
CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 173 379–215

8Subroutines and Control Abstraction

8.2.2 Case Studies: C on the MIPS; Pascal on the x86

To make stack management a bit more concrete, we present a pair of case studies,
one for a simple language (C) on a simple RISC machine (the MIPS), the other
for a language with nested subroutines (Pascal) on a CISC machine (the x86).

SGI C on the MIPS

An overview of the MIPS architecture can be found in Section 5.4.5. As noted
in that section, register r31 (also known as ra) is special-cased by the hardware to
receive the return address in subroutine call (jal—jump-and-link) instructions.
In addition, register r29 (also known as sp) is reserved by convention for use as
the stack pointer, and register r30 (also known as fp) is reserved by convention
for the frame pointer, if any. The details presented here correspond to version
7.3.1.3m of the SGI MIPSpro C compiler, generating 64-bit code at optimization
level -O2. The conventions for 32-bit code are different, and future versions of the
compiler may be different as well.

A typical MIPSpro stack frame appears in Figure 8.10. The sp points toEXAMPLE 8.64
SGI MIPSpro C calling
sequence

the last used location in the stack (note that many other compilers, including
some for the MIPS, point the sp at the first unused location). Since the size of
every object in the stack is known at compile time in C, a separate frame pointer
is not strictly needed, and the MIPSpro compiler usually does without: it uses
displacement-mode offsets from the sp for everything in the current stack frame.
The principal exception occurs in subroutines whose arguments or local variables
are so large that they exceed the reach of displacement addressing; for these the
compiler makes use of the fp.

Argument Passing Conventions Arguments in the process of being passed to
the next routine are assembled at the top of the frame, and are always accessed
via offsets from the sp. The first eight arguments are passed in integer regis-
ters r4–r11 or floating-point registers f12–f19, depending on type. Additional

Copyright c© 2009 by Elsevier Inc. All rights reserved. 173



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 174 379–215

174 Chapter 8 Subroutines and Control Abstraction

sp

1

Space to build
argument lists

Local variables
and

temporaries

Saved registers

Arguments

fp (if used)

Direction
of stack growth

(lower addresses)

Current frame

Previous (calling)
frame

n

8 bytes/64 bits

Figure 8.10 Layout of the subroutine call stack for the SGI MIPSpro C compiler, running in
64-bit mode. As in Figure 8.2, lower addresses are toward the top of the page.

arguments are passed on the stack. Record arguments (structs) are implicitly
divided into 64-bit “chunks,” each of which is passed as if it were an integer.
A large struct may be passed partly in registers and partly on the stack.

As noted in the main text, space is reserved in the stack for all arguments,
whether passed in registers or not. In effect, each subroutine begins with some
of its arguments already loaded into registers, and with “stale” values in memory.
This is a normal state of affairs; optimizing compilers keep values in registers
whenever possible. They “spill” values to memory when they run out of registers,
or when there is a chance that the value in memory may be accessed directly (e.g.,
through a pointer, a reference parameter, or the actions of a nested subroutine).
The fp, if present, points at the first (top-most) argument.

The argument build area at the top of the frame is designed to be large enough
to hold the largest argument list that may be passed to any called routine. This
convention may waste a bit of space in certain cases, but it means that arguments
need not be “pushed” in the usual sense of the word: the sp does not change when
they are placed into the stack.

For languages with nested subroutines (C of course is not among them), MIPS
compilers generally use register r2 to pass the static link. In all languages, registers
r2 and f0 (depending on type) are used to return scalar values from functions.
Values of type long double are returned in the register pair 〈f0, f2〉. Record
values (structs) that will fit in 128 bits are returned in 〈r2, r3〉. For larger

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 175 379–215

8.2.2 Case Studies: C on the MIPS; Pascal on the x86 175

structs, the compiler passes a hidden first argument (in r4) whose value is the
address into which the return value should be placed. If the return value is to
be assigned immediately into a variable (e.g., x = foo()), the caller can simply
pass the address of the variable. If the value is to be passed in turn to another
subroutine, the caller can pass the appropriate address within its own argument
build area. (Writing the return value into this space will probably destroy the
returning function’s own arguments, but that’s fine: at this point they are no longer
needed.) Finally, though one doesn’t see this idiom often (and most languages
don’t support it), C allows the caller to extract a field directly from the return
value of a function (e.g., x = foo().a + y;); in this case the caller must pass the
address of a temporary location within the “local variables and temporaries” part
of its stack frame.

Calling Sequence Details The calling sequence to maintain the MIPSpro stack
is as follows. The caller

1. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts up to eight scalar arguments (or “chunks” of structs) into registers

3. puts the remaining arguments into the argument build area at the top of the
current frame

4. performs a jal instruction, which puts the return address in register ra and
jumps to the target address1

The caller-saves registers consist of r2–r15, r24, r25, and f0–f23. In a language
with nested subroutines, the caller would place the static link into register r2
immediately before performing the jal.

