
Midterm II — CS 4610, Spring 2014

• Write your name and UVa ID on the exam. Pledge the exam before turning it in.

• There are 15 pages in this exam (including this one) and 9 questions, each with multiple
sub-questions.

• You have up to 1 hour and 20 minutes to work on the exam.

• The exam is closed book, but you may refer to your two page-sides of notes.

• Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple and
straightforward solution. We might deduct points if your solution is far more complicated
than necessary. Partial solutions will be graded for partial credit.

– Good Writing Example: Python and Ruby have implemented some Smalltalk-inspired
ideas with a more C-like syntax.

– Bad Writing Example: Im in ur class, @cing ur t3stz!1!

• If you leave a non-extra-credit subquestion blank or write “no answer” for a sub-question
(e.g., 1a or 3b) you will receive one-third of the points for that sub-question (rounded
down) since you did not waste our time. If you randomly guess and throw words at us, we
will be significantly less sanguine.

UVa ID: KEY

NAME (print): KEY

1

UVa ID: (yes, again!) KEY

Problem Max Your Points
1 — Type Checking and Dispatch 15

2 — Adding New Expressions 20

3 — Optimization 15

4 — Exceptions 10

5 — Automatic Memory Management 10

6 — Debugging, Profiling, Native 10

7 — Code Generation 10

8 — Linking 5

9 — Game Theory 5

Extra Credit 0

TOTAL 100

Honor Pledge:

How do you think you did?

2

1 Type Checking and Dispatch (15 points)

Consider the following incorrect typing judgment for the double-SELF_TYPE case of dynamic dis-
patch:

O,M, C ` e0 : T0

O,M, C ` e1 : T1
...
O,M, C ` en : Tn

T0 = SELF TYPEC

M(C, f) = (T ′
1, . . . , T

′
n, SELF TYPE)

∀ 1 ≤ i ≤ n. T ′
i ≤ Ti

O,M, C ` e0.f(e1, . . . , en) : T0

wrong

In addition, consider this Cool code:

class Animal {
population : Int ;
addPopulation(x : Int) : SELF_TYPE { { population <- population + x ; self ; } } ;
react(z : Object) : SELF_TYPE { ... case z of ... self } ;

};
class Unicorn inherits Animal {
magic : Int ;
moreMagic() : SELF_TYPE { ... self } ;

selfTest() : Object {
(* your code will go here *)

}
};

(a) [7 pts] The modified typing rule wrong is too strict : it rejects good programs that are accepted
by the normal typing rules. Give Cool code for the body of selfTest above that is accepted
by the normal typing rules but is rejected by rule wrong.

The rule should have Ti ≤ T ′
i . Instead, argument subtyping is checked the wrong way. Note that

you must use “self.meth()” where “meth” returns SELF TYPE for this rule to be applicable.

self.react(new Int)

(b) [8 pts] The modified typing rule wrong is also unsound : it allows programs that will lead to
run-time errors. Give Cool code for the body of selfTest above that is accepted by rule
wrong but that is rejected by the normal typing rules.

self.addPopulation(new Object)

3

2 Adding New Expressions (20 points)

We would like to add a with expression to Cool. Inspired by languages like Pascal, the with
expression allows us to access the fields (attributes) of one object from within another object.
Consider this example:

class Counter {
x : Int ;
getX () : Int { x } ;

} ;
class Main {
main() : Object { {

let c : Counter <- new Counter in
out_int(c.getX()) ; -- output: 0
let delta : Int <- 2 in
with x from c do -- x lives in c
x <- x + delta -- x is in scope here

htiw ;
out_int(c.getX()) ; -- output: 2

} } ;
} ;

The expected output is 0 followed by 2. Informally, with a from e0 do e1 htiw checks that e0

has a field named a and then evaluates e1 with that a added to the local environment, returning
the result of that evaluation. It is a type error if the static type of a is SELF TYPE. There is some
conceptual overlap between let and with, although with does not allocate new space.

