
#1

Functional ProgrammingFunctional Programming

Introduction To CoolIntroduction To Cool

#2

Cunning Plan
• ML Functional Programming

– Fold
– Sorting

• Cool Overview
– Syntax
– Objects
– Methods
– Types

#3

CS 4501 – Compilers Practicum

• Thursdays 2:00 to 3:00, Olsson 005

• To be enrolled in CS 4501 (Compilers
Practicum) you must be able to attend its
listed lecture time.

• First Meeting: This Thursday!
– Monday, January 23rd

#4

PS1c Submission Statistics

• Students Taking Class for Credit: 58
• Students Submitting > 0 Times: 53

– Note “Testing” vs. “Grading” submission

• Language choice, as Tuesday morning
– Python 50
– Ruby 47
– JavaScript 35
– C 18
– OCaml 16
– Cool 4

Which of these languages
is the most important

in the course?

#5

PS1 Pedagogy

• Why target old languages?
– Python 2.4 vs. 2.6, Ruby 1.8.5 vs. 1.9, etc.

• Real-world customer machine scenario
• Exposure to costs of adding language features

– {C, Ocaml, Cool } vs. { Python, Ruby }, specs

• “Toposort Algorithm” vs. “Language, Syntax, Run-Time
System, Operating System, Testing and Debugging”
– “Whitespace doens't matter” vs. “You write printf”

• Black box testing and debugging
– http://www.st.cs.uni-saarland.de/dd/

– http://www.whyprogramsfail.com/

http://www.st.cs.uni-saarland.de/dd/
http://www.whyprogramsfail.com/

#6

Shared Pain with Ruby 1.8.5
RUBY: Reverse-sort the lines from standard input
lines = [] # a list variable to hold all the lines we'll read in
working = true # are there still more lines to read in?
while working
 line = gets # read a line from standard input
 if line == nil # nil is "nothing, it didn't work"
 working = false # we're done reading stuff
 else
 lines[lines.length] = line # append 'line' to the end of 'lines
 end # end of 'if'
end # end of 'while'
sorted = lines.sort do |a,b| # sort the list of lines
 # this do block is basically an anonymous function!
 # |foo,bar| means "foo and bar are the arguments"
 # we will tell it how to compare to arbitrary elements, a and b
 b <=> a # <=> means "compare" -- we'll do it in reverse
end # end 'do'
sorted.map{|one_line, i| # iterate over each statement in sorted list
 puts one_line # write it to standard output
} # end 'iteration'

#7

This is my final day

• ... as your ... companion ... through Ocaml
and Cool. After this we start the interpreter
project.

• Clearly a third
day would just
be unthinkable.

#8

One-Slide Summary
• Functions and type inference are

polymorphic and operate on more than
one type (e.g., List.length works on int
lists and string lists).

• fold is a powerful higher-order function
(like a swiss-army knife or duct tape).

• Cool is a Java-like language with
classes, methods, private fields, and
inheritance.

#9

Pattern Matching (Error?)
• Simplifies Code (eliminates ifs, accessors)
type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec height tree = match tree with
 | Leaf _ -> 1
 | Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with
 | Leaf str | Node(_,str,_) -> str = elt
 | Node(x,_,y) -> mem x elt || mem y elt

#10

Pattern Matching (Error?)
• Simplifies Code (eliminates ifs, accessors)
type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec height tree = match tree with
 | Leaf _ -> 1
 | Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with
 | Leaf str | Node(_,str,_) -> str = elt
 | Node(x,_,y) -> mem x elt || mem y elt

bug?

#11

Pattern Matching (Error!)
• Simplifies Code (eliminates ifs, accessors)
type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec bad tree elt = match tree with
 | Leaf str | Node(_,str,_) -> str = elt
 | Node(x,_,y) -> bad x elt || bad y elt
let rec mem tree elt = match tree with
 | Leaf str | Node(_,str,_) when str = elt -> true
 | Node(x,_,y) -> mem x elt || mem y elt

#12

Recall: Polymorphism

• Functions and type inference are
polymorphic
– Operate on more than one type
– let rec length x = match x with
– | [] -> 0
– | hd :: tl -> 1 + length tl
– val length :  list -> int
– length [1;2;3] = 3
– length [“algol”; ”smalltalk”; ”ml”] = 3
– length [1 ; “algol”] = type error!

means “any
one type”

#13

Recall: Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected
– Notably, can be passed around
– Closure captures the environment
– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl
– val map : ( -> ) ->  list ->  list
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators
– Implement abstraction

f is itself a
function!

#14

Recall: Fold

• The fold operator comes from Recursion
Theory (Kleene, 1952)

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

– val fold : ( ->  -> ) ->  ->  list -> 

• Imagine we’re summing a list (f = addition):

9 2 7 4 5 7 4 5… 11
f

4 518 … 27

acc lst

#15

Referential Transparency

• To find the meaning of a functional program
we replace each reference to a variable with
its definition.
– This is called referential transparency.

