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Processor implementations change over time, as people invent better ways
of doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasible
before. Processor architectures also change, for at least two reasons. Some techno-
logical advances can be exploited only by changing the hardware/software inter-
face, for example by increasing the number of bits that can be added or multiplied
in a single instruction. In addition, experience with compilers and applications
often suggests that certain new instructions would make programs simpler or
faster. Occasionally, technological and intellectual trends converge to produce a
revolutionary change in both architecture and implementation. We will discuss
four such changes in Section 5.4: the development of microprogramming in the
early 1960s, the development of the microprocessor in the early to mid-1970s, the
development of RISC machines in the early 1980s, and the move to multithreaded
and multicore processors in the first decade of the 21st century.

Most of the discussion in this chapter, and indeed in the rest of the book, will
assume that we are compiling for a single-threaded RISC (reduced instruction set
computer) architecture. Roughly speaking, a RISC machine is one that sacrifices
richness in the instruction set in order to increase the number of instructions that
can be executed per second. Where appropriate, we will devote a limited amount
of attention to earlier, CISC (complex instruction set computer) architectures. The
most popular desktop processor in the world—the x86—is a legacy CISC design,
but RISC dominates among newer designs, and modern implementations of the
x86 generally run fastest if compilers restrict themselves to a relatively simple
subset of the instruction set. Within a modern x86 processor, a hardware “front
end” translates these instructions, on the fly, into a RISC-like internal format.

In the first three sections below we consider the hierarchical organization of
memory, the types (formats) of data found in memory, and the instructions
used to manipulate those data. The coverage is necessarily somewhat cursory and
high-level; much more detail can be found in books on computer architecture
or organization (e.g., Chapters 2 to 5 of Patterson and Hennessy’s outstanding
text [PH08]).
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Typical access time Typical capacity

Registers 0.2–0.5 ns 256–1024 bytes
Primary (L1) cache 0.4–1 ns 32 K–256 K bytes
Secondary (L2) cache 4–10 ns 1–8 M bytes
Tertiary (off-chip, L3) cache 10–50 ns 4–64 M bytes
Main memory 50–500 ns 256 M–16 G bytes
Disk 5–15 ms 80 G bytes and up
Tape 1–50 s effectively unlimited

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capacities
are approximate, based on 2008 technology. Registers must be accessed within a single clock
cycle. Primary cache typically responds in 1 to 2 cycles; off-chip cache in more like 20 cycles. Main
memory on a supercomputer can be as fast as off-chip cache; on a workstation it is typically much
slower. Disk and tape times are constrained by the movement of physical parts.

We consider the interplay between architecture and implementation in
Section 5.4. As illustrative examples, we consider the widely used x86 and
MIPS instruction sets. Finally, in Section 5.5, we consider some of the issues
that make compiling for modern processors a challenging task.

5.1 The Memory Hierarchy

Memory on most machines consists of a numbered sequence of 8-bit bytes. It is not
uncommon for modern workstations to contain several gigabytes of memory—
much too much to fit on the same chip as the processor. Because memory is
off-chip (typically on the other side of a bus), getting at it is much slower that
getting at things on-chip. Most computers therefore employ a memory hierarchy,
in which things that are used more often are kept close at hand. A typical memoryEXAMPLE 5.1

Memory hierarchy stats hierarchy, with access times and capacities, is shown in Figure 5.1. �
Only three of the levels of the memory hierarchy—registers, memory, and

devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

Registers hold small amounts of data that can be accessed very quickly. A typi-
cal RISC machine has two sets of registers, to hold integer and floating-point
operands. It also has several special purpose registers, including the program
counter (PC) and the processor status register. The program counter holds the
address of the next instruction to be executed. It is incremented automatically
when fetching most instructions; branches work by changing it explicitly. The
processor status register contains a variety of bits of importance to the operating
system (privilege level, interrupt priority level, trap enable bits) and, on some
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machines, a few bits of importance to the compiler writer. Principal among these
are condition codes, which indicate whether the most recent arithmetic or logical
operation resulted in a zero, a negative value, and/or arithmetic overflow. (We will
consider condition codes in more detail in Section 5.3.2.)

Because registers can be accessed every cycle, while memory, generally, cannot,
good compilers expend a great deal of effort trying to make sure that the data
they need most often are in registers, and trying to minimize the amount of time
spent moving data back and forth between registers and memory. We will consider
algorithms for register management in Section 5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality : the tendency of most computer programs to access the same or
nearby locations in memory repeatedly. By automatically moving the contents of
these locations into cache, a hierarchical memory system can dramatically improve
performance. The idea makes intuitive sense: loops tend to access the same local
variables in every iteration, and to walk sequentially through arrays. Instructions,
likewise, tend to be loaded from consecutive locations, and code that accesses one
element of a structure (or member of a class) is likely to access another.

Cache architecture varies quite a bit across machines. Primary caches, also
known as level-1 (L1) caches, are typically located on the same chip as the processor,
and usually come in pairs: one for instructions (the L1 I-cache) and another for
data (the L1 D-cache), both of which can be accessed every cycle. Secondary caches
are larger and slower, but still faster than main memory. In a modern desktop or
laptop system they are typically also on the same chip as the processor. High-end
desktop or server-class machines may have an off-chip tertiary (L3) cache as well.
Multicore processors, which have more than one processing core on a single chip,
may share the L2 among cores, or even introduce an on-chip L3. Small embedded
processors may have ony a single level of on-chip cache, with or without any
off-chip cache. Caches are managed entirely in hardware on most machines, but
compilers can increase their effectiveness by generating code with a high degree
of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a miss,
the hardware automatically loads a line of the cache with a contiguous block of
data containing the requested location, obtained from the next lower level of cache

