
CodeCode
GenerationGeneration

Super Super
LecturesLectures

#2

Huge One-Slide Summary
• Assembly language is untyped, unstructured, low-level and imperative. In a

load-store architecture, instructions operate on registers (which are like global
variables). The stack pointer is a special-purpose register.

• We can generate code by targeting a stack machine and using assembly
instructions to implement the stack. The stack holds intermediate values,
temporaries, and function arguments. The accumulator register (conceptually,
the top of the stack) holds the result of the last computation. As an invariant,
the stack is unchanged by intermediate calculations.

• We will maintain a stack discipline (or calling convention). Each function call
is represented on the stack by an activation record (or stack frame). The
activation record contains the frame pointer, the parameters, the self object
pointer, the return address, and space for temporaries. The code you generate
for function calls and function bodies must consistently agree on the calling
convention.

• Our object layout choice must support using a subtype whenever a supertype is
expected. Objects are contiguous blocks of memory that hold bookkeeping
information (e.g., type tags, method pointers) as well as space for fields.
Subobjects will extend (be bigger than in memory) their superobjects and will
share a common prefix.

• A dispatch table (or virtual function table or vtable) is an array of pointers to
methods. Each object points to its vtable, and members of a class share one
vtable. This allows us to implement dynamic dispatch: method invocation is
resolved by looking up the method address in the object's vtable at runtime.

#3

(Two Day) Lecture Outline

• Stack machines
– e.g., Java Virtual Machine

• The COOL-ASM assembly language
– It's MIPS/RISC + Java Bytecode

• A simple source language
• Stack-machine implementation of the

simple language
• An optimization: stack-allocated variables
• Object Oriented Code Generation

– Object Layout, Dynamic Dispatch

#4

Stack Machines

• A simple evaluation model
• No variables or registers
• A stack of values for intermediate results

#5

Example
Stack Machine Program

• Consider two instructions
– push i - place the integer i on top of the stack
– add - pop two elements, add them and put
 the result back on the stack

• A program to compute 7 + 5:
 push 7
 push 5
 add

#6

Stack Machine Example

• Each instruction:
– Takes its operands from the top of the stack
– Removes those operands from the stack
– Computes the required operation on them
– Pushes the result on the stack

…stack

5

7

…

 push 5

12
…


…

push 7

7

 add

#7

Why Use a Stack Machine ?

• Each operation takes operands from the
same place and puts results in the same
place

• This means a uniform compilation scheme

• And therefore a simpler compiler
– This is the easiest way to do PA6
– The reference compiler is more complicated

#8

Why Use a Stack Machine ?

• Location of the operands is implicit
– Always on the top of the stack

• No need to specify operands explicitly
• No need to specify the location of the result

• Instruction “add” as opposed to “add r1, r2”
 Smaller encoding of instructions
 More compact programs (= faster: why?)

• This is one reason why Java Bytecodes use a
stack evaluation model

#9

Optimizing the Stack Machine
• The add instruction does 3 memory

operations
– Two reads and one write to the stack
– The top of the stack is frequently accessed

• Idea: keep the top of the stack in a
register (called the accumulator)
– This should remind you of Fold
– Register accesses are faster

• The “add” instruction is now
 acc  acc + top_of_stack
– Only one memory operation!

Fear my course
organization!

#10

Accumulator Invariants

• The result of computing an expression is
always in the accumulator

• For an operation op(e1,…,en) push the
accumulator on the stack after computing
each of e1,…,en-1

– en's result is in the accumulator before op
– After the operation pop n-1 values

• After computing an expression the stack is
as before

Example on next slide!

#11

Stack Machine with
Accumulator: Example

• Compute 7 + 5 using an accumulator

…

acc

stack

5

7

…

acc  5

12

…



acc  acc + top_of_stack
pop

…

7

acc  7
push acc

7

#12

A Bigger Example: 3 + (7 + 5)

 Code Acc Stack
acc  3 3 <init>
push acc 3 3, <init>

acc  7 7 3, <init>
push acc 7 7, 3, <init>

acc  5 5 7, 3, <init>

acc  acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>

acc  acc + top_of_stack 15 3, <init>
pop 15 <init>

#13

Notes
• It is critical that the stack is preserved

across the evaluation of a subexpression
– Stack before evaluating 7 + 5 is 3, <init>
– Stack after evaluating 7 + 5 is 3, <init>
– The first operand is on top of the stack

#14

From Stack Machines to RISC

• Our compiler will generate code for a
stack machine with accumulator

• We want to run the resulting code on a
processor

• We'll implement stack machine
instructions using COOL-ASM instructions
and registers

• Thus: Assembly Language

#15

Risky Business
• COOL-ASM is a RISC-style assembly language

– An untyped, unsafe, low-level, fast programming
language with few-to-no primitives.