• Example:
let y = 55
let f x = x + y
f 3

 --> means --> 3 + y
 --> means --> 3 + 55

#16

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 1 [8;6;7]

#17

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 1 [8;6;7]

match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

#18

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 1 [8;6;7]

 with f=*, acc=1, and lst=[8;6;7]

match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

#19

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 1 [8;6;7]

match [8;6;7] with
| [] -> 1
| hd :: tl -> fold (*) (* 1 hd) tl

#20

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

match [8;6;7] with
| [] -> 1
| hd :: tl -> fold (*) (* 1 hd) tl

#21

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [8;6;7] in
 fold (*) (* 1 hd) tl

match [8;6;7] with
| [] -> 1
| hd :: tl -> fold (*) (* 1 hd) tl

#22

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [8;6;7] in
 fold (*) (* 1 hd) tl

#23

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [8;6;7] in
 fold (*) (* 1 hd) tl
fold (*) (* 1 8) [6;7]

#24

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 8 [6;7]

#25

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 8 [6;7]

 with f=*, acc=8, and lst=[6;7]

match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

#26

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 8 [6;7]

match [6;7] with
| [] -> 8
| hd :: tl -> fold (*) (* 8 hd) tl

#27

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

match [6;7] with
| [] -> 8
| hd :: tl -> fold (*) (* 8 hd) tl

#28

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [6;7] in
 fold (*) (* 8 hd) tl

match [6;7] with
| [] -> 8
| hd :: tl -> fold (*) (* 8 hd) tl

#29

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [6;7] in
 fold (*) (* 8 hd) tl

#30

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [6;7] in
 fold (*) (* 8 hd) tl
fold (*) (* 8 6) [7]

#31

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 48 [7]

#32

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 48 [7]

 with f=*, acc=48, and lst=[7]

match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

#33

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 48 [7]

match [7] with
| [] -> 48
| hd :: tl -> fold (*) (* 48 hd) tl

#34

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

match [7] with
| [] -> 48
| hd :: tl -> fold (*) (* 48 hd) tl

#35

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [7] in
 fold (*) (* 48 hd) tl

match [7] with
| [] -> 48
| hd :: tl -> fold (*) (* 48 hd) tl

#36

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 let hd :: tl = [7] in
 fold (*) (* 48 hd) tl

#37

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 fold (*) (* 48 7) []

#38

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

fold (*) 336 []

 with f=*, acc=336, and lst=[]

match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

#39

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

match [] with
| [] -> 336
| hd :: tl -> fold (*) (* 336 hd) tl

#40

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 336

match [] with
| [] -> 336
| hd :: tl -> fold (*) (* 336 hd) tl

#41

Worked Example: Product

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

 336

#42

Insertion Sort in OCaml
let rec insert_sort cmp lst =
 match lst with
 | [] -> []
 | hd :: tl -> insert cmp hd (insert_sort cmp tl)
and insert cmp elt lst =
 match lst with
 | [] -> [elt]
 | hd :: tl when cmp hd elt ->
 hd :: (insert cmp elt tl)
 | _ -> elt :: lst

What's the worst
case running time?

#43

Sorting Examples
• langs = [“fortran”; “algol”; “c”]
• courses = [216; 333; 415]
• sort (fun a b -> a < b) langs

– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with
 | true, false -> true (* odd numbers first *)
 | false, true -> false (* even numbers last *)
 | _, _ -> a < b (* otherwise ascending *)) courses

– [333 ; 415 ; 216]

Java uses
Inner Classes

for this.

#45

Modern Languages

• This is the most widely-spoken first language
in the European Union. It is the third-most
taught foreign language in the English-
speaking world, after French and Spanish. Its
word order is a bit more relaxed than English
(since nouns are inflected to indicate their
cases, as in Latin) – infamously, verbs often
appear at the very end of a subordinate
clause. The language's famous “Storm and
Stress” movement produced classics such as
Faust.

#46

Natural Languages

• This linguist and cognitive scientist is famous
for, among other things, the sentence
“Colorless green ideas sleep furiously”.
Introduced in his 1957 work Syntactic
Structures, the sentence is correct but has
not understandable meaning, thus
demonstrating the distinction between syntax
and semantics. Compare “Time flies like an
arrow; fruit flies like a banana.” which
illustrates garden path syntactic ambiguity.

#47

Cool Overview

• Classroom Object-Oriented Language
• Design to

– Be implementable in one semester
– Give a taste of implementing modern features

• Abstraction
• Static Typing
• Inheritance
• Dynamic Dispatch
• And more ...