DESIGN & IMPLEMENTATION

The processor/memory gap
Historically processor speed has increased much faster than memory speed,
so the number of processor cycles required to access memory has continued
to grow. As a result of this trend, caches have become increasingly critical to
performance. To improve the effectiveness of caching, programmers need to
choose algorithms whose data access patterns have a high degree of local-
ity. High-quality compilers, likewise, need to consider locality of access when
choosing among the many possible translations of a given program.
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or main memory. Cache lines vary from as few as 8 to as many as 512 bytes in
length. Assuming that the cache was already full, the load will displace some other
line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes,
typically one, two, four, and eight bytes. Most modern instruction sets refer to
these as byte, half-word, word, and double-word operands, respectively; on the
x86 they are byte, word, double-word, and quad-word operands. Most recent
architectures require n-byte operands to appear in memory at addresses that
are evenly divisible by n (at least for n ≤ 4). A 4-byte integer, for example,
must typically appear at a location whose address is evenly divisible by four. This
restriction occurs for two reasons. First, buses are designed in such a way that data
are delivered to the processor over bit-parallel, aligned communication paths.
Loading an integer from an odd address would require that the bits be shifted,
adding logic (and time) to the load path. The x86, which for reasons of backward
compatibility allows operands to appear at arbitrary addresses, runs faster if those
operands are properly aligned. Second, on RISC machines, there are generally not
enough bits in an instruction to specify both an operation (e.g., load) and a full
address. As we shall see in Section 5.3.1, it is typical to specify an address in
terms of an offset from some base location specified by a register. Requiring that
integers be word-aligned allows the offset to be specified in words, rather than in
bytes, quadrupling the amount of memory that can be accessed using offsets from
a given base register.

5.2 Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Opera-
tions are typed, in the sense that different operations interpret the bits in memory
in different ways. Typical data formats include instructions, addresses, binary
integers of various lengths, floating-point (real) numbers of various lengths, and
characters.

Integers typically come in half-word, word, and double-word lengths. Floating-
point numbers typically come in word and double-word lengths, commonly
referred to as single- and double-precision. Some machines store the least-EXAMPLE 5.2

Big- and little-endian significant byte of a multiword datum at the address of the datum itself, with
bytes of increasing numeric significance at higher-numbered addresses. Other
machines store the bytes in the opposite order. The first option is called little-
endian; the second is called big-endian. In either case, an n-byte datum stored at
address t occupies bytes t through t + n − 1. The advantage of a little-endian
organization is that it is tolerant of variations in operand size. If the value 37
is stored as a word and then a byte is read from the same location, the value
37 will be returned. On a big-endian machine, the value 0 will be returned (the
upper eight bits of the number 37, when stored in 32 bits). The problem with the
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Big-endian

Little-endian Increasing addresses

432

(a)

(b)

436

432 436

00 00 00 37 12 34 56 78

37 00 00 00 78 56 34 12

Big-endian Little-endian

Increasing addresses Increasing addresses

432

436

432

436

435

439

435

439

3700 00 00

7812 34 56

3700 00 00

7812 34 56

Figure 5.2 Big-endian and little-endian byte orderings. (a)Two 4-byte quantities, the numbers
3716 and 12 34 56 7816 , stored at addresses 432 and 436, respectively. (b)The same situation, with
memory visualized as a byte-addressable array of words.

little-endian approach is that it seems to scramble the bytes of integers, when read
from left to right (see Figure 5.2a). Little-endian-ness makes a bit more sense
if one thinks of memory as a (byte-addressable) array of words (Figure 5.2b).
Among CISC machines, the x86 is little-endian, as was the Digital VAX. The
IBM 360/370 and the Motorola 680x0 are big-endian. Most first-generation RISC
machines were also big-endian; most current RISC machines can run in either
mode. �

Support for characters varies widely. Most CISC machines will perform arbi-
trary arithmetic and logical operations on 1-byte quantities. Many CISC machines
also provide instructions that perform operations on strings of characters, such as
copying, comparing, or searching. Most RISC machines will load and store bytes
from or to memory, but operate only on longer quantities in registers.

5.2.1 Integer Arithmetic

Binary integers are almost universally represented in two related formats: straight-
forward binary place-value for unsigned numbers, and two’s complement for
signed numbers. An n-bit unsigned integer has a value in the range 0 . . . 2n−1,
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inclusive. An n-bit two’s complement integer has a value in the range −2n−1 . . .
2n−1 − 1, inclusive. Most instruction sets provide two forms of most of the arith-
metic operators: one for unsigned numbers and one for signed numbers. Even for
languages in which integers are always signed, unsigned arithmetic is important
for the manipulation of addresses (e.g., pointers).

An n-bit unsigned integer with binary representation bn−1 bn−2 . . . b2 b1 b0 has
the value

∑
0≤i<n bi2i . Because the bit pattern corresponding to a given decimal

value is non-obvious, and because bit patterns written as strings of 0’s and 1’s are
cumbersome, computer scientists commonly represent integer values in hexadeci-
mal, or base-16 notation. Hexadecimal uses the letters a to f as six additional digits,EXAMPLE 5.3

Hexadecimal numbers representing the values 10 to 15 in decimal (see Figure 5.3). Because 24 = 16,
every digit in a hexadecimal number corresponds to exactly four bits of binary,
making conversions between hexadecimal and binary trivial. In textual contexts,
hexadecimal values are often written with a leading 0x. Referring to Figure 5.3,
the hexadecimal value 0xabcd corresponds to the binary value 1010 1011 1100

1101. Similarly, 0x400 = 210 = 1024, commonly written 1K, and 0x100000 =
220 = 1048576, commonly written 1M. �

Perhaps the most obvious representation for signed integers would reserve one
bit to indicate the sign (+ or −) and use the remaining n − 1 bits to represent
the magnitude, as in unsigned numbers. Unfortunately, this approach requires
different algorithms (and hence separate circuits) for addition and subtraction.
The almost universally adopted alternative is called two’s complement arithmetic.
It capitalizes on the observation that arithmetic on unsigned n-digit numbers,
when we ignore carries out of the left-most place, is actually arithmetic on what
mathematicians call the ring of integers modulo 2n. The sum A + B, for example,
is really (A + B) mod 2n . There is no particular reason, however, why we need to
interpret the bit patterns on which we are doing our arithmetic as the numbers
0 . . 2n − 1. We can actually pick any contiguous range of 2n integers, anywhere on
the number line, and say that we’re doing modulo arithmetic on them instead. In
particular, we can pick the range −2n−1 . . . 2n−1 − 1.