In its prologue, the callee

1. subtracts the frame size (the distance between the first argument and the sp
in Figure 8.10) from the sp

2. if the frame pointer is to be used, copies its value into an available temporary
register (typically r2), then adds the frame size to the sp, placing the result in
the fp (this effectively moves the old sp into the fp; note that an add is as fast
as a simple move, so there was no harm in updating the sp first)

3. saves any necessary registers into the middle of the newly allocated frame, using
the sp or, if available, the fp as the base for displacement-mode addressing

Saved registers include (a) any callee-saves temporaries (r16–r23 and f24–f31)
whose values may be changed before returning; (b) the ra, if the current routine

1 Like all branch instructions on the MIPS, jal has an architecturally visible branch delay slot. The
load delay slot was eliminated in the MIPS II version of the ISA; all recent MIPS processors are
fully interlocked.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 176 379–215

176 Chapter 8 Subroutines and Control Abstraction

is not a leaf or if it uses the ra as an additional temporary; and (c) the temporary
register containing the old fp from Step 2, if the current routine needs a frame
pointer, or the fp itself if the current routine does not need a frame pointer, but
uses the fp as an additional temporary.

In its epilogue, immediately before returning, the callee

1. places the function return value (if any) into r2, r3, f0, f2, or memory as
appropriate

2. restores saved registers (if any), using the sp or, if available, the fp as the
base for displacement-mode addressing; if the current routine needed a frame
pointer, the saved fp is “restored” into a temporary register

3. deallocates the frame by moving the fp into the sp or adding the frame size
to the sp

4. moves the value in the temporary register of step 2 (if any), into the fp

5. performs a jr ra instruction (jump to address in register ra)

Finally, if appropriate, the caller moves the return value to wherever it is needed.
Caller-saves registers are restored lazily over time, as their values are needed.

To support the use of symbolic debuggers such as gdb and dbx, the compiler
generates a variety of assembler pseudo-ops that place information into the object
file symbol table. For each subroutine, this information includes the starting and
ending addresses of the routine, the size of the stack frame, an indication as to
which register (usually sp or fp) is the base for local objects, an indication as to
which register (usually ra, if any) holds the return address, and a list of which
registers were saved. �

GNU Pascal on the x86

To illustrate the differences between CISC and RISC machines, our second case
study considers the x86, still the world’s most popular instruction set architecture.
(An overview of the processor appears in Section 5.4.5). To illustrate the han-
dling of nested subroutines and closures, we consider a Pascal compiler, namely
version 3.2.2 of the GNU Pascal compiler, gpc. (Ada compilers [e.g., GNU’s gnat]
handle these features in similar ways, but Ada’s many extra features would make
the case study much more complex.)

On modern implementations of the x86, ordinary store instructions may
make better use of the pipeline than is possible with push. Most modern compilers
for the x86, including gcc (on which gpc is based), therefore employ an argument
build area similar to that of the previous case study. By default gpc and gcc still use
a separate frame pointer, partly for the sake of uniformity with other architectures
and languages (gcc is highly portable), and partly to simplify the implementation
of library mechanisms that allocate space dynamically in the current stack frame
(see Exercise 8.37).

The special instructions for subroutine calls vary significantly from one CISC
machine to another. The ones most often used on the x86 today are relatively
simple. The call instruction pushes the return address onto the stack, updating

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 177 379–215

8.2.2 Case Studies: C on the MIPS; Pascal on the x86 177

4 bytes/32 bits

Local variables
and

temporaries

Arguments

Saved fp

Other saved
registers

Return address

Static link

sp

(SL

Direction of stack growth
(lower addresses)

fp

1

Current frame

Previous (calling)
frame

n

Space to build
argument lists

)

Figure 8.11 Layout of the subroutine call stack for the GNU Pascal compiler, gpc.The return
address and saved fp are present in all frames. All other parts of the frame are optional; they
are present only if required by the current subroutine. In x86 terminology, the sp is named esp;
the fp is ebp (extended base pointer). SL marks the location that will be referenced by the static
link of any subroutine nested immediately inside this one.

the sp, and branches to the called routine. The ret instruction pops the return
address off the stack, again updating the sp, and branches back to the caller. Sev-
eral additional instructions, retained for backward compatibility, are typically not
generated by modern compilers, because they were designed for calling sequences
with an explicit display and without an argument build area, or because they don’t
pipeline as well as equivalent sequences of simpler instructions.