• A register is a fast-access untyped global variable
shared by the entire assembly program.
– COOL-ASM: 8 general registers and 3 special ones

(stack pointer, frame pointer, return address)
• An instruction is a primitive statement in assembly

language that operates on registers.
– COOL-ASM: add, jmp, ld, push, ...

• A load-store architecture: bring values in to
registers from memory to operate on them.

#16

Drink Your Cool-Aid
• Sample COOL-ASM instructions:

– See the CRM for all of them ...

add r2 <- r5 r2 ; r2 = r5 + r2
li r5 <- 183 ; r5 = 183
ld r2 <- r1[5] ; r2 = *(r1+5)
st r1[6] <- r7 ; *(r1+6) = r7
my_label: -- dashdash also a comment
push r1 ; *sp = r1; sp --;
sub r1 <- r1 1 ; r1 -- ;
bnz r1 my_label ; if (r1 != 0) goto my_label

#17

Simulating a Stack Machine…
• The accumulator is kept in register r1

– This is just a convention. You could pick r2.

• The stack is kept in memory
• The stack grows towards lower addresses

– Standard convention on the MIPS architecture

• The address of the next unused location
on the stack is kept in register sp
– The top of the stack is at address sp + 1
– COOL-ASM “Word Size” = 1 = # of memory

cells taken up by one integer/pointer/string

#18

Cool Assembly Example

• The stack-machine code for 7 + 5:
acc <- 7
push acc

acc <- 5
acc <- acc + top_of_stack

pop

li r1 7
sw sp[0] <- r1
sub sp <- sp 1
li r1 5
lw r2 <- sp[1]
add r1 <- r1 r2
add sp <- sp 1

• We now generalize this to a simple language…

#19

Stack Instructions

• We have these COOL-ASM instructions:
push rX st sp[0] <- rX
 sub sp <- sp 1

pop rX ld rX <- sp[1]
 add sp <- sp 1
; Note:
rX <- top ld rX <- sp[1]

#21

A Small Language (Cont.)

• The first function definition f is the
“main” routine

• Running the program on input i means
computing f(i)

• Program for computing the Fibonacci
numbers:

 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

#22

Code Generation Strategy

• For each expression e we generate COOL-
ASM code that:
– Computes the value of e in r1 (accumulator)
– Preserves sp and the contents of the stack

• We define a code generation function
cgen(e) whose result is the code
generated for e

#23

Code Generation for Constants

• The code to evaluate a constant simply
copies it into the accumulator:

cgen(123) = li r1 123
• Note that this also preserves the stack, as

required

#24

Code Generation: Add

 cgen(e1 + e2) =
 cgen(e1)
 push r1
 cgen(e2)
 ;; e2 now in r1
 pop t1
 add r1 t1 r1
• Possible optimization: Put the result of e1

directly in register t1 ?

t1 is some
unused

“temporary”
register

#25

Code Generation Mistake

• Unsafe Optimization: put the result of e1 directly in t1?

 cgen(e1 + e2) =

 cgen(e1)

 mov t1 <- r1
 cgen(e2)

 add r1 <- t1 r1

• Try to generate code for : 3 + (7 + 5)

#26

Code Generation Notes

• The code for + is a template with “holes”
for code for evaluating e1 and e2

• Stack-machine code generation is
recursive

• Code for e1 + e2 consists of code for e1 and
e2 glued together

• Code generation can be written as a
recursive-descent tree walk of the AST
– At least for expressions

#27

Code Generation: Sub

• New instruction: sub reg1 <- reg2 reg3

– Implements reg1  reg2 - reg3

cgen(e1 - e2) =
 cgen(e1)
 push r1
 cgen(e2)
 pop t1
 sub r1 <- t1 r1

#28

Code Generation: If

• We need flow control instructions

• New instruction: beq reg1 reg2 label

– Conditional Branch to label if reg1 = reg2

• New instruction: jmp label
– Unconditional Jump to label

#29

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) =

 cgen(e1)

 push r1
 cgen(e2)

 pop t1
 beq r1 t1 true_branch ;; else fall through
 cgen(e4)

 jmp end_if
true_branch:
 cgen(e3)

end_if:

#30

The Activation Record
• An activation record (or stack frame)

stores calling context information on the
stack during a function call.