The smallest n-digit two’s complement value, −2n−1, is represented by a one
followed by n−1 zeros. Successive values are obtained by repeatedly adding one,

DESIGN & IMPLEMENTATION

How much is a megabyte?
The fact that 210 ≈ 103 facilitates “back-of-the-envelope” approximations, but
can sometimes lead to confusion when precision is required. Which meaning
is intended when we see 1 K and 1 M? The answer, sadly, depends on context.
Main memory sizes and addresses are typically measured with powers of two,
while other quantities are measured with powers of ten. Thus a 1-GHz, 1-GB
personal computer may start a new instruction 1,000,000,000 times per second,
but have 1,073,741,824 bytes of memory. Its 100-GB hard disk will hold 1011

bytes.
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0 0 0 0 0 1 0 0 0 8
0 0 0 1 1 1 0 0 1 9
0 0 1 0 2 1 0 1 0 a
0 0 1 1 3 1 0 1 1 b
0 1 0 0 4 1 1 0 0 c
0 1 0 1 5 1 1 0 1 d
0 1 1 0 6 1 1 1 0 e
0 1 1 1 7 1 1 1 1 f

Figure 5.3 The hexadecimal digits.

0 1 1 1 7 1 1 1 1 −1
0 1 1 0 6 1 1 1 0 −2
0 1 0 1 5 1 1 0 1 −3
0 1 0 0 4 1 1 0 0 −4
0 0 1 1 3 1 0 1 1 −5
0 0 1 0 2 1 0 1 0 −6
0 0 0 1 1 1 0 0 1 −7
0 0 0 0 0 1 0 0 0 −8

Figure 5.4 Four-bit two’s complement numbers. Note that there is a negative number (−8)
that doesn’t have a positive equivalent. There is only one zero, however.

using ordinary place-value addition. This choice of representation has several
desirable properties:

1. Non-negative numbers have the same bit patterns as they do in unsigned
format.

2. The most significant bit of every negative number is one; the most significant
bit of every non-negative number is zero.

3. A single addition algorithm works for all combinations of negative and non-
negative numbers.

A list of 4-bit two’s complement numbers appears in Figure 5.4.EXAMPLE 5.4
Two’s complement

�
The addition algorithm for both unsigned and two’s complement binary num-

bers is the obvious binary analogue of the familiar right-to-left addition of decimal
numbers. The only difference is the mechanism used to detect whether overflow
has occurred. By definition we should see overflow whenever the sum of two inte-
gers (not the bit patterns, but the actual integers they represent) is outside the
range of values that can be represented in 2n bits. For unsigned integers, this is
easy: overflow occurs when we have carry out of the most significant (left-most)
place. For two’s complement numbers, detection is somewhat trickier. First, note
that the sum of a negative and a positive number can never overflow: the result is
guaranteed to be closer to zero than the larger-magnitude addend. But if the sum
is positive (it has a zero left-most bit), then there must have been a carry out of
the left-most place, because one of the addends had a 1 in that place.
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If we ignore carries out of the left-most place (i.e., we stay within the ring
of integers mod 2n), then we can decree that two’s complement overflow has
occurred when we add two non-negative numbers and get an apparently negative
result (because we wrapped past the largest positive number), or when we add two
negative numbers and get an apparently non-negative result (because we wrapped
past the smallest [largest magnitude] negative number). For example, with 4-bitEXAMPLE 5.5

Overflow in two’s
complement addition

two’s complement numbers,1100 + 0110 (−4 + 6) does not overflow,even though
there is a carry out of the left-most place (which we ignore). On the other hand,
0101 + 0100 (5 + 4) yields 1001,an apparently negative result for positive addends,
and 1011 + 1100 (−5 + −4) yields 0111 in the low four bits, an apparently positive
result for negative addends. Both of these cases indicate overflow.1 �

Different machines handle overflow in different ways. Some generate a trap (an
interrupt) on overflow. Some set a bit that can be tested in software. Some provide
two add instructions, one for each option. Some provide a single add that can be
made to do either, depending on the value of a bit in a special register.

It turns out that one can obtain the additive inverse of a two’s complement
number by flipping all the bits, adding one, and discarding any carry out of
the left-most place (we defer a proof to Exercise 5.7). Subtraction can thus be
implemented almost trivially using an adder, by flipping the bits of the subtrahend,
providing a one as the“carry”into the least-significant place, and“adding”as usual.
Multiplication and division of signed numbers are a bit trickier than addition and
subtraction, but still more or less straightforward.

Note that if we take any two’s complement number and its additive inverse and
add them together as if they were unsigned values, keeping the final carry bit, the
sum is 2n . This observation is the source of the name “two’s complement.” Of
course if we discard the carry bit we get zero, which is what one would expect of
k + (−k).

5.2.2 Floating-Point Arithmetic

Floating-point numbers are the computer equivalent of scientific notation: they
consist of a mantissa or significand, sig, an exponent, exp, and (usually) a sign bit, s.
The value of a floating-point number is then −1s × sig × 2exp. Prior to the mid-
1980s, floating-point formats and semantics tended to vary greatly across brands
and even models of computers. Different manufacturers made different choices
regarding the number of bits in each field, their order, and their internal repre-
sentation. They also made different choices regarding the behavior of arithmetic
operators with respect to rounding, underflow, overflow, invalid operations, and
the representation of extremely small quantities. With the completion in 1985 of
IEEE standard number 754, however, the situation changed dramatically. Most
processors developed in subsequent years conform to the formats and semantics
of this standard.