Argument Passing Conventions Figure 8.11 shows a stack frame for the x86.EXAMPLE 8.65
Gnu Pascal x86 calling
sequence

As in the previous case study, the sp points to the last used location on the stack.
Arguments in the process of being passed to another routine are accessed via offsets
from the sp; everything else is accessed via offsets from the fp. All arguments are
passed in the stack. Register ecx is used to pass the static link. That link will point
at the last saved register (the saved fp if there are no others) in the frame of the lex-
ically surrounding routine, immediately below that routine’s own static link, if any.

Functions return integer or pointer values in register eax. Floating-point values
are returned in the first of the floating-point registers, st(0). For functions that
return values of constructed types (records, arrays, or sets), the compiler passes
a hidden first argument (on the stack) whose value is the address into which the
return value should be placed.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 178 379–215

178 Chapter 8 Subroutines and Control Abstraction

Calling Sequence Details The calling sequence to maintain the gpc stack is as
follows. The caller

1. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts arguments into the build area at the top of the current frame

3. places the static link in register ecx

4. executes a call instruction

The caller-saves registers consist of eax, edx, and ecx. Step 1 is skipped if none of
these contain a value that will be needed later. Step 2 is skipped if the subroutine
has no parameters. Step 3 is skipped if the subroutine is declared at the outermost
level of lexical nesting. The call instruction pushes the return address and jumps
to the subroutine.

In its prologue, the callee

1. pushes the fp onto the stack, implicitly decrementing the sp by 4 (one word)

2. copies the sp into the fp, establishing the frame pointer for the current routine

3. pushes any callee-saves registers whose values may be overwritten by the cur-
rent routine

4. pushes the static link (ecx) if this is not a leaf

5. subtracts the remainder of the frame size from the sp

The callee-saves registers are ebx, esi, and edi. Registers esp and ebp (the sp
and fp, respectively) are saved by Steps 1 and 2. The instructions for some of
these steps may be replaced with equivalent sequences by the compiler’s code
improver, and mixed into the rest of the subroutine by the instruction scheduler.
In particular, if the value subtracted from the sp in Step 5 is made large enough
to accommodate the callee-saves registers, then the pushes in Steps 3 and 4 may
be moved after Step 5 and replaced with fp-relative stores.

In its epilogue, the callee

1. sets the return value

2. restores any callee-saved registers

3. copies the fp into the sp, deallocating the frame

4. pops the fp off the stack

5. returns

Finally, as in the previous case study, the caller moves the return value, if it is in
a register, to wherever it is needed. It restores any caller-saves registers lazily over
time. �

Because Pascal allows subroutines to nest, a subroutine S that is passed asEXAMPLE 8.66
Subroutine closure
trampoline

a parameter from P to Q must be represented by a closure, as described in
Section 3.6.1. In many compilers the closure is a data structure containing the

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 179 379–215

8.2.2 Case Studies: C on the MIPS; Pascal on the x86 179

address of S and the static link that should be used when S is called. In gpc, how-
ever, the closure contains an x86 code sequence known as a trampoline: typically a
pair of instructions to load ecx with the appropriate static link and then jump to
the beginning of S. The trampoline resides in the“local variables and temporaries”
section of P ’s activation record. Its address is passed to Q. Rather than “interpret”
the closure at run time, Q actually calls it. One advantage of this mechanism is its
interoperability with gcc, in which C functions passed as parameters are simply
code addresses. In fact, if S is declared at the outermost level of lexical nesting,
then gpc too can pass an ordinary code address; no trampoline is required. �

3CHECK YOUR UNDERSTANDING

55. For one or both of our case studies, explain which aspects of the calling
sequence and stack layout are dictated by the hardware, and which are a matter
of software convention.

56. On the MIPS some compilers make the sp point at the last used word on
the stack, while others make it point at the first unused word. On the x86 all
compilers make it point at the last used word. Why the difference?

57. Why don’t the MIPSpro compiler and gpc restore caller-saves registers imme-
diately after a call?

58. What is a subroutine closure trampoline? How does it differ from the usual
implementation of a closure described in Section 3.6.1? What are the compar-
ative advantages of the two alternatives?

DESIGN & IMPLEMENTATION

Executing code in the stack
A disadvantage of trampoline-based closures is the need to execute code in the
stack. Many machines and operating systems disallow such execution, for at
least two important reasons. First, as noted in Section 5.1, modern micro-
processors typically have separate instruction and data caches, for fast concur-
rent access. Allowing a process to write and execute the same region of memory
means that these caches must be kept mutually consistent (coherent), a task that
introduces significant hardware complexity. Second, many computer security
breaches involve so-called buffer overflow attacks, in which an intruder exploits
the lack of array bounds checking to write code into the stack, where it will be
executed when the current subroutine returns. Such attacks are only possible
on machines in which writable data are also executable.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 180 379–215


