
#1

Profilers and DebuggersProfilers and Debuggers

#2

Introductory Material

• First, who doesn’t feel comfortable with
assembly language?
– You’ll get to answer all the assembly questions.

Yes, really.

• Lecture Style:
– “Sit on the table” and pose questions. So, wake

up!
• Lecture Goal:

– After the lecture you’ll think, “Wow, that was all
really obvious. I could have done that.”

#3

One-Slide Summary
• A debugger helps to detect the source of a

program error by single-stepping through
the program and inspecting variable values.

• Breakpoints are the fundamental building
block of debuggers. Breakpoints can be
implemented with signals and special OS
support.

• A profiler is a performance analysis tool that
measures the frequency and duration of
function calls as a program runs.

• Profilers can be event- or sampling-based.

#4

Lecture Outline

• Debugging
– Signals
– How Debuggers Works
– Breakpoints
– Advanced Tools

• Profiling
– Event-based
– Statistical

#5

What is a Debugger?

“A software tool that is used to detect the
source of program or script errors, by
performing step-by-step execution of
application code and viewing the content
of code variables.”

-Microsoft Developer Network

#6

Machine-Language Debugger

• Only concerned with assembly code
• Show instructions via disassembly
• Inspect the values of registers, memory
• Key Features (we’ll explain all of them)

– Attach to process
– Single-stepping
– Breakpoints
– Conditional Breakpoints
– Watchpoints

#7

Signals
• A signal is an asynchronous notification sent

to a process about an event:
– User pressed Ctrl-C (or did kill %pid)

• Or asked the Windows Task Manager to terminate it

– Exceptions (divide by zero, null pointer)

– From the OS (SIGPIPE)

• You can install a signal handler – a
procedure that will be executed when the
signal occurs.
– Signal handlers are vulnerable to race conditions.

Why?

#8

Signal Example
#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",

global);
 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

• What does this
program print?

#9

Attaching A Debugger

• Requires operating system support
• There is a special system call that allows

one process to act as a debugger for a target
– What are the security concerns?

• Once this is done, the debugger can basically
“catch signals” delivered to the target
– This isn’t exactly what happens, but it’s a good

explanation …

#10

Building a Debugger
#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

• We can then get
breakpoints and
interactive
debugging
– Attach to target
– Set up signal

handler
– Add in exception-

causing
instructions

– Inspect globals,
etc.

#11

Reality
• We’re not really changing the

source code
• Instead, we modify the

assembly
• We can’t insert instructions

– Because labels are already set
at known constant offsets

• Instead we change them

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $55, _global
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

One of the class goals
is to expose you to

new languages:
thus x86 ASM instead

of COOL-ASM.

#12

Adding A
Breakpoint

Add a breakpoint
just after “global
= 33;”

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $55, _global
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

 .file "example.c"
.globl _global
 .data
 .align 4
_global:
 .long 11
 .def ___main
 .section .rdata,"dr"
LC0:
 .ascii "Outside, global = %d\12\0"
 .text
.globl _main
 .def _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 call __alloca
 call ___main
 movl $33, _global
 movl $0, 0
 movl _global, %eax
 movl %eax, 4(%esp)
 movl $LC0, (%esp)
 call _printf
 leave
 ret
 .def _printf

Storage Cell:

movl $55, _global

_main + 14

#13

Software Breakpoint Recipe

• Debugger has already attached and set up its
signal handler

• User wants a breakpoint at instruction X
• Store (X, old_instruction_at_X)
• Replace instruction at X with “*0=0”

– Pick something illegal that’s 1 byte long

• Signal handler replaces instruction at X with
stored old_instruction_at_X

• Give user interactive debugging prompt

#14

Advanced Breakpoints
• Get register and local values by walking the stack
• Optimization: hardware breakpoints

– Special register: if PC value = HBP register value, signal
an exception

– Faster than software, works on ROMs, only limited
number of breakpoints, etc.

• Feature: condition breakpoint: “break at
instruction X if some_variable = some_value”

• As before, but signal handler checks to see if
some_variable = some_value
– If so, present interactive debugging prompt
– If not, return to program immediately
– Is this fast or slow?

