae) ,0
(Ae) Reduce
F—id(Ae) ,0 on A

#73

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide,4 F—id(A)s ,0

F—«id(A) ,0 A—eN ,2 N—ide,N,2 N—eid,4 N—ide,N,4
A—e ,2 A—Ne ,2 N—eid,N ,4 N—id,Ne ,2
N—eid,2 F—id(Ae),0 A—Ne ,2
N—eid,N ,2 F—id(As) ,0
F—id(Ae) ,0

#74

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide,4 F—id(A)s ,0

F—eid(A) ,0 A—eN ,2 N—ide,N,2 N-eid,h4 N—ide,N,4 S—Fe,0
A—e 2 A—Ne ,2 N—eid,N,4 N-—id,Ne , 2

N—eid ,2 F—id(Ae) ,0 A—Ne ;2
(A) Reduce

N— eid,N ,2 F—id(Ae) ,0 on F

F—id(As) ,0

#75

Massive Earley Example

Grammar Input E
S—F id (id, id)

Fid () £
A —- N KI
A—- ¢ o
N —id id, N
N —id, N iid

S—eF ,0 F—ide(A) ,0 F—id(sA),0 N—ide,2 N—id,eN,2 N—ide,4 F—id(A)s ,0

F—eid(A) ,0 A—eN ,2 N—ide,N,2 N-—-eid , 4 N—ide,N,4 S—Fe ,0

A—e ,2 A—Ne ,2 N—eid,N ,4 N—id,Ne ,2
N—eid,2 F—id(Ae),0 A—Ne ,2
N—eid,N ,2 F—id(As) ,0
F—id(Ae) ,0

#76

Homework
e WA2 (written homework) due Monday

« Read Chapter 2.3.3, etc.

e Midterm 1 Next Wednesday

#77

	Top-Down Parsing
	Slide 2
	Outline
	Slide 4
	Slide 5
	In One Slide
	Slide 7
	Intro to Top-Down Parsing
	Recursive Descent Parsing
	Recursive Descent Example
	Recursive Descent Example (2)
	Slide 12
	When Recursive Descent Does Not Work
	Slide 14
	Slide 15
	Elimination of Left Recursion
	Example of Eliminating Left Recursion
	More Left Recursion Elimination
	General Left Recursion
	Summary of Recursive Descent
	Sometimes Things Are Perfect
	Slide 22
	LL(1) Languages
	Slide 24
	Q: Books (727 / 842)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Homework