1 Exercise 5.6 considers an alternative but equivalent definition, which is particularly easy to test
in hardware.
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The IEEE 754 standard defines two sizes of floating-point numbers. Single-
precision numbers have a sign bit, eight bits of exponent, and 23 bits of significand.
They are capable of representing numbers whose magnitudes vary from roughly
10−38 to 1038. Double-precision numbers have 11 bits of exponent and 52 bits of
significand. They represent numbers whose magnitudes vary from roughly 10−308

to 10308. The exponent is biased by subtracting the most negative possible value
from it, so that it may be represented by an unsigned number. In single-precision,EXAMPLE 5.6

Biased exponents for example, the exponent 12 is represented by the value 12 − (−127) = 139 =
0x8b. The exponent −12 is represented by the value −12 − (−127) = 115 =
0x73. �

Most values in the IEEE standard are normalized by shifting the significant until
it is greater than or equal to 1, and less than 2. (The exponent is adjusted accord-
ingly, so that the value represented doesn’t change.) As a result of normalization,
the number of bits in the significand is really one more than the number explic-
itly represented: in the value 1. something × 2exp, the one is superfluous, and is
omitted in the representation. Exceptions to this rule occur near zero: very small
numbers can be represented (with reduced precision) as 0.something × 2min+1,
where min is the smallest (most negative) exponent available in the format. Many
older floating-point standards disallow such denormal numbers, leading to a gap
between zero and the smallest representable positive number that is larger than the
gap between the two smallest representable positive numbers. Because it includes
denormals, the IEEE standard is said to provide for gradual underflow. Denormal
numbers are represented with a zero in the exponent field (denoting a maximally
negative exponent) together with a nonzero fraction.

The conventions of the IEEE 754 standard are summarized in Figure 5.5.EXAMPLE 5.7
IEEE floating-point In addition to single- and double-precision formats, the standard also provides

for vendor-defined “extended” single- and double-precision numbers (not shown
here). These extended formats are required to have at least 32 and 64 significant
bits (31 and 63 explicit) in the significand, respectively. �

Floating-point arithmetic is sufficiently complicated that entire books have
been written about it. Some of the characteristics of the IEEE standard of particular
interest to compiler writers include:

The bit patterns used to represent nonnegative floating-point numbers are
ordered in the same way as integers. As a result, an ordinary integer comparison
operation can be used to determine which of two numbers is larger.

Zero is represented by a bit pattern consisting entirely of zeros. There is also
(confusingly) a “negative zero,” consisting of a sign bit of one and zeros in all
other positions.

Two bit patterns are reserved to represent positive and negative infinity. These
values behave in predictable ways. For example, any positive number divided
by zero yields positive infinity. Similarly, the arctangent of positive infinity
is π/2.

Certain other bit patterns are reserved for special “not-a-number” (NaN) val-
ues. These values are generated by nonsensical operations, such as square root
of a negative number, addition of positive and negative infinity, or division of
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Single precision

Exponent bias b  = 127

s e
8

f
23 bits

Double precision

Zero
Infinity
Normalized
Denormalized
NaN

0
2b + 1

1 ≤ e ≤ 2b
0

2b + 1

0
0

<any>
=/ 0
=/ 0

± 0
± ∞

± 1.f × 2e–b

± 0.f × 21–b

NaN

Exponent bias b = 1023

s e

e f Value

f

1

11 52 bits1

Figure 5.5 The IEEE 754 floating-point standard. For normalized numbers, the exponent is
e − 127 or e − 1023, depending on precision.The significand is (1 + f )× 2−23 or (1 + f )× 2−52 ,
again depending on precision. Field f is called the fractional part, or fraction. Bit patterns in which
e is all ones (255 for single-precision, 2047 for double-precision) are reserved for infinities and
NaNs. Bit patterns in which e is zero but f is not are used for denormal (gradual underflow)
numbers.

zero by zero. Almost any operation on an NaN produces another NaN. As a
result, many algorithms can dispense with internal error checks: they can fol-
low the steps that make sense in the absence of errors, and then check the final
result to make sure it’s not an NaN. Some NaNs, not normally generated by
arithmetic operations, can be set by the compiler explicitly to represent unini-
tialized variables or other special situations; these signaling NaNs produce an
interrupt if used.

An excellent introduction to both integer and floating-point arithmetic,
together with suggestions for further reading, can be found in David Goldberg’s
appendix to Hennessy and Patterson’s architecture text [HP07, App. I].

3CHECK YOUR UNDERSTANDING

1. Explain how to compute the additive inverse (negative) of a two’s complement
number.

2. Explain how to detect overflow in two’s complement addition.

3. Do two’s complement numbers use a bit to indicate their sign? Explain.

4. Summarize the key features of IEEE 754 floating-point arithmetic.
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5. What is the approximate range of single- and double-precision floating-point
values? What is the precision (in bits) of double-precision values?

6. What is a floating-point NaN?

5.3 Instruction Set Architecture

On a RISC machine, computational instructions operate on values held in regi-
sters: a load instruction must be used to bring a value from memory into a
register before it can be used as an operand. CISC machines usually allow all or
most computational instructions to access operands directly in memory. RISC
machines are therefore said to provide a load-store or register-register architecture;
CISC machines are said to provide a register-memory architecture.

For binary operations, instructions on RISC machines generally specify three
registers: two sources and a destination. Some CISC machines (e.g., the VAX) also
provide three-address instructions. Others (e.g., the x86 and the 680x0) provide
only two-address instructions; one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instructions
allow both operands to be reused in subsequent operations. This reuse is crucial on
RISC machines: it minimizes the number of artificial restrictions on the ordering
of instructions, affording the compiler considerably more freedom in choosing an
order that performs well.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational instruction might
specify the location of its operands. A given operand might be in a register, in
memory, or, in the case of read-only constants, in the instruction itself. If the
operand is in memory, its address might be found in a register, in memory, or in
the instruction, or it might be derived from some combination of values in various
locations. Instruction sets differ greatly in the addressing modes they provide to
capture these various options.