#15

Single-Stepping

• Debuggers allow you to advance through
code on instruction at a time

• To implement this, put a breakpoint at the
first instruction (= at program start)

• The “single step” or “next” interactive
command is equal to:
– Put a breakpoint at the next instruction

• +1 for COOL-ASM, +4 bytes for RISC, +X bytes for CISC,
etc.

– Resume execution

#17

Watchpoint Implementation

• Software Watchpoints
– Put a breakpoint at every instruction (ouch!)
– Check the current value of L against a stored

value
– If different, give interactive debugging prompt
– If not, set next breakpoint and continue (i.e.,

single-step)

• Hardware Watchpoints
– Special register holds L: if the value at address L

ever changes, the CPU raises an exception

Q: Movies (284 / 842)

• Name the movie described below
and either the general scientific
theory that Malcolm invokes or the
ambushing cold-blooded killers. In
this Oscar-winning 1993
Spielberg/Crichton extravaganza
involving cloning and theme parks,
Dr. Ian Malcolm correctly predicts
that things will not turn out well.

Q: Advertising (799 / 842)

•Name the brand most associated
with instant-print self-
developing photographic film
and cameras. The technology
was invented in 1947 by
corporation founder Edwin H.
Land.

Q: Cartoons (671 / 842)

•Name all five main characters
and the primary automobile
from Scooby Doo, Where Are
You!

Real-World Languages
• This Northern European language boasts

5 million speakers (including Linus
Torvalds). Its original writing system was
devised in the 16th century from
Swedish, German and Latin. Its eight
vowels have powerful lexical and
grammatical roles; doubled vowels do
not become dipthongs.

#22

Source-Level Debugging

• What if we want to …
– Put a breakpoint at a source-level location (e.g.,

breakpoint at main.c line 20)
– Single-step through source-level instructions

(e.g., from main.c:20 to main.c:21)
– Inspect source-level variables (e.g., inspect

local_var, not register AX)

• We’ll need the compiler’s help
• How can we do it?

#23

Debugging Information

• The compiler will emit tables
– For every line in the program (e.g., main.c:20), what

assembly instruction range does it map to?
– For every line in the program, what variables are in

scope and where do they live (registers, memory)?

• Put a breakpoint = table lookup
– Put breakpoint at beginning of instruction range

• Single-step = table lookup
– Put next breakpoint at end of instruction range +1

• Inspect value = table lookup
• Where do we put these tables?

These tables are
conceptually similar

to the class map
or annotated AST.

#24

How Big Are Those Tables?
/* example.c */
#include <stdio.h>
#include <signal.h>

int my_global_var = 11;

void main() {

 int my_local_var = 22;

 my_local_var += my_global_var;

 printf("Outside, my_local_var = %d\n", my_local_var);
}

“gcc example.c” 9418 bytes
“gcc –g example.c” 23790 bytes

#25

Debugging vs. Optimizing

• We said: the compiler will emit tables
– For every line in the program (e.g., main.c:20),

what assembly instruction range does it map to?
– For every line in the program, what variables are

in scope and where do they live (registers,
memory)?

• What can go wrong if we optimize the
program?

#26

Replay Debugging
• Running and single-stepping are handy
• But wouldn’t it be nice to go back in time?
• That is, from the current breakpoint, undo

instructions in reverse order
• Intuition: functional + single assignment

x = 11; let x0 = 11 in
x = x + 22; let x1 = x0 + 22 in

breakpoint ; breakpoint ;
x = x + 33; let x2 = x1 + 33 in

print x print x

#27

Time Travel
• Store the state at various times

– time t=0 at program start
– time t=88 after 88 instructions
– … why does this work?

• When the user asks you to go back one step,
you actually go back to the last stored state
and run the program forward again with a
breakpoint
– e.g., to go back from t=150, put breakpoint at

instruction 149 and re-run from t=88’s state
• ocamldebug has this power – try it!

