Lexical Analysis

Finite Automata

(Part 2 of 2)
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Cunning Plan

e Regular expressions provide a concise

notation for string patterns
e Use in lexical analysis requires| s i seswe e

SUPPOSE ALL MATTER AND ENERGY
15 MADE OF TINY, VIBRATING "STRINGS.

extensions \ S
- To resolve ambiguities oo,/ Y'
- To handle errors j\) %

GTRING THEORY GUMMARIZED:

e Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)
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One-Slide Summary

e Finite automata are formal models of
computation that can accept regular languages
corresponding to regular expressions.

e Nondeterministic finite automata (NFA)
feature epsilon transitions and multiple
outgoing edges for the same input symbol.

e Regular expressions can be converted to NFAs.

e Tools will generate DFA-based lexer code for
you from regular expressions.

#3



Finite Automata

e Regular expressions = specification
e Finite automata = implementation

e A finite automaton consists of

- An input alphabet X

- A set of states S

- A start state n

- A set of accepting states F C S

- A set of transitions state —inrut state
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Finite Automata

e Transition
S, 25,
e IS read
In state s, on input “a” go to state s,

o If end of input (or no transition possible)
- If in accepting state = accept
- Otherwise = reject
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Finite Automata State Graphs

o A state Q

o The start state /@
e An accepting state @

a

o A transition Q/\‘Q

You can
hand-write WA1.




A Simple Example

“1 »

e A finite automaton that accepts only
OO0

e A finite automaton accepts a string if we can
follow transitions labeled with the
characters in the string from the start to
some accepting state
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Another Simple Example

e A finite automaton accepting any number of
1’s followed by a single O

e Alphabet > = {0,1}
1

H0

e Check that “1110” is accepted but “110...”
is not

#8



And Another Example
e Alphabet > = {0,1}
 What language does this recognize?

)
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Did you mean: how to hook up a horse to a kitchen sink




And A Fourth Example

e Alphabet stillX ={0, 1}
1

0

e The operation of the automaton is not
completely defined by the input

- On input “11” the automaton could be in either
state
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Epsilon Moves
 Another kind of transition: s-moves
(A ()
e Machine can move from state A to state B
without reading input




Deterministic and
Nondeterministic Automata

e Deterministic Finite Automata (DFA)
- One transition per input per state
- No e-moves

e Nondeterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a
given state

- Can have ¢-moves

e Finite automata have finite memory
- Need only to encode the current state
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Execution of Finite Automata

A DFA can take only one path through the
state graph

- Completely determined by input

e NFAs can choose

- Whether to make ¢-moves

- Which of multiple transitions for a single input to
take
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Acceptance of NFAs

 An NFA can get into multiple states

/gfkgfl\.@

0

e Input: 1 0 1

e Rule: NFA accepts if it can get in a final state
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NFA vs. DFA (1)

.l_!

« NFAs and DFAs
recognize the same
set of languages
(regular languages)

- They have the same
expressive power

e DFAs are easier to
implement

- There are no choices
to consider




NFA vs. DFA (2)

e For a given language the NFA can be simpler
than the DFA

1
0 0

NFA
0

() 0 0 G
DFA ‘ o
1

e DFA can be exponentially larger than NFA
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Natural Languages

e This North Germanic language is generally mutually
intelligible with Norwegian and Danish, and descends
from Old Norse of the Viking Era to a modern
speaking population of about 10 million people. The
language contains two genders, nouns that are rarely
inflected, and a typical subject-verb-object
ordering. Its home country is one of the largest
music exporters of the modern world, often
targeting English-speaking audiences. Bands such as
Ace of Base, ABBA and Roxette are examples, with
over 420m combined album sales.
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Unnatural Languages

e This stack-based structured computer
programming language appeared in the 1970's
and went on to influence PostScript and RPL.
It is typeless and is often used in bootloaders
and embedded applications. Example:

2510 * 50 +
e Simple C Program:
int floor5(int v) { return (v<6)?5: (v-1);}

e Same program in this Language:
: FLOOR5 (n --n") DUP 6 < IF DROP 5 ELSE 1 - THEN ;
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Regular Expressions to Finite
Automata
e High-level sketch

/ NFA \
Regular

expressions DFA

|

Lexical Table-driven
Specification Implementation of DFA
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Regular Expressions to NFA (1)

e For each kind of rexp, define an NFA
- Notation: NFA for rexp A

— )20
* For input a

~O0

- Force
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Regular Expressions to NFA (2)

e For AB

O = O

e FOrA | B

@
M



Regular Expressions to NFA (3)

e

e For A®
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DESTINIES ARE CONTROLLED

BY THE STARS 7

NO, I THINK WE CAN
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WITH QUR LINES.
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AND DAD TELL \T.