As noted above, most RISC machines require that the operands of computa-
tional instructions reside in registers or the instruction. For load and store instruc-
tions, which are allowed to access memory, they typically support the displacement
addressing mode, in which the operand’s address is found by adding some small
constant (the displacement ) to the value found in a specified register (the base).
The displacement is contained in the instruction. Displacement addressing with
respect to the frame pointer provides an easy way to access local variables. Dis-
placement addressing with a displacement of zero is sometimes called register
indirect addressing.

Some RISC machines, including the PowerPC and SPARC, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s
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address is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second
(the index) contains the offset of the desired element.

CISC machines typically provide a richer set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores. On
the x86, for example, the address of an operand can be calculated by multiplying
the value in one register by a small constant, adding the value found in a second
register, and then adding another small constant, all in one instruction.

5.3.2 Conditions and Branches

All instruction sets provide a branching mechanism to update the program counter
under program control. Branches allow compilers to implement conditional state-
ments, subroutines, and loops. Conditional branches are generally controlled in
one of two ways. On most CISC machines they use condition codes. As mentioned
in Section 5.1, condition codes are usually implemented as a set of bits in a
special processor status register. All or most of the arithmetic, logical, and data-
movement instructions update the condition codes as a side effect. The exact
number of bits varies from machine to machine, but three and four are common:
one bit each to indicate whether the instruction produced a zero value, a negative
value, and/or an overflow or carry. To implement the following test, for example,EXAMPLE 5.8

An if statement in x86
assembler A := B + C

if A = 0 then
body

a compiler for the x862 might generate

movl C, %eax ; move long-word C into register eax
addl B, %eax ; add
movl %eax, A ; and store
jne L1 ; branch (jump) if result not equal to zero
body

L1: �

For cases in which the outcome of a branch depends on a value that has not justEXAMPLE 5.9
Compare and test
instructions

been computed or moved, most machines provide compare and test instruc-
tions. Again on the x86:

2 Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the GNU compiler collection (gcc) and its assembler, gas. This syntax differs in several ways
from Microsoft and Intel assembler. Most notably, it specifies operands in the opposite order. The
instruction addl B, %eax, for example, adds the value in B to the value in register %eax and
leaves the result in %eax: in Gnu assembler the destination operand is listed second. In Intel and
Microsoft assembler it’s the other way around: addl B, %eax would add the value in register
%ebx to the value in B and leave the result in B.
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if A ≤ B then
body

if A > 0 then
body

movl A, %eax ; move long-word A into register eax
cmpl B, %eax ; compare to B
jg L1 ; branch (jump) if greater
body

L1:

testl %eax, %eax ; compare %eax (A) to 0
jle L2 ; branch if less than or equal
body

L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result, but it does not
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the other
operand. �

Unfortunately, traditional condition codes make it difficult to implement some
important performance enhancements. In particular, the fact that they are set by
almost every instruction tends to preclude implementations in which logically
unrelated instructions might be executed in between (or in parallel with) the
instruction that tests a condition and the branch that relies on the outcome of
the test. There are several possible ways to address this problem; the handling
of conditional branches is one of the areas in which extant RISC machines vary
most from one another. The ARM and SPARC architectures make setting of the
condition codes optional on an instruction-by-instruction basis. The PowerPC
provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. The MIPS has no condition codes (at least not for integer
operations); it uses Boolean values in registers instead.

More precisely, where the x86 has 16 different branch instructions based onEXAMPLE 5.10
Conditional branches on
the MIPS

arithmetic comparisons, the MIPS has only six. Four of these branch if the value
in a register is <, ≤, >, or ≥ zero. The other two branch if the values in two
registers are = or �=. In a convention shared by most RISC machines, register
zero is defined to always contain the value zero, so the latter two instructions
cover both the remaining comparisons to zero and direct comparisons of registers
for equality. More general register-register comparisons (signed and unsigned)
require a separate instruction to place a Boolean value in a register that is then
named by the branch instruction. Repeating the examples above on the MIPS,
we get

if A ≤ B then
body

lw $3, A ; load word: register 3 := A
lw $2, B ; register 2 := B
slt $2, $2, $3 ; register 2 := (B < A)
bne $2, $0, L1 ; branch if Boolean true (�= 0)
body

L1:
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if A > 0 then
body

blez $3, L2 ; branch if A ≤ 0
body

L2:

By convention, destination registers are listed first in MIPS assembler (as they
are in assignment statements). The slt instruction stands for “set less than”; bne
and blez stand for “branch if not equal” and “branch if less than or equal to zero,”
respectively. Note that the compiler has used bne to compare register 2 to the
constant register 0. �

3CHECK YOUR UNDERSTANDING

7. What is the world’s most popular instruction set architecture (for desktop
machines)?

8. What is the difference between big-endian and little-endian addressing?

9. What is the purpose of a cache?

10. Why do many machines have more than one level of cache?

11. How many processor cycles does it typically take to access primary (on-chip)
cache? How many cycles does it typically take to access main memory?

12. What is data alignment ? Why do many processors insist upon it?

13. List four common formats (interpretations) for bits in memory.

14. What is IEEE standard number 754? Why is it important?

15. What are the tradeoffs between two-address and three-address instruction
formats?

16. Describe at least five different addressing modes. Which of these are commonly
supported on RISC machines?

17. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

5.4 Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could ima-
gine an implementation in which all of the work for a particular instruction is
completed before work on the next instruction begins, and in fact this is how
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the earliest computers were constructed. The problem with this organization is
that most of the functional units are idle most of the time. Using ideas origi-
nally developed for supercomputers of the 1960s, mainstream processors of the
1980s and 1990s increasingly moved toward a pipelined organization, in which
the functional units work like the stations on an assembly line, with different
instructions passing through different pipeline stages concurrently. Pipelining
is used in even the most inexpensive personal computers today, and in all but
the simplest processors for the embedded market. A simple processor may have
five or six pipeline stages. The IBM PowerPC G5 has 21; the Intel Pentium 4E
has 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining
can dramatically increase the number of instructions that can be completed per
second, but it is not a panacea. In particular, a pipeline will stall if the same
functional unit is needed in two different instructions simultaneously, or if an
earlier instruction has not yet produced a result by the time it is needed in a later
instruction, or if the outcome of a conditional branch is not known (or guessed)
by the time the next instruction needs to be fetched.