#28

Valgrind
• Valgrind is a suite of free tools for

debugging and profiling
– Finds memory errors, profiles cache

times, call graphs, profiles heap space

• It does so via dynamic binary
translation
– Fancy words for “it is an interpreter”
– No need to modify, recompile or relink
– Works with any language

• Can attach gdb to your process, etc.
• Problem: slowdown of 5x-100x

– Rational Purify (commercial) is similar
– Check out Strata by Jack Davidson

#29

Valgrind Example
int main() {
 int some_var = 55;
 int array[10];
 int i;
 for (i=0;i<=10;i++)
 array[i] = i;
 printf("some_var = %d\n",

some_var);
}

What’s the
output?

#30

Valgrind Example
int main() {
 int some_var = 55;
 int array[10];
 int i;
 for (i=0;i<=10;i++)
 array[i] = i;
 printf("some_var = %d\n",

some_var);
}

[weimer@weimer-laptop ~]$./a.out
some_var = 10

Sadly, valgrind
won’t help you
here. Psych!

#31

DDD
• Gnu Data

Display
Debugger
– Similar in

spirit to Visual
Studio’s built-
in debugger

– But for gdb,
the Java
debugger, the
perl
debugger, the
python
debugger,
etc.

• How does this
work? You tell
me!

#32

Profiling

• A profiler is a performance analysis tool that
measures the frequency and duration of
function calls as a program runs.

• Flat profile
– Computes the average call times for functions

but does not break times down based on context

• Call-Graph profile
– Computes call times for functions and also the

call-chains involved

#33

Event-Based Profiling

• Interpreted languages provide special hooks
for profiling
– Java: JVM-Profile Interface, JVM API
– Python: sys.set_profile() module
– Ruby: profile.rb, etc.

• You register a function that will get called
whenever the target program calls a method,
loads a class, allocates an object, etc.
– You could do this for PA5: count the number of

object allocations, etc.
– (And we do some profiling for you in PA7.)

#34

JVM Profiling Interface
• VM notifies profiler agent of various events

(heap allocation, thread start, method
invocation, etc.)

• Profiler agent issues control commands to
the JVM and communicates with a GUI

#35

Statistical Profiling

• You can arrange for the operating system to
send you a signal (just like before) every X
seconds (see alarm(2))

• In the signal handler you determine the
value of the target program counter
– And append it to a growing list file
– This is called sampling

• Later, you use that debug information table
to map the PC values to procedure names
– Sum up to get amount of time in each procedure

#36

Sampling Analysis
• Advantages

– Simple and cheap – the instrumentation is
unlikely to disturb the program too much

– No big slowdown

• Disadvantages
– Can completely miss periodic behavior (e.g., you

sample every k seconds but do a network send at
times 0.5 + nk seconds)

– High error rate: if a value is n times the sampling
period, the expected error in it is sqrt(n)
sampling periods

• Read the gprof paper for midterm2

#37

While Derivation On The Board?

• If we have time, let's do this together ...
• E = [x → a]
• S = [a → 0]
• S' = [a → 1]

while x < 1 loop x <- x + 1 pool

#38

Homework
• Midterm 2 – Mon April 21st In Class

– Covers Lectures “Code Generation” to “Linking,
Loading and Shared Libraries” (i.e., everything
after Midterm 1) plus each WA and PA done
during that time

– Everything after Earley parsing

• Midterm 2 Review Session?
– Post of the forum!

	Profilers and Debuggers
	Introductory Material
	One-Slide Summary
	Lecture Outline
	What is a Debugger?
	Machine-Language Debugger
	Signals
	Signal Example
	Attaching A Debugger
	Building a Debugger
	Reality
	Adding A Breakpoint
	Software Breakpoint Recipe
	Advanced Breakpoints
	Single-Stepping
	Watchpoints
	Watchpoint Implementation
	Q: Movies (284 / 842)
	Q: Advertising (799 / 842)
	Q: Cartoons (671 / 842)
	Slide 21
	Source-Level Debugging
	Debugging Information
	How Big Are Those Tables?
	Debugging vs. Optimizing
	Replay Debugging
	Time Travel
	Valgrind
	Valgrind Example
	Slide 30
	DDD
	Profiling
	Event-Based Profiling
	JVM Profiling Interface
	Statistical Profiling
	Sampling Analysis
	Slide 37
	Homework

