Lexical Analysis

Finite Automata

(Part 2 of 2)

I SWEAR, IF T HAD
To ST THROUGH ONE
MORE POWERPOINT
PRESENTATION, T WAS
GEOINGE To SCREAM,

s

=

WELL, YOU'RE
HOME NOW.
Yol CAN
RELAX.

@,
T

o

2

MoM! DAD! T DuD

MY Book REPORT

WiTH POWERPOINT!
comE SEE!

@f

Cunning Plan

e Regular expressions provide a concise

notation for string patterns
e Use in lexical analysis requires| s i seswe e

SUPPOSE ALL MATTER AND ENERGY
15 MADE OF TINY, VIBRATING "STRINGS.

extensions \ S
- To resolve ambiguities oo,/ Y'
- To handle errors j\) %

GTRING THEORY GUMMARIZED:

e Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

#2

One-Slide Summary

e Finite automata are formal models of
computation that can accept regular languages
corresponding to regular expressions.

e Nondeterministic finite automata (NFA)
feature epsilon transitions and multiple
outgoing edges for the same input symbol.

e Regular expressions can be converted to NFAs.

e Tools will generate DFA-based lexer code for
you from regular expressions.

#3

Finite Automata

e Regular expressions = specification
e Finite automata = implementation

e A finite automaton consists of

- An input alphabet X

- A set of states S

- A start state n

- A set of accepting states F C S

- A set of transitions state —inrut state

#4

Finite Automata

e Transition
S, 25,
e IS read
In state s, on input “a” go to state s,

o If end of input (or no transition possible)
- If in accepting state = accept
- Otherwise = reject

#5

Finite Automata State Graphs

o A state Q

o The start state /@
e An accepting state @

a

o A transition Q/\‘Q

You can
hand-write WA1.

A Simple Example

“1 »

e A finite automaton that accepts only
OO0

e A finite automaton accepts a string if we can
follow transitions labeled with the
characters in the string from the start to
some accepting state

#7

Another Simple Example

e A finite automaton accepting any number of
1’s followed by a single O

e Alphabet > = {0,1}
1

H0

e Check that “1110” is accepted but “110...”
is not

#8

And Another Example
e Alphabet > = {0,1}
 What language does this recognize?

)

Web Images Video News Maps more »

GO{ Jg e how to hook up a hose to a kitchen sink Search |

Web

Did you mean: how to hook up a horse to a kitchen sink

And A Fourth Example

e Alphabet stillX ={0, 1}
1

0

e The operation of the automaton is not
completely defined by the input

- On input “11” the automaton could be in either
state

#10

Epsilon Moves
 Another kind of transition: s-moves
(A ()
e Machine can move from state A to state B
without reading input

Deterministic and
Nondeterministic Automata

e Deterministic Finite Automata (DFA)
- One transition per input per state
- No e-moves

e Nondeterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a
given state

- Can have ¢-moves

e Finite automata have finite memory
- Need only to encode the current state

#12

Execution of Finite Automata

A DFA can take only one path through the
state graph

- Completely determined by input

e NFAs can choose

- Whether to make ¢-moves

- Which of multiple transitions for a single input to
take

#13

Acceptance of NFAs

 An NFA can get into multiple states

/gfkgfl\.@

0

e Input: 1 0 1

e Rule: NFA accepts if it can get in a final state

#14

NFA vs. DFA (1)

.l_!

« NFAs and DFAs
recognize the same
set of languages
(regular languages)

- They have the same
expressive power

e DFAs are easier to
implement

- There are no choices
to consider

NFA vs. DFA (2)

e For a given language the NFA can be simpler
than the DFA

1
0 0

NFA
0

() 0 0 G
DFA ‘ o
1

e DFA can be exponentially larger than NFA

#16

Natural Languages

e This North Germanic language is generally mutually
intelligible with Norwegian and Danish, and descends
from Old Norse of the Viking Era to a modern
speaking population of about 10 million people. The
language contains two genders, nouns that are rarely
inflected, and a typical subject-verb-object
ordering. Its home country is one of the largest
music exporters of the modern world, often
targeting English-speaking audiences. Bands such as
Ace of Base, ABBA and Roxette are examples, with
over 420m combined album sales.

#17

Unnatural Languages

e This stack-based structured computer
programming language appeared in the 1970's
and went on to influence PostScript and RPL.
It is typeless and is often used in bootloaders
and embedded applications. Example:

2510 * 50 +
e Simple C Program:
int floor5(int v) { return (v<6)?5: (v-1);}

e Same program in this Language:
: FLOOR5 (n --n") DUP 6 < IF DROP 5 ELSE 1 - THEN ;

#18

Regular Expressions to Finite
Automata
e High-level sketch

/ NFA \
Regular

expressions DFA

|

Lexical Table-driven
Specification Implementation of DFA

#19

Regular Expressions to NFA (1)

e For each kind of rexp, define an NFA
- Notation: NFA for rexp A

—)20
* For input a

~O0

- Force

#20

Regular Expressions to NFA (2)

e For AB

O = O

e FOrA | B

@
M

Regular Expressions to NFA (3)

e

e For A®

DO YOU BELIEVE OUR
DESTINIES ARE CONTROLLED

BY THE STARS 7

NO, I THINK WE CAN
DO WHATEVER WE WANT

WITH QUR LINES.

NOT TO HEAR MOM
AND DAD TELL \T.

Example of RegExp -> NFA
Conversion

e Consider the regular expression
(1] 0)* 1
e« The NFA is

#23

‘Regular
expressign’

specification ~e 4mplementatlon of DF;A

Thomas Cole — Evening in Arcady (1843)

#24

NFA to DFA: The Trick

e Simulate the NFA

e Each state of DFA
= a hon-empty subset of states of the NFA

e Start state

= the set of NFA states reachable through ¢-moves
from NFA start state

e Add a transition S —»2 S’ to DFA iff

- S’ is the set of NFA states reachable from the
states in S after seeing the input a

e considering s-moves as well
#25

NFA — DFA Example

ol

e

0

- FGABCDHI Q
NG 1
1 EJGABCDHI Q

i

#26

NFA — DFA: Remark

« An NFA may be in many states at any time
« How many different states?

o If there are N states, the NFA must be in
some subset of those N states

« How many non-empty subsets are there?
- 2N - 1 = finitely many

#27

Implementation

A DFA can be implemented by a 2D table T

- One dimension is “states”

- Other dimension is “input symbols”

- For every transition S. —»2 S, define T[i,a] = k
e DFA “execution”

- If in state S, and input a, read T[i,a] = k and skip
to state S,

- Very efficient

#28

Table Implementation of a DFA

c|H|wv
—|d|d|o

#29

Implementation (Cont.)

e NFA — DFA conversion is at the heart of
tools such as flex or ocamllex

e But, DFAs can be huge

 In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

#30

« Correctness is job #1. | o
- And jOb #2 and #3! | CTRL key whiS e b RS i

» Tips on building large systems:*
- Keep it simple
- Design systems that can be tested
- Don’t optimize prematurely

- |t is easier to modify a working system than to
get a system working

#31

Lexical Analyzer Generator

e Tools like lex and flex and ocamllex will
build lexers for you!

e You must use such a tool for PA2

Lexical
— Analyzer -

e I’ll explain ocamllex; others are similar
- See PA2 documentation

#32

Ocamllex “lexer.mll” file

{

(* raw preamble code
type declarations, utility functions, etc. *)

3

let re_name, =re,

rule normal_tokens = parse
re, { token, }

| re, { token, }
and special_tokens = parse
| re. { token_ }

#33

Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 %)

| Tok_Divide * /7 %)
}
let digit = [‘0’ - ‘9’]
rule initial = parse
‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }
{ Printf.printf “Error!\n”; exit 1 }

#34

Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide * /7%
3

let digit =[‘0’ - ‘9’°]
rule initial = parse
“I1” { eol_comment }

| 7/ { Tok_Divide }

| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }

| _ { Printf.printf “Error!\n”; exit 1 }

and eol_comment = parse
‘An’ { initial lexbuf }
| _ { eol_comment lexbuf }

#35

Using Lexical Analyzer Generators

S ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... *)

let file_input = open_in “file.cl” in

let lexbuf = Lexing.from_channel file_input in

let token = Lexer.initial lexbuf in

match token with

| Tok_Divide -> printf “Divide Token!\n”

| Tok_Integer(x) -> printf “Integer Token = %d\n” x

#36

How Big Is PA2?

e The reference “lexer.mll” file is 88 lines

- Perhaps another 20 lines to keep track of input
line numbers

- Perhaps another 20 lines to open the file and get
a list of tokens

- Then 65 lines to serialize the output
- I’m sure it’s possible to be smaller!

e Conclusion:

- This isn’t a code slog, it’s about careful
forethought and precision.

#37

Warning!

e YOou may be
tempted to use
OCaml for PA2
based on that
demo.

« However, you
probably want to
save OCaml for one
of the harder

assignments later. It's'a Trapn!

Tnev askedme to play'a rol:)-

in me‘-’swndnlﬁMusm

Test Yourself! Exam Practice.

e Are practical parsers and scanners based on deterministic or

non-deterministic automata?

e How can regular expressions be used to specify nested

constructs?

e How is a two-dimensional transition table used in table-

driven scanning?

THERE. WAS..”

"ONCE UPON A TIME

HAS THIS BOOK
BEEN A BEST
SELLER? WAS THE
AUTHOR WON A
PULITZER? DID
THE NEW YORK
TIMES LIKE 1T?

T ONWY WANT STORIES THAT

COME HIGHIN RECOMMENDED.

ARE THERE ANY LAUDATORY

QUOTES ON THE DUST
JACKET?

AHEM.,'ONCE | HAS THIS Book

LPON A TIME
THERE WAS A
NOISY KID WHO
STARTED GOING

TO BED WITHOUT
A STORY."

BEEN MADE
INTO A MONIE?
CULD WE BE

WATCHING
THIS ON

VIDEO? 4

Homework
e Textbook Reading, CD Reading - 2.4

#40

	Lexical Analysis Finite Automata (Part 2 of 2)
	Summary
	Slide 3
	Finite Automata
	Slide 5
	Finite Automata State Graphs
	A Simple Example
	Another Simple Example
	And Another Example
	Slide 10
	Epsilon Moves
	Deterministic and Nondeterministic Automata
	Execution of Finite Automata
	Acceptance of NFAs
	NFA vs. DFA (1)
	NFA vs. DFA (2)
	Slide 17
	Slide 18
	Regular Expressions to Finite Automata
	Regular Expressions to NFA (1)
	Regular Expressions to NFA (2)
	Regular Expressions to NFA (3)
	Example of RegExp -> NFA conversion
	Next
	NFA to DFA: The Trick
	NFA ! DFA Example
	NFA ! DFA: Remark
	Implementation
	Table Implementation of a DFA
	Implementation (Cont.)
	PA1: Lexical Analysis
	Lexical Analyzer Generator
	Ocamllex “lexer.mll” file
	Example “lexer.mll”
	Adding Winged Comments
	Using Lexical Analyzer Generators
	How Big Is PA1?
	Slide 38
	Kinder, Gentler Nation
	Homework