– But many “grungy” things are left out

#48

A Simple Example

• Cool programs are sets of class definitions
– A special Main class with a special method main
– Like Java

• class = a collection of fields and methods
• Instances of a class are objects

class Point {
x : Int <- 0;
y : Int <- 0;

};

#49

Cool Objects

• The expression “new Point” creates a new
object of class Point

• An object can be thought of as a record with
a slot for each attribute (= field)

class Point {
x : Int <- 0;
y : Int; (* use default value *)

};

0 0

x y

#50

Methods

• A class can also define methods for
manipulating its attributes

• Methods refer to the current object using self

class Point {
x : Int <- 0;
y : Int <- 0;
movePoint(newx : Int, newy : Int) : Point {

{ x <- newx;
 y <- newy;
 self;
} -- close block expression

}; -- close method
}; -- close class

#51

Aside: Semicolons
class Point {

x : Int <- 0;
y : Int <- 0;
movePoint(newx : Int, newy : Int) : Point {

{ x <- newx;
 y <- newy;
 self;
} -- close block expression

}; -- close method
}; -- close class

Yes, it's
somewhat arbitrary.

Still, don't get it wrong.

#52

Information Hiding

• Methods are global
• Attributes are local to a class

– They can only be accessed by that class's methods

class Point {
x : Int <- 0;
y : Int <- 0;
getx () : Int { x } ;
setx (newx : Int) : Int { x <- newx };

};

#53

Methods and Object Layout

• Each object knows how to access the code of
its methods

• As if the object contains a slot pointing to the
code

• In reality, implementations save space by
sharing these pointers among instances of the
same class

0 0

x y getx setx

* *

0 0

x y methods

* getx

setx

#54

Inheritance

• We can extend points to color points using
subclassing => class hierarchy

class ColorPoint extends Point {
color : Int <- 0;
movePoint(newx:Int, newy:Int) : Point {

{ color <- 0;
 x <- newx; y <- newy;
 self;
}

};
};

Note references to fields x y –
They're defined in Point!

0 0

x y color movePoint

0 *

#55

Kool Types

• Every class is a type
• Base (built-in, predefined) classes:

– Int for integers
– Bool for booleans: true, false
– String for strings
– Object root of class hierarchy

• All variables must be declared
– compiler infers types for expressions (like Java)

#56

Cool Type Checking

– x : Point;
– x <- new ColorPoint;

• ... is well-typed if Point is an ancestor of
ColorPoint in the class hierarchy
– Anywhere a Point is expected, a ColorPoint can

be used (Liskov, ...)

• Rephrase: ... is well-typed if ColorPoint is a
subtype of Point

• Type safety: a well-typed program cannot
result in run-time type errors

#57

Method Invocation and Inheritance

• Methods are invoked by (dynamic) dispatch
• Understanding dispatch in the presence of

inheritance is a subtle aspect of OO
– p : Point;
– p <- new ColorPoint;
– p.movePoint(1,2);

• p has static type Point
• p has dynamic type ColorPoint
• p.movePoint must invoke ColorPoint version

#58

Other Expressions

• Cool is an expression language (like Ocaml)
– Every expression has a type and a value
– Conditionals if E then E else E fi
– Loops while E loop E pool
– Case/Switch case E of x : Type => E ; ... esac
– Assignment x <- E
– Primitive I/O out_string(E), in_string(), ...
– Arithmetic, Logic Operations, ...

• Missing: arrays, floats, interfaces, exceptions
– Plus: you tell me!

#59

Cool Memory Management

• Memory is allocated every time “new E”
executes

• Memory is deallocated automatically when an
object is not reachable anymore
– Done by a garbage collector (GC)

#60

Course Project

• A complete interpreter
– Cool Source ==> Executed Program
– No optimizations
– Also no GC

• Split in 4 programming assignments (PAs)
• There is adequate time to complete

assignments
– But start early and follow directions

• PA2-5 ==> individual or teams (of max 2)
• (Compilers: Also alone or teams of two.)

#61

Real-Time OCaml Demo

• I will code up these, with explanations, until
time runs out.
– Read in a list of integers and print the sum of all

of the odd inputs.
– Read in a list of integers and determine if any

sublist of that input sums to zero.
– Read in a directed graph and determine if node

END is reachable from node START.

• You pick the order.
• Bonus: Asymptotic running times?

#62

Homework
• PA1 Due Monday
• Reading: Chapters 2.1 – 2.2, Dijkstra, Landin

• Bonus for getting this far: questions about
fold are very popular on tests! If I say “write
me a function that does foozle to a list”, you
should be able to code it up with fold.

	History of Programming Languages Functional Programming
	Cunning Plan
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Gone In Sixty Seconds
	Pattern Matching
	Slide 10
	Slide 11
	Polymorphism
	Higher-Order Functions
	The House That Fold Built
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Sorting Examples
	Applicability
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Homework