We shall see in Section 5.5 that many stalls can be avoided by adding a little
extra hardware and then choosing carefully among the various ways of translating
a given construct into target code. An important example occurs in the case of
floating-point arithmetic, which is typically much slower than integer arithmetic.
Rather than stall the entire pipeline while executing a floating-point instruction,
we can build a separate functional unit for floating-point math, and arrange for it
to operate on a separate set of floating-point registers. In effect, this strategy leads
to a pair of pipelines—one for integers and one for floating-point—that share
their first few stages. The integer branch of the pipeline can continue to execute
while the floating-point unit is busy, so long as subsequent instructions do not
require the floating-point result. The need to reorder, or schedule, instructions so
that those that conflict with or depend on one another are separated in time is
one of the principal reasons why compiling for modern processors is hard.

5.4.1 Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s, the
instruction set of a typical computer was implemented by soldering together large
numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit upon
the idea of microprogramming. Microprogramming allowed a company to provide
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the same instruction set across a whole line of computers, from inexpensive slow
machines to expensive fast machines. The basic idea was to build a “microengine”
in hardware that executed an interpreter program in “firmware.” The interpreter
in turn implemented the “machine language” of the computer—in this case, the
IBM 360 instruction set. More expensive machines had fancier microengines, with
more direct support for the instructions seen by the assembly-level programmer.
The top-of-the-line machines had everything in hardware. In effect, the architec-
ture of the machine became an abstract interface behind which hardware designers
could hide implementation details, much as the interfaces of modules in mod-
ern programming languages allow software designers to limit the information
available to users of an abstraction.

In addition to allowing the introduction of computer families, microprogram-
ming made it comparatively easy for architects to extend the instruction set.
Numerous studies were published in which researchers identified some sequence
of instructions that commonly occurred together (e.g., the instructions that jump
to a subroutine and update bookkeeping information in the stack), and then intro-
duced a new instruction to perform the same function as the sequence. The new
instruction was usually faster than the sequence it replaced, and almost always
shorter (and code size was more important then than now).

5.4.2 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large
scale integration (VLSI) chip technology reached the point at which a simple
microprogrammed processor could be implemented entirely on one inexpensive
chip. The chip boundary is important because it takes much more time and power
to drive signals across macroscopic output pins than it does across intrachip con-
nections, and because the number of pins on a chip is limited by packaging issues.
With an entire processor on one chip, it became feasible to build a commer-
cially viable personal computer. Processor architectures of this era include the
MOS Technology 6502, used in the Apple II and the Commodore 64, and the
Intel 8080 and Zilog Z80, used in the Radio Shack TRS-80 and various CP/M
machines. Continued improvements in VLSI technology led, by the mid-1980s,
to 32-bit microprogrammed microprocessors such as the Motorola 68000, used
in the original Apple Macintosh, and the Intel 80386, used in the first 32-bit
IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general-purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as VLSI
density increased, registers and instruction sets expanded as well. Intel’s 32-bit
80386 was introduced in 1985.
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5.4.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined
32-bit processor with a sufficiently simple instruction set could be implemented
on a single chip, without microprogramming. Second, improvements in proces-
sor speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these fac-
tors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-instruc-
tions trend in processor design, but was to a large extent consistent with established
trends for supercomputers. Supercomputer instruction sets had always been rela-
tively simple and low level, in order to facilitate pipelining. Among other things,
effective pipelining depends on having most instructions take the same, constant
number of cycles to execute, and on minimizing dependences that would prevent
a later instruction from starting execution before its predecessors have finished.
A major problem with the trend toward more complex instruction sets was that
it made it difficult to design high-performance implementations. On the VAX,
for example (the most popular minicomputer of the early 1980s), instructions
could vary in length from one to more than 50 bytes, and in execution time from
one to thousands of cycles. Both of these factors tend to lead to pipeline stalls.
Variable length instructions make it difficult to even find the next instruction
until the current one has been studied extensively. Variable execution time makes
it difficult to keep all the pipeline stages busy. The original VAX (the 11/780) was
shipped in 1978, but it wasn’t until 1985 that Digital was able to ship a successfully
pipelined version, the 8600.3

The most basic rule of processor performance holds that total execution time
on any machine equals the number of instructions executed times the average
number of cycles per instruction times the length in time of a cycle. What we
might call the“CISC design philosophy”is to minimize execution time by reducing
the number of instructions, letting each instruction do more work. The “RISC
philosophy,” by contrast, is to minimize execution time by reducing the length of
the cycle and the number of (nonoverlapped) cycles per instruction (CPI).

Recent RISC machines (and RISC-like implementations of the x86) attempt
to minimize CPI by executing as many instructions as possible in parallel. The
PowerPC G5, for example, can have over 200 instructions simultaneously “in

3 An alternative approach, to maintain microprogramming but pipeline the microengine, was
adopted by the 8800 and, later, by Intel’s Pentium Pro and its successors.
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flight.” Some processors have very deep pipelines, allowing the work of an instruc-
tion to be divided into very short cycles. Many are superscalar : they have multiple
parallel pipelines, and start more than one instruction each cycle. (This requires,
of course, that the compiler and/or hardware identify instructions that do not
depend on one another, so that parallel execution is semantically indistinguish-
able from sequential execution.) To minimize artificial dependences between
instructions (as, for instance, when one instruction must finish using a reg-
ister as an operand before another instruction overwrites that register with a
new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different loca-
tions in a larger set of physical (implementation) registers. High performance
processor implementations may actually execute mutually independent instruc-
tions out of order when they can increase instruction-level parallelism by doing
so. These techniques dramatically increase implementation complexity but not
architectural complexity; in fact, it is architectural simplicity that makes them
possible.