• Code for function calls/definitions depends
on the layout of the activation record

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR

– The activation record holds actual parameters
• For f(x1,…,xn) push x1,…,xn on the stack

• These are the only variables in this language

#31

Calling Convention

• This calling convention (or stack
discipline) guarantees that on function
exit sp is the same as it was on entry
– No need to save sp

• We need the return address
• It’s handy to have a pointer to start of the

current activation
– This pointer lives in register fp (frame

pointer)
– Reason for frame pointer will be clear shortly

#32

The Activation Record

• Summary: For this language, an AR with
the caller’s frame pointer, the actual
parameters, and the return address
suffices

• Picture: Consider a call to f(x,y). The AR
will be:

x

y
SP, FP

AR of f

high
addresses

old FP

#33

Code Generation: Function Call

• The calling sequence is the instructions
(of both caller and callee) to set up a
function invocation

• New instruction: call label
– Jump to label, save address of next

instruction in ra
– On other architectures the return address is

stored on the stack by the “call” instruction
– (This is also called “branch and link”.)

#34

Code Generation: Function Call

cgen(f(e1,…,en)) =
 push fp
 cgen(e1)
 push r1
 …
 cgen(en)
 push r1
 call f_entry
 pop fp

• The caller saves its value
of the frame pointer

• Then it saves the actual
arguments in order

• The caller saves the
return address in register
ra

• The AR so far is n+1 bytes
long

• Caller restores fp

#35

Code Generation: Function Def
• New instruction: return

– Jump to address in register ra

cgen(def f(x1,…,xn) = e) =

f_entry:
 mov fp <- sp
 push ra
 cgen(e)
 ra <- top
 add sp <- sp z
 return

• Note: The frame pointer
points to the top, not
bottom of the frame

• The callee pops the return
address, the actual
arguments and the saved
value of the frame pointer

• z = n + 2 (so far)

#36

Calling Sequence: f(x,y)

Before call On entry In body After call

SP

FP

x

y

old FP

SP

FP

SP

FP

x

y

old FP

SP

FP
RA

…

high
addresses

#37

 Code Generation: Variables

• Variable references are the last construct
• The “variables” of a function are just its

parameters
– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when
intermediate results are saved, the
variables are not at a fixed offset from sp
– Impress me: what are they a fixed offset

from?

#38

Code Generation: Variables

• Solution: use the frame pointer
– Always points to the return address on the

stack (= the value of sp on function entry)
– Since it does not move it can be used to find

arguments stored on the stack

• Let xi be the ith (i = 1,…,n) formal
parameter of the function for which code
is being generated

#39

Code Generation: Variables
• Example: For a function def f(x1,x2) = e

the activation and frame pointer are set
up as follows:

 x1 is at fp + 2

 x2 is at fp + 1

Thus:
cgen(xi) = ld r1 <- fp[z]

(z ≈ n+1 - i)

x1

x2

old FP

SP

FP RA

…

high
addresses

#40

Summary

• The activation record must be designed
together with the code generator

• Code generation can be done by recursive
traversal of the AST

• We recommend you use a stack machine
for your Cool compiler (it’s simple)

#41

More Information
• use cool --asm hello-worl.cl for examples
• Production compilers do different things

– Emphasis is on keeping values (esp. current
stack frame) in registers

– Intermediate results are laid out in the AR,
not pushed and popped from the stack

#42

Optimization:
Allocating Temporaries
in the Activation Record

#43

Review

• The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack

AR

Intermediates

AR

Intermediates

#44

Stack Machine Implications

• Advantage: Very simple code generation
• Disadvantage: Very slow code

– Storing and loading temporaries requires a
store/load and sp adjustment

#45

A Better Way
• Idea: Keep temporaries in the AR
• Work: The code generator must assign

space in the AR for each temporary

#46

Example

def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

• We must determine:
– What intermediate values are placed on the

stack?
– How many slots are needed in the AR to hold

these values?

#47

How Many Temporaries?

• Let NT(e) = # of temps needed to eval e

• Example: NT(e1 + e2)

– Needs at least as many temporaries as NT(e1)

– Needs at least as many temporaries as NT(e2) + 1

• Space used for temporaries in e1 can be
reused for temporaries in e2

 cgen(e1)cgen(e1)
 mov temp <- r1mov temp <- r1
 cgen(e2)cgen(e2)
 add r1 <- r1 tempadd r1 <- r1 temp

#48

The NumTemps Equations

NT(e1 + e2)= max(NT(e1), 1 + NT(e2))

NT(e1 – e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4)

= max(NT(e1),1 + NT(e2), NT(e3), NT(e4))

NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down? (you tell me)

What is NT(…code for fib…)?

