
#1

Language SecurityLanguage Security
Or: bringing a knife to a gun fight

#2

One-Slide Summary
• A language’s design principles and features

have a strong influence on the security of
programs written in that language.

• C’s legacy of null-terminated, stack-
allocated and non-sized buffers leads
directly to one of the most common sorts of
security vulnerabilities: the buffer overrun.

• What can be done?

#3

Today: Hacking For Dummies?

#4

Lecture Outline

• Currently: beyond compilers
– Looking at other issues in programming language

design and tools

• C
– Arrays
– Exploiting buffer overruns
– Detecting buffer overruns

#5

Duck-billed Platitudes

• Language design has profound influence on
– Safety
– Efficiency
– Security

#6

C Design Principles

• Small language
• Maximum efficiency
• Safety less important

• Designed for the world in 1972
– Weak machines
– Trusted networks
– Tell me: how did those two factors influence C?

#7

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

100*sizeof(char)

0 1 2 99

#8

C Array Operations

char buf1[100], buf2[100];

Write:
buf1[0] = ‘a’;

Read:
return buf2[0];

#9

What’s Wrong with this Picture?

/* strcpy buf1 into buf2 */
int i;
for (i = 0; buf1[i] != ‘\0’; i++) {
 buf2[i] = buf1[i];
}
buf2[i] = ‘\0’;

#10

Indexing Out of Bounds

The following are all legal C (no parse errors,
no type errors, etc.) and may generate no
immediate run-time errors

char buffer[100];

buffer[-1] = ‘a’;
buffer[100] = ‘a’;
buffer[100000] = ‘a’;

#11

Why Ask Why?

• Why does C allow out of bounds
array references?
– Proving at compile-time that all array

references are in bounds is very
difficult (why?)

– Checking at run-time that all array
references are in bounds is expensive
(why? who does this?)

#12

Code Generation for Arrays
• The C code:

buf1[i] = 1; /* buf1 has type int[] */

C with bounds checks
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;
if r3 < 0 then error;
r5 = load limit of buf1;
if r3 >= r5 then error;
r4 = r1 + r3
store r4, 1

Regular C
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;

r4 = r1 + r3
store r4, 1

• The assembly code:

Costly!

Finding the
array limits
is non-trivial

#13

C vs. Java

• Typical work for a C array reference
– Offset calculation
– Memory operation (load or store)

• Typical work for a Java array reference
– Offset calculation
– Memory operation (load or store)
– Array bounds check
– Type compatibility check (for stores) (why?)

#14

Buffer Overruns

• A buffer overrun writes past the end of an
array

• Buffer usually refers to a C array of char
– But can be any array

• So who’s afraid of a buffer overrun?
– Cause a core dump
– Can damage data structures
– What else?

#15

Stack Smashing
Buffer overruns can alter the control flow of

your program!

char buffer[100]; /* stack-allocated array */

100 *sizeof(char)

0 1 2 99 return address

#16

An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
int i = 0;
for(i = 0; in[i] != ‘\0’; i++)

buffer[i] = in[i];
buffer[i] = ‘\0’;

}

#17

An Interesting Idea

char in[104] = { 0,…,0, magic 4 chars }
foo(in); (**)

100 *sizeof(char)

0 1 2 99 return address
foo entry

(**)

100 *sizeof(char)

0 1 2 99 return address
foo exit

magic 4 chars

#18

Discussion

• So we can make foo jump
wherever we like!

• How is this possible?

• Unanticipated interaction of two features:
– Unchecked array operations
– Stack-allocated arrays

• Knowledge of frame layout allows prediction of where
array and return address are stored

– Note the “magic cast” from char to an address

#19

The Rest of the Story

• Say that foo is part of a network server and
the in originates in a received message
– Some remote user can make foo jump anywhere!

• But where is a “useful” place to jump?
– Idea: Jump to some code that gives you control

of the host system (e.g. code that spawns a
shell)

• But where to put such code?
– Idea: Put the code in the same buffer and jump

there!

#20

Useful Jumps

• Where to jump?

• We want to take control of the program
• How about to a system call?

#21

The Plan

• Force a jump to the following code:
• In C: exec(“/bin/sh”);
• In x86 assembly:

 movl $LC0, (%esp)
 call _exec
LC0: .ascii “/bin/sh\0”

• In machine code: 0x20, 0x42, 0x00, …

#22

The Plan

char in[104] = { 104 magic chars }
foo(in);

0 1 2 99 return address
foo exit

0x20, 0x42, 0x00, …

• The last 4 bytes in “in” must equal the start of buffer
• That position might depend on many factors !

#23

Guess the Location of the
Injected Code

• Trial and error: gives you a ballpark
• Then pad the injected code with NOP

– e.g. add r0, r1, 0x2020
• stores result in r0 which is hardwired to 0 anyway
• Encoded as 0x20202020

0 1 2 99 return address
foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …

• Works even with an approximate address of buffer!
The bad code

#24

More Problems

• We do not know exactly where the return
address is
– Depends on how the compiler chose to allocate

variables in the stack frame
• Solution: pad the buffer at the end with many

copies of the “magic return address X”

0 1 2 99

return
address

foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …, X, X, X, X, …, X , X, …

The bad code

#25

Even More Problems

• The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, etc.

• This means that buf cannot contain 0x00 bytes
– Why?

• Solution:
– Rewrite the injected code carefully
– Instead of “addiu r4,r0,0x0015”(code 0x20400015)
– Use “addiu r4,r0,0x1126; subiu r4, r4,0x1111”

Q: Games (557 / 842)

•Name the company that
manufactures Barbie (a $1.9
billion dollar a year industry in
2005 with two dolls being bought
every second).