5.4.4 Multithreading and Multicore

For 40 years, improvements in silicon fabrication technology have fueled a seem-
ingly inexorable increase in the density of integrated circuits. This trend, first
observed by Gordon Moore in 1965, has seen the number of transistors on a chip
double roughly every two years since the mid 1960s—a million-fold increase over
that period of time. Processor designers have used this amazing windfall in several
major ways:

Faster clocks. Since smaller transistors can charge and discharge more quickly,
higher-density chips can run at a higher clock rate. The Intel 8080 ran at
2 MHz in 1974. Rates of 2 GHz (1000× faster) are common today.

Instruction-level parallelism (ILP). As noted in the previous subsection, modern
processors employ pipelined, superscalar, and out-of-order execution to keep a
very large number of instructions “in flight,” and to execute those instructions
as soon as their operands become available.

Speculation. To keep the pipeline full, a modern processor guesses which way
control will go at every branch, and speculatively executes instructions along
the predicted control path. Some processors employ additional forms of spec-
ulation as well: they may, for example, guess the value that will be returned
by a read that misses in the cache. So long as guesses are right, the processor
avoids “unnecessary” waiting. It must always check after the fact, however, and
be prepared to undo any erroneous operations in the event that a guess was
wrong.

Larger caches. As noted in the sidebar on page 67, caches play a critical role in
coping with the processor-memory gap induced by higher clock rates. Higher
VLSI density makes room for larger caches.
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Unfortunately, by roughly 2004, the first three of these standard techniques
had pretty much hit a dead end. Both faster clocks and speculation lead to very
high energy consumption. To first approximation, a chip’s energy requirements are
proportional to its physical area and clock frequency. While caches take less energy
than average (they’re comparatively passive), the bookkeeping circuits required
for speculation are very power-hungry. Where the 8080 consumed about 1.3 W,
a desktop processor today may consume 130 W—more heat per unit area than
the burner of a hot plate, and essentially at the limit of what we can cool without
refrigeration. Simultaneously, ILP exploitation and speculative execution have
approached the inherent limits of traditional sequential code. Bluntly put, we’re
executing as many instructions in parallel as our programs will allow.

Robbed of the ability to run a single program faster, processor designers have
taken to building multithreaded and multicore chips that can run more than one
program at once. Historically, multithreading was introduced first. It allows seve-
ral programs (threads), represented by several sets of registers and instruction
fetching logic, to share the back end (execution units) of a single processor. In
effect, the extra threads serve to fill bubbles in the processor’s pipeline. A multicore
processor, by contrast has two or more complete processors (cores) on a single
chip. Compared to a high-end uniprocessor, these may run at a somewhat slower
clock rate, and expend less energy on speculation and ILP discovery, in order to
maximize performance per watt.

As of the summer of 2008, Intel sells processors with two dual-core chips in a
single package, and is rumored to be working on a six-core design for release in
the next few months. AMD and IBM are both selling quad-core processors today.
Sun, which specializes in servers that have naturally parallel workloads, is currently
leading the pack, with 8-core, 64-thread chips available today, and 16-core chips
expected by the end of the year.

In moving to multicore processors, the computer industry has effectively given
up on running conventional programs faster, and is banking instead on running
better programs. This makes the current revolution in processor design very dif-
ferent from its predecessors. Where previous revolutions were mostly invisible to
programmers (code might perhaps have to be recompiled to make the best use
of a new machine), the current revolution will eventually require that programs
be rewritten in some concurrent programming language. And while successes
in high-end scientific and commercial computing have demonstrated that this
task is possible for expert programmers in certain problem domains, it is not yet
clear whether it will be possible for “ordinary” programmers in multiple problem
domains.

Most computers do several things at once: they update the display, check for
mail, play music, and execute user commands by switching the processor from
one task to another many times a second. With several cores available, each task
can run on a different core, reducing the need for switching. But what will happen
when we have 100 cores? Where will we find 100 runnable threads? This is perhaps
the most vexing problem currently facing the field of computer systems.
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3CHECK YOUR UNDERSTANDING

18. What is microprogramming? What breakthroughs did its invention make
possible?

19. What technological threshold was crossed in the mid-1970s, enabling the
introduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

20. What is pipelining?

21. Summarize the difference between the CISC and RISC philosophies in instruc-
tion set design.

22. Why do RISC machines allow only load and store instructions to access
memory?

23. Name three CISC architectures. Name three RISC architectures. (If you’re
stumped, see the Summary and Concluding Remarks [Section 5.6].)

24. What three research groups share the credit for inventing RISC? (For this you’ll
probably need to peek at the Bibliographic Notes [Section 5.9].)

25. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

26. Why are microprocessor clock rates no longer increasing?

27. Explain the difference between multithreaded and multicore processors.

28. Explain why the multicore revolution poses an unprecedented challenge for
computer systems.

5.4.5 Two Example Architectures:The x86 and MIPS

We can illustrate the differences between CISC and RISC machines by examining a
representative pair of architectures. The x86 is the most widely used CISC design—EXAMPLE 5.11

The x86 ISA in fact, the most widely used processor architecture of any kind (outside the
embedded market). The original model, the 8086, was announced in 1978. Major
changes were introduced by the 8087, 80286, 80386, Pentium Pro, Pentium/MMX,
Pentium III, and Pentium 4. While technically backward compatible, these changes
were often out of keeping with the philosophy of the earlier generations. The
result is a machine with an enormous number of stylistic inconsistencies and
special cases. The 64-bit extension to the x86 was likewise saddled with the need
for backward compatibility, and is even more complex. It was originally developed
by AMD and subsequently licensed by Intel. (AMD calls it AMD64. Intel calls it
Intel 64. Generically, it is often referred to as x86-64, or simply x64).
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Early generations of the x86 were extensively microprogrammed. More recent
generations still use microprogramming for the more complex portions of the
instruction set, but simpler instructions are translated directly (in hardware) into
between one and four microinstructions that are in turn fed to a heavily pipelined,
RISC-like computational core. �

The MIPS architecture, begun as a commercial spin-off of research at StanfordEXAMPLE 5.12
The MIPS ISA University, is arguably the simplest of the commercial RISC machines. It too has

evolved, through six principal generations (the last in 1999). With one exception,
however—the introduction of 64-bit integer operands and addresses in 1991—the
changes have been relatively minor. Current processors are sold in 32- and 64-bit
versions. MIPS processors were used by several workstation vendors—notably Sil-
icon Graphics—throughout the 1990s. They are now used primarily in embedded
applications. MIPS-based tools are also widely used in academia. All models of the
MIPS are implemented entirely in hardware; they are not microprogrammed. �

Among the most significant differences between the x86 and MIPS are their
memory access mechanisms, their register sets, and the variety of instructions they
provide. Like all RISC machines, the MIPS allows only load and store instructions
to access memory; all computation is done with values in registers. Like most
CISC machines, the x86 allows computational instructions to operate on values
in either registers or memory. It also provides a richer set of addressing modes.
Like most RISC machines, the MIPS has 32 integer registers and 32 floating-point
registers. The 32-bit x86, by contrast, has only 8 of each, and most of the floating-
point instructions treat the floating-point registers as a tiny stack, rather than
naming them directly. The MIPS provides many fewer distinct instructions than
does the x86, and its instruction set is much more internally consistent; the x86
has a huge number of special cases. All MIPS instructions are exactly 4 bytes long.
Instructions on the x86 vary from 1 to 17 bytes.

Memory Access and Addressing Modes

Like all RISC machines, the MIPS has a load/store architecture. Its memory access
instructions support only displacement addressing. With a displacement of zero
this subsumes register indirect addressing. With a base of zero (hardwired into
register zero), it also subsumes so-called absolute addressing in the first 64K of
memory. On the x86, by contrast, most instructions can obtain one (but not both)
of their operands from memory. Nine different addressing modes are available for
these references. The most general case is called scaled indexed addressing. It
employs a base register Rb , an index register Ri , a displacement d , and a scaling
factor s. The value of s must be 1, 2, 4, or 8; it can therefore be encoded in two bits.
The effective address of the operand is (Rb) + d + (Ri) × s, where (R) represents
the content of register R. All of the other x86 addressing modes are simplifications
of this general case.

MIPS instructions are three-address. X86 instructions are two-address: the
result of a computation overwrites one of the operands, which may be in either a
register or memory.
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Registers

The register sets of the two machines are illustrated pictorially in Figure 5.6. TheEXAMPLE 5.13
x86 and MIPS register sets most striking difference between the two is the sheer number of registers on the

RISC machine—roughly four times as many as on the CISC machine. The integer
registers are also wider on the MIPS, but both machines have“widened” over time.
The 8086 was introduced in 1978 with 16-bit integer registers. (It was source-code
compatible, though not binary compatible, with the earlier 8-bit 8080.) Intel
expanded the registers to 32 bits in 1985 with the 80386. The MIPS, by contrast,
was introduced with 32-bit integer registers in 1984. These were expanded to 64
bits in 1991. The x86-64 architecture, introduced by AMD in 2003, extends the
x86 to 64-bit registers. We do not consider those extensions here; even on 64-bit
machines, most programs continue to run in 32-bit mode. �

The x86 has eight 32-bit integer registers, plus the program counter and the
processor status word, which includes the condition codes. For historical reasons,
the integer registers are named eax, ebx, ecx, edx, esi, edi, esp, and ebp.
They can be used interchangeably in most instructions, but certain instructions
use them in special ways. Registers eax and edx, for example, are implicitly the
destination registers for integer multiplication and division operations. Register
ecx is read and updated implicitly by certain loop-control instructions. Registers
esi and edi are used implicitly by instructions that copy, search, or compare
strings of characters in memory. Register esp is used as a stack pointer; it is
read and written implicitly by push, pop, and subroutine call/return instructions.
Register ebp is typically used as a frame pointer; it is manipulated by instructions
designed to allocate and deallocate stack frames.

For backward compatibility with 16-bit code, there are separate names for the
lower halves of all eight integer registers: ax, bx, cx, dx, si, di, sp, and bp. Four
of these (ax, bx, ax, and ax) have separate names for their upper and lower halves:
ah, al, bh, bl, ch, cl, dh, and dl.

Floating-point instructions manipulate a separate set of 80-bit floating-point
registers. There are also registers for IEEE floating-point status and control,
floating-point condition codes, and “tag” bits that indicate whether the values
in the various floating-point registers are normal, denormal, NaN, or garbage.
All computation is carried out in extended precision; values are converted to and
from IEEE single- and double-precision floating-point when written to or read
from memory.

Recent members of the x86 processor family support instruction set extensions
(MMX and SSE) that allow arithmetic operations to be performed on vectors
of small integer or floating-point operands. While we will not consider these
extensions further, it is worth mentioning that the eight MMX vector registers
overlap the low-order 64 bits of the x86 floating-point registers. The eight SSE
vector registers are new; each is 128 bits long.

The MIPS has a total of 64 registers, 32 integer and 32 floating-point, plus the
program counter; a pair of special registers, called LO and HI, used by multiply and
divide instructions; a floating-point control and status register analogous to the
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Integer
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Floating-point control/
status, condition code,
and tag registers

Floating-point control/status
and condition code registers

Return address
HI

LO
Program counter

Program counter

Integer general registers Floating-point registers

Floating-point registers

zero

Condition codes