#49

The Revised AR

• For a function definition f(x1,…,xn) = e the
AR has 2 + n + NT(e) elements (so far)
– Return address
– Frame pointer
– n arguments
– NT(e) locations for intermediate results

#50

Stack Frame Picture
f(x

1
,, x

n
) = e

Temp 1

RA

xn

. . .

x1

Old FP

Temp NT(e)

. . .

SP

FP

high
addresses

#51

Revised Code Generation

• Code generation must know how many
temporaries are in use at each point

• Add a new argument to code generation:
the position of the next available
temporary

 cgen(e, n) : generate code for e and use
 temporaries whose address is

 (fp - n) or lower

#52

Code Generation for +

cgen(e1 + e2) =

 cgen(e1)

 push r1
 cgen(e2)

 pop temp
 add r1 <- r1 temp

cgen(e1 + e2, nt) =

 cgen(e1,nt)

 st fp[-nt] <- r1
 cgen(e2,nt+1)

 ld temp <- fp[-nt]
 add r1 <- r1 temp

Where are the savings?
Hint: “push” is more expensive than it looks.

#53

Notes

• The temporary area is used like a small,
fixed-size stack

• Exercise: Write out cgen for other
constructs

• Hint: on function entry, you'll have to
increment something by NT(e)
– ... and on function exit, decrement it ...

#54

Code Generation for
Object-Oriented Languages

#55

Object Layout
• OO implementation =

– Stuff from before + More stuff

• Liskov Substitution Principle: If B is a
subclass of A, then an object of class B
can be used wherever an object of class A
is expected

• This means that code in class A must work
unmodified on an object of class B

#56

Two Issues

• How are objects represented in memory?
• How is dynamic dispatch implemented?

#57

Object Layout (Cont.)
• An object is like a struct in C. The

reference foo.field is an index into a foo
struct at an offset corresponding to field

• Objects in Cool are implemented similarly
– Objects are laid out in contiguous memory
– Each attribute stored at a fixed offset in

object
– When a method is invoked, the object

becomes self and the fields are the object’s
attributes

#58

Cool Object Layout

• The first 3 words of Cool objects contain
header information:

Dispatch / Vtable Ptr

Attribute 1

Attribute 2

. . .

Class Type Tag

Object Size

Offset

0

1

2

3

4

(This is a convention that we made up, but it is similar to how Java and
C++ lay things out. For example, you could swap #1 and #2 without loss.)

#59

Cool Object Layout
• Class tag (or “type tag”) is a raw integer

– Identifies class of the object (Int=1, Bool=2, ...)

• Object size is an integer
– Size of the object in words

• Dispatch pointer (or “vtable pointer”) is
a pointer to a table of methods
– More later

• Attributes are laid out in subsequent slots
• The layout is contiguous

#60

Object Layout Example
Class A {

a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

#61

Object Layout (Cont.)

• Attributes a and d are inherited by classes
B and C

• All methods in all classes refer to a

• For A methods to work correctly in A, B,
and C objects, attribute a must be in the
same “place” in each object

#62

Subclass Layout

Observation: Given a layout for class A, a
layout for subclass B can be defined by

extending the layout of A with additional
slots for the additional attributes of B

(i.e., append new fields at bottom)

Leaves the layout of A unchanged
(B is an extension)

#63

Object Layout Picture

aaa3 (attr#1)

ddd4 ...

***2 (vtable)

cb5

6651 (size)

CtagBtagAtag0 (tag)

CBA Class

Offset

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

#64

Subclasses (Cont.)
• The offset for an attribute is the same in

a class and all of its subclasses
– This choice allows any method for an A1 to be

used on a subclass A2

• Consider layout for An · … · A3 · A2 · A1

A2-A1 attrs

A3-A2 attrs

. . .

Header

A1 attrs.

A1 object

A2 object

A3 object Extra Credit:
What about
multiple
inheritance?

#65

Dynamic Dispatch

• Consider f and g:
Class A {

a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

#66

Dynamic Dispatch Example

• e.g()
– g refers to method in B if e is a B

• e.f()
– f refers to method in A if f is an A or C

 (inherited in the case of C)
– f refers to method in B for a B object

• The implementation of methods and
dynamic dispatch strongly resembles the
implementation of attributes

#67

Dispatch Tables

• Every class has a fixed set of methods
 (including inherited methods)

• A dispatch table (or virtual function
table or vtable) indexes these methods
– A vtable is an array of method entry points
– (Thus, a vtable is an array of function pointers.)

– A method f lives at a fixed offset in the
dispatch table for a class and all of its
subclasses

#68

Dispatch Table Example

• The dispatch table for
class A has only 1 method

• The tables for B and C
extend the table for A
with more methods

• Because methods can be
overridden, the method
for f is not the same in
every class, but is always
at the same offset
– (i.e., offset 0 here)

g

f_B

B

h1

f_Af_A0

CA Class

Offset

#69

Using Dispatch Tables

• The dispatch pointer in an object of class
X points to the dispatch table for class X
– i.e., all objects of class X share one table

• Every method f of class X is assigned an
offset Of in the dispatch table at compile
time
– i.e., by you in PA6 when you're generating the

assembly code

#70

A Sense of Self

• Every method must know what object is
“self”
– Convention: “self” is passed as the first

argument to all methods

• To implement a dynamic dispatch e.f() we
– Evaluate e, obtaining an object x
– Find D by reading the dispatch-table field of x

– Call D[Of](x)
• D is the dispatch table for x
• In the call, self is bound to x

#71

Dynamic Dispatch Hint
• To reiterate: objexp.mname(arg1)

– push self

– push fp

– cgen(arg1)

– push r1 ; push arg1

– cgen(objexp)

– bz r1 dispatch_on_void_error

– push r1 ; will be “self” for callee

– ld temp <- r1[2] ; temp <- vtable

– ld temp <- temp[X] ; X is offset of mname in vtables

– ; for objects of typeof(objexp)

– call temp

– pop fp

– pop self

#72

“Extra Credit”:
Multiple Inheritance

#73

Example
• Assume that we extend Cool with multiple inheritance
• Consider the following 3 classes:

Class A { a : Int; m1() : Int { a }; }

Class B { b: Int; m2() : Int { b }; }

Class C inherit A, B { c : Int; m2() : Int { c }; }

• class C inherits attribute a and method m1 from A,
attribute b from B and overrides m2

#74

Multi-Inherit Object Layout

tagA0
1
2
3

…
ld r1 <- r1[3]

m1A

a

tagB0
1
2
3 b

…
ld r1 <- r1[8]

m1C

…
ld r1 <- r1[3]

m2B

li r2 <- 4
add r1 <- r1 r2
jmp m2B

m2C

tagC0
1
2
 3 a

tagC 4
 5
 6
 7 b

 8 c

#75

Homework
• PA3 (Parsing) Due
• WA3 Due
• Compilers: PA6c Due Next Week

	More Static Semantics
	One-Slide Summary
	Slide 3
	Stack Machines
	Example of a Stack Machine Program
	Stack Machine. Example
	Why Use a Stack Machine ?
	Slide 8
	Optimizing the Stack Machine
	Stack Machine with Accumulator
	Stack Machine with Accumulator. Example
	A Bigger Example: 3 + (7 + 5)
	Notes
	From Stack Machines to MIPS
	Slide 15
	Slide 16
	Simulating a Stack Machine…
	MIPS Assembly. Example.
	Some Useful Macros
	A Small Language
	A Small Language (Cont.)
	Code Generation Strategy
	Code Generation for Constants
	Code Generation for Add
	Code Generation for Add. Wrong!
	Code Generation Notes
	Code Generation for Sub and Constants
	Code Generation for Conditional
	Code Generation for If (Cont.)
	The Activation Record
	The Activation Record (Cont.)
	Slide 32
	Code Generation for Function Call
	Code Generation for Function Call (Cont.)
	Code Generation for Function Definition
	Calling Sequence. Example for f(x,y).
	 Code Generation for Variables
	Code Generation for Variables (Cont.)
	Slide 39
	Summary
	Slide 41
	Slide 42
	Review
	Review (Cont.)
	A Better Way
	Example
	How Many Temporaries?
	The Equations
	The Revised AR
	Picture
	Revised Code Generation
	Code Generation for + (original)
	Slide 53
	Slide 54
	Object Layout
	Two Issues
	Object Layout (Cont.)
	Cool Object Layout
	Cool Object Layout (Cont.)
	Object Layout Example
	Slide 61
	Subclasses
	Layout Picture
	Subclasses (Cont.)
	Dynamic Dispatch
	Dynamic Dispatch Example
	Dispatch Tables
	Dispatch Table Example
	Using Dispatch Tables
	Using Dispatch Tables (Cont.)
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Homework