Recall that for every class C the object environment OC gives the types of all fields (attributes)
of C (including any inherited attributes). In the example above, OCounter(x) = Int.

(a) [7 pts] Complete the typing rule for with. (Be careful about SELF TYPE.)

O,M, C ` e0 : T0

T = if T0 = SELF TYPE then C else T0

OT (a) = Ta

Ta 6= SELF TYPE
O′ = O[a/Ta]
O′, M, C ` e1 : T1

O,M, C ` with a from e0 do e1 htiw : T1
with− typecheck

4

(b) [7 pts] Complete the operational semantics rule for with.

so, S1, E ` e0 : v0, S2

v0 = X(a1 = l1, . . . , a = l, . . . , an = ln)
E′ = E[a/l]
so, S2, E

′ ` e1 : v1, S3

so, S1, E ` with a from e0 do e1 htiw : v1, S3
with− opsem

Now we would like to add a foreach iterator expression to Cool. Cool does not have lists, so
programmers must write the iteratees directly. Informally, foreach x in e1, . . . , en do ebody hcaerof
evaluates ebody serially n times in a row. For example, foreach x in 1, 2, 7-4 do out int(x)
hcaerof outputs 123. Just before the ith iteration starts, the expression ei is evaluated and
the result is bound to the variable x for use in ebody (as in let). If n = 0, a foreach expression
returns void.

so, S1, E ` foreach x in do ebody hcaerof : void , S1
foreach− none

(c) [6 pts] Complete the remaining operational semantics rule for foreach. (You may not use
let or ; as a hypothesis in your answer.)

so, S1, E ` e1 : v1, S2

l = newloc(S2)
E′ = E[x/l]
S3 = S2[l/v1]
so, S3, E

′ ` ebody : vbody, S4

so, S4, E ` foreach x in e2, . . . , en do ebody hcaerof : vfinal, S5

so, S1, E ` foreach x in e1, . . . , en do ebody hcaerof : void , S5
foreach− some

5

3 Optimization (15 points)

(a) [9 pts] The following block of code makes use of five variables: a, b, c, d, and e. However,
we have erased many of the variable references from the original program. In the right-hand
column, we provide the results of liveness analysis (i.e., the variables that are live at each
program point). Please fill in each blank with a single variable so that the program is
consistent with the results of liveness analysis.

Please note that there are no dead instructions in this program. (This means only that X
is always live right after each assignment to X; it doesn’t mean that you couldn’t personally
think of some optimizations to apply here.) You will need this information to fill in some of
the blanks correctly!

Code Live Variables

{a, b, c}

b := a - b

{b, c}

e := b + c

{b, e}

d := e + 1

{b, d}

b := b

{b, d}

c := 123

{b, c, d}

a := b + c

{a, d}

print d

{a}

print a

{}

6

(b) [6 pts] Draw a control-flow graph for the following code. Each node in your control-flow graph
should be a basic block. Do not worry about static single assignment form. Every statement
in the code should appear somewhere in your control-flow graph.

START
a <- 11
if (b < 22) then { goto albus }
c <- 33
d <- 44

severus: e <- 55
if (f > 66) then {

g <- 77
goto severus

} else {
h <- 88

}
albus: i <- 99

j <- 0
END

BEGIN
a <- 11

/--- if b < 22 then
| |
| v
| c <- 33
| d <- 44
| |
| | /--------------------\
| | | |
| v v |
| e <- 55 |
| if f > 66 then ------> g <- 77
| |
| v
| h <- 88
| |
| v
\--> i <- 99

j <- 0
END

7

4 Exceptions (10 points)

(a) [2 pts] Give one example of an exception that is the clear result of a mistake in a program.
Then give one example of an exception that might be raised even in a perfect program.

Mistake: array out of bound, null pointer dereference, etc.

Environmental: disk full, network failure, etc.

(b) [4 pts] Explain where and why the least-upper-bound operator t is used in our formal treat-
ment of language-level exception handling.