Example of RegExp -> NFA
Conversion

e Consider the regular expression
(1] 0)* 1
e« The NFA is
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‘Regular
expressign’

specification ~e 4mplementatlon of DF;A

Thomas Cole — Evening in Arcady (1843)
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NFA to DFA: The Trick

e Simulate the NFA

e Each state of DFA
= a hon-empty subset of states of the NFA

e Start state

= the set of NFA states reachable through ¢-moves
from NFA start state

e Add a transition S —»2 S’ to DFA iff

- S’ is the set of NFA states reachable from the
states in S after seeing the input a

e considering s-moves as well
#25



NFA — DFA Example
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NFA — DFA: Remark

« An NFA may be in many states at any time
« How many different states?

o If there are N states, the NFA must be in
some subset of those N states

« How many non-empty subsets are there?
- 2N - 1 = finitely many
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Implementation

A DFA can be implemented by a 2D table T

- One dimension is “states”

- Other dimension is “input symbols”

- For every transition S. —»2 S, define T[i,a] = k
e DFA “execution”

- If in state S, and input a, read T[i,a] = k and skip
to state S,

- Very efficient
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Table Implementation of a DFA

c|H|wv
—|d|d|o
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Implementation (Cont.)

e NFA — DFA conversion is at the heart of
tools such as flex or ocamllex

e But, DFAs can be huge

 In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations
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« Correctness is job #1. | o
- And jOb #2 and #3! | CTRL key whiS e b RS i

» Tips on building large systems:*
- Keep it simple
- Design systems that can be tested
- Don’t optimize prematurely

- |t is easier to modify a working system than to
get a system working
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Lexical Analyzer Generator

e Tools like lex and flex and ocamllex will
build lexers for you!

e You must use such a tool for PA2

Lexical
— Analyzer -

e I’ll explain ocamllex; others are similar
- See PA2 documentation
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Ocamllex “lexer.mll” file

{

(* raw preamble code
type declarations, utility functions, etc. *)

3

let re_name, =re,

rule normal_tokens = parse
re, { token, }

| re, { token, }
and special_tokens = parse
| re. { token_ }
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Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 %)

| Tok_Divide * /7 %)
}
let digit = [‘0’ - ‘9’]
rule initial = parse
‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }
{ Printf.printf “Error!\n”; exit 1 }
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Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide * /7%
3

let digit =[‘0’ - ‘9’°]
rule initial = parse
“I1” { eol_comment }

| 7/ { Tok_Divide }

| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }

| _ { Printf.printf “Error!\n”; exit 1 }

and eol_comment = parse
‘An’  { initial lexbuf }
| _ { eol_comment lexbuf }
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Using Lexical Analyzer Generators

S ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... *)

let file_input = open_in “file.cl” in

let lexbuf = Lexing.from_channel file_input in

let token = Lexer.initial lexbuf in

match token with

| Tok_Divide -> printf “Divide Token!\n”

| Tok_Integer(x) -> printf “Integer Token = %d\n” x
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How Big Is PA2?

e The reference “lexer.mll” file is 88 lines

- Perhaps another 20 lines to keep track of input
line numbers

- Perhaps another 20 lines to open the file and get
a list of tokens

- Then 65 lines to serialize the output
- I’m sure it’s possible to be smaller!

e Conclusion:

- This isn’t a code slog, it’s about careful
forethought and precision.
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Warning!

e YOou may be
tempted to use
OCaml for PA2
based on that
demo.

« However, you
probably want to
save OCaml for one
of the harder

assignments later. It's'a Trapn!

Tnev askedme to play'a rol:)-

in me‘-’swndnlﬁMusm




Test Yourself! Exam Practice.

e Are practical parsers and scanners based on deterministic or

non-deterministic automata?

e How can regular expressions be used to specify nested

constructs?

e How is a two-dimensional transition table used in table-

driven scanning?
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Homework
e Textbook Reading, CD Reading - 2.4
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