Q: General (447 / 842)

• This is a three-part deductive argument
with an unstated assumption which
must be true for the premises to lead to
the conclusion. Examples include:
"There is no law against composing
music when one has no ideas
whatsoever. The music of Wagner,
therefore, is perfectly legal." or
advertisements in which cars are
draped with beautiful people.

Q: Events (597 / 842)

•Identify the speaker: "This is a
court of law, young man, not a
court of justice." and "I have no
respect for the passion of
equality, which seems to me
merely idealizing envy."

Q: Games (536 / 842)

•These 1912 ring-shaped hard
candies traditionally came in
five flavors and were packaged
in "rolls" of fifteen pieces.

Real-World Languages

• This tonal Indo-Aryan language boasts over
130 million speakers, mostly in north western
India and eastern Pakistan. Its English name
comes from the Persian “five waters” (panj
ab), a reference to the Indus river. It has a
canonical subject-object-verb word ordering
and uses postpositions. Nouns feature two
genders, two numbers, and five cases.
– Example: ਲਹੌਰਪਾਿਕਸਤਾਨਪੰਜਾਬਦਾ ਦਾਰੁਲਹਕੂਮਤਐ। ਲੋਕਿਗਣਤੀ
– Example: ہلور پاکستان پنجاب دا دارالحکومت

#31

The State of C Programming

• Buffer overruns are common
– Programmers must do their own bounds checking
– Easy to forget or be off-by-one or more
– Program still appears to work correctly

• In C with respect to buffer overruns
– Easy to do the wrong thing
– Hard to do the right thing

#32

The State of Hacking
• Buffer overruns are an attack of choice

– 40-50% of new vulnerabilities are buffer overruns
– Many recent attacks of this flavor: Code Red,

Nimda, MS-SQL server, yada yada
– “Buffer overflows have been the most common

form of security vulnerability for the past ten
years …” [OGI DARPA 2000]

– From 2007 on, XSS and SQL-CIV are more
popular, and buffer overruns are now #2

• Highly automated toolkits are available to
exploit known buffer overruns
– Look up “script kiddie”

#33

The Sad Reality

• Even well-known buffer overruns are still
widely exploited
– Hard to get people to upgrade millions of

vulnerable machines

• We assume that there are many more
unknown buffer overrun vulnerabilities
– At least unknown to the white hats

#34

Static Analysis to
Detect Buffer Overruns

• Detecting buffer overruns before distributing
code would be better

• Idea: Build a tool similar to a type checker to
detect buffer overruns

• This is a popular research area; we’ll present
one idea at random [Wagner, Aiken, …]
– You’ll see more in later lectures

#35

Focus on Strings

• Most important buffer overrun exploits are
through string buffers
– Reading an untrusted string from the network,

keyboard, etc.

• Focus the tool only on arrays of characters

#36

Idea 1: Strings as an
Abstract Data Type

• A problem: Pointer operations and array
dereferences are very difficult to analyze
statically
– Where does *ptr point?
– What does buf[j] refer to?

• Idea: Model effect of string library functions
directly
– Hard code effect of strcpy, strcat, etc.

#37

Idea 2: The Abstraction

• Model buffers as pairs of integer ranges
– Alloc min allocated size of the buffer in bytes
– Used max number of bytes actually in use

• Use integer ranges
– [x,y] = { x, x+1, …, y-1, y }
– Alloc and used cannot be computed exactly

#38

The Strategy

• For each program expression, write
constraints capturing the alloc and used of
its string subexpressions

• Solve the constraints for the entire program

• Check for each string variable s
used(s) · alloc(s)

#39

The Constraints
char s[n]; n = alloc(s)

strcpy(dst,src) used(src) · used(dst)

p = strdup(s) used(s) · used(p) &

alloc(s) · alloc(p)

p[n] = ‘\0’ min(used(p),n+1)) · used(p)

#40

Constraint Solving

• Solving the constraints is akin to solving
dataflow equations
– Remember liveness? Constant propagation?

• Build a graph
– Nodes are len(s), alloc(s)
– Edges are constraints len(s) · len(t)

• Propagate information forward through the
graph
– Special handling of loops in the graph

#41

Results

• This technique found new buffer overruns in
sendmail
– Which is like shooting fish in a barrel …

• Found new exploitable overruns in Linux
nettools package

• Both widely used
• Previously hand-audited packages

#42

Limitations

• Tool produces many false positives (why?)
– 1 out of 10 warnings is a real bug

• Tool has false negatives (why?)
– Unsound: may miss some overruns

• But still productive to use

#43

Summary

• Programming language knowledge is useful
beyond interpreters

• Useful for programmers
– Understand what you are doing!

• Handy for tools other than compilers
– Big research direction

#44

Homework
• Monday May 5: PA5, PA7

	Language Security
	One-Slide Summary
	Slide 3
	Lecture Outline
	Duck-billed Platitudes
	C Design Principles
	Arrays in C
	C Array Operations
	What’s Wrong with this Picture?
	Indexing Out of Bounds
	Why Ask Why?
	Code Generation for Arrays
	C vs. Java
	Buffer Overruns
	Stack Smashing
	An Overrun Vulnerability
	An Interesting Idea
	Discussion
	The Rest of the Story
	Useful Jumps
	The Plan
	Slide 22
	Guess the Location of the Injected Code
	More Problems
	Even More Problems
	Q: Games (557 / 842)
	Q: General (447 / 842)
	Q: Events (597 / 842)
	Q: Games (536 / 842)
	Slide 30
	The State of C Programming
	The State of Hacking
	The Sad Reality
	Static Analysis to Detect Buffer Overruns
	Focus on Strings
	Idea 1: Strings as an Abstract Data Type
	Idea 2: The Abstraction
	The Strategy
	The Constraints
	Constraint Solving
	Results
	Limitations
	Summary
	Homework