Type checking is static and conservative. Since we cannot be certain at compile-time whether or
not exceptions will be thrown at run-time, “try A catch B” could either return “A” or “B”. So
we use the lub, t, just as we do for if-then-else, to conservatively approximate the best type that
describes both “A” and “B”.

(c) [4 pts] Consider the following incorrect incomplete typing rule for try-finally.

O,M, C ` e1 : T1 O,M, C ` e2 : T2 T1 ≤ T2

O,M, C ` try e1 finally e2 : T2
wrong

Give a Cool expression that does not typecheck using this rule but would work correctly at
run-time.

The problem with the typing rule is that it requires T1 ≤ T2 (for no reason). So any counter-
example with T1 > T2 works:

try new Object finally new Int

This works fine at run-time (and should have static type Int), but the wrong rule above fails to
accept it.

8

5 Automatic Memory Management (10 points)

(a) [2 pts] What can happen to a program that mistakenly frees memory too early and then later
tries to access it?

“Anything.” The behavior of the program of the program will be undefined. If you’re lucky,
the program will immediately crash. If you’re unlucky, you will experience silent data corruption
that does not show up until later, complicating debugging. If you’re very unlucky, more exotic
symptoms of the same basic problem are entirely possible.

(b) [3 pts] Suppose that you have already decided to use garbage collection. Why is Stop and
Copy a poor choice for C and C++ programs? Why does Mark and Sweep work better?

Stop and Copy is a poor choice for C and C++ programs because it requires moving all pointers.
In C/C++ one cannot statically identify which values are pointers (and thus should be changed)
and which are not. If the GC tries to move a value that is not a pointer it will change the semantics
of the program.

Mark and Sweep works better because one can conservatively identify which values are pointers,
but the only penalty for being wrong is failing to collect some garbage.

(c) [3 pts] Consider the following program:

while not_done() {
ptr = malloc(100 * MEGABYTE);
do_work(ptr);
/* done with ptr */

}

You are running this program with 4 gigabytes of physical memory and want to use automatic
memory management. Would you choose Mark and Sweep or Stop and Copy? Why?

Mark and Sweep takes time proportional to all of physical memory (live or dead, reachable or
unreachable). Stop and Copy cuts available memory in half, but takes time proportional only
to reachable (live) memory. Both garbage collectors are invoked when the system runs out of
memory.

Suppose we execute the loop 80 times (the number doesn’t matter, “80” is just to have a concrete
example).

With Mark and Sweep, after every 40 iterations we will exhaust memory (40 * 100 MB = 4 GB)
and invoke the GC. So that will happen twice (80/40 = 2). Each invocation of the M&S GC
takes time proportional to all of memory. So we take time proportional to 2*4 GB = 8 GB.

With Stop and Copy, after every 20 iterations we will exhaust memory (20 * 100 MB = 2 GB, and
Stop and Copy cuts available memory in half) and invoke the GC. So that will happen four times
(80/20 = 4). Each invocation of the S&C GC takes time proportional to used memory, which in
this example is at most 100 MB (becaus we’re done with each pointer after using it once, as per
the pseudocode above). So we take time proportional to 4 * 100 MB = 400 MB = 0.4 GB.

So Stop and Copy is 20 times faster than Mark and Sweep in this example (even though it cuts
available memory in half and thus collects more frequently)!

9

(d) [2 pts] Name two specific disadvantages of Reference Counting. (Be specific. Just saying that
it adds some overhead compared to manual management, for example, is not adequate.)

Con: Reference counting will not detect unused cyclic data structures and will thus fail to reclaim
memory used for them.

Con: Reference counting requires a non-trivial space overhead. each object must have an associ-
ated counter which must typically be at least one machine word in size.

Con: Reference counting can introduce a non-trivial time delay at assignment statements. For
example, in “linked list := NULL”, the reference counter may have to traverse the entire linked
list, recursively freeing each cell.

Not needed, but just for reference:

Pro: Reference counting does not require moving objects or pointers in memory.

Pro: Reference counting typically does not introduce large “stop the world” pauses, and is thus
often favored for real-time programs.

10

6 Debugging, Profiling, Native (10 points)

(a) [2 pts] Name one advantage of sampling-based profiling. Then name one disadvantage.

Pro: Sampling is very easy to implement: arrange for the OS to deliver a periodic timer signal
and append the current value of the PC to a buffer.

Pro: Sampling introduces very little overhead, and is thus less likely to disturb the behavior of the
system being profiled.

Con: Sampling may miss periodic behavior. For example, if you sample every k seconds, you will
miss an event that occurs at time 0.5 + nk for all n.

Con: Sampling typically only reports the value of the program counter; it does not provide rich
information such as the number of objects allocated or the number of times a variable was accessed.
To put it another way, sampling indicates where your program spent time, not how often your
program performed various actions of interest.

(b) [2 pts] When during debugging is operating system intervention required? What bad things
would happen if the operating system were not required?

Operating system intervention is required to “attach” the debugger process to the buggy program
process (so that the debugger process can control what happens when the subject receives signals
or encounters breakpoints). The operating system must check that you have permission to debug
the process (typically you must be the owner/creator of that process).

If no such check were performed, you could attach a debugger to any process — such as the SSH
daemon or another user’s private shell — and then inspect the values of variables and otherwise
control its execution. Without this check, any non-privileged user could immediately become root.

(c) [2 pts] Name a code optimization and explain why it would complicate debugging.

Dead code elimination complicates “single stepping” because the user’s perception of what con-
stitutes a single step will not match the generated assembly code (e.g., what does it mean to
single step over code that was eliminated?).

Copy propagation (if you like, coupled with dead code elimination) complicates “variable inspec-
tion” because the value of a variable may not actually be available, even if it appears to be in
scope in the source code.

Register allocation complicates “variable inspection” because two local variables that do not
interfere may be assigned to the same register and thus you may not be able to inspect both at
once.

Function inlining complicates “put a breakpoint at the start of this function” because the program
may execute the inlined body of the function without actually calling the official function body
code.

At a high level, any optimization that reorders code, reduces code, or replaces code with something
semantically equivalent complicates debugging because the user may want to step through or
inspect “what is shown in the source code”.

(d) [4 pts] List one advantage of a native code interface. Then list three potential disadvantages
or bugs associated with native code interfaces.

11

Pro: A native code interface allows computationally intensive kernels to be executed with high
performance even in a slower “safe” or “scripting” language.

Pro: A native code interface allows a language to take advantage of the wealth of existing third-
party and open source libraries (e.g., for graphics, compression, mathematics, networking, etc.).

Pro: A native code interface allows program components to be written in multiple languages while
sharing data and code in a direct and intuitive manner (e.g., hiding explicit marshalling from the
programmer).

Con: A native code interface gives up any of the type- and memory-safety guarantees of a language
like Java or OCaml, allowing for defects that were previously avoided by construction.

Con: A native code interface complicates debugging as values pass from one language to another
(debuggers typically only support one language).

Con: A native code interface requires the low-level interface programmer to understand data
layout and representations in both languages.

Con: You could also mention any of the common bugs we covered in class, such as “failing to
convert between language ints and native ints”, “failing to properly handle null-embedded language
strings in null-terminated native code”, and “failing to properly manually interface native code
with the language garbage collector”.

12

7 Code Generation (10 points)

(a) [5 pts] Consider the following incorrect stack-machine code generation rule:

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
bneq r1 t1 false_branch
jmp true_branch

false_branch: cgen(e4)
true_branch: cgen(e3)
end_if:

Write an expression e for which the above rule generates incorrect code. Indicate specifically
what should happen when your expression e is evaluated as well as what mistakenly happens
when the above rule is used to generate code.

The bug is that execution “falls through” from the false branch to the true branch.

if 1 = 0 then out int(1) else out int(2)

Outputs 21 but should output 1.

(b) [5 pts] Consider the following Cool class declarations:

Class A { class B inherits A {
p : Int; e : Int ;
t : String; z : Int ;
w : Int; y() : String { ... } ;
x() : String { ... } ; x() : String { ... } ;
z() : String { ... } ; }

}

Complete the following table describing the object (field) layouts:

0 – 2 3 4 5 6 7
A (header) p t w
B (header) p t w e z

As well as the following table describing the dispatch table (vtable) layout:

0 1 2 3
A A’s x() A’s z()
B B’s (x) A’s z() B’s y()

13

8 Linking (5 points)

(a) [5 pts] In the following scenario, two relocatable objects are being linked together to form
an executable. Each object has an import table, an export table, a relocation table, a code
segment and a data segment. The rounded braces indicate offsets within segments. For
example, the use of glob a within Object A’s code segment occurs 30 words in, and that
segment has a total length of 60. Similarly, the variable glob b is located 15 words into
Object B’s data segment, and that segment has total size 20.

The linked executable is shown on the right. The page size is 100 words, causing the indicated
amount of padding (greyed areas). Fill in the ten blanks with absolute post-link addresses.
The linked code segment starts at absolute address 0. For example, you should fill in the
() to the right of glob b with the final linked address of glob b.

Exports
fun_a
glob_a

Relocations
glob_a

Code
fun_a:
local = glob_a
local = glob_b
fun_b(local)

Data
glob_a

60

20

15

Relocatable Object A
Imports

fun_a

Exports
fun_b
main
glob_b

Relocations
glob_b

Code
main:
local = glob_b
fun_a(local)
...
fun_b:
...

Data
glob_b

100

20

20 40 60

Relocatable Object B

5

90
60

Executable Object

30
50

0 Code
___ fun_a:

local = glob_a (___)
local = glob_b (___)
fun_b(local) (___)

___ main:
local = glob_b (___)
fun_a(local) (___)
...

___ fun_b:
...

___ Data
___ glob_a

___ glob_b

(40 words of padding)

(60 words of padding)

15

Imports
fun_b
glob_b

 45

0 Code
15 fun_a:

local = glob_a (205)
local = glob_b (235)
fun_b(local) (150)

80 main:
local = glob_b (235)
fun_a(local) (15)

150 fun_b:
200 Data
205 glob_a
235 glob_b

14

9 Game Theory (5 points)

(a) [5 pts] Consider the following Nim scenario. It is your turn. Indicate a winning move (e.g.,
write it out textually or circle the items you would take from a single heap). In the game
board below, heap A has three items, heap B has four items, etc.

A B C D E

In binary: 3 xor 4 xor 5 xor 6 xor 2 = 6

Answer 1: Take all 6 from heap D.

Answer 2: Take 2 from heap C.

Answer 3: Take 2 from heap B.

And so on ...

15

10 Extra Credit (0 points)

“No Answer” is not valid on extra credit questions.

(a) [1 pt]Answer the following true-false questions about SELF_TYPE.

i. FALSE: SELF_TYPE is a dynamic type.

ii. FALSE: SELF_TYPE helps us to reject incorrect programs that are not rejected by the
normal type system.

iii. FALSE: T ≤ SELF_TYPET

iv. FALSE: A formal parameter to a method can have type SELF_TYPE.

v. TRUE: If the return type of method f is SELF_TYPE then the static type of e0.f(e1, . . . , en)
is the static type of e0.

(b) [2 pts] Cultural literacy. Below are the English translations or names for ten concepts or
figures in world folklore, legend, religion or mythology. Each concept is associated with one of
the ten most common languages (by current number of native-language speakers; Ethnologue
estimate). For each concept, give the associated language. Be specific.

Bengali Bankubabur Bandhu
Spanish Don Juan
Portuguese Endovelicus
Russian Ilya Muromets
Arabic Jinn
Hindi Kamayani
Japanese Kami
English King Arthur
Chinese/Mandarin The Eight Immortals
German The Pied Piper

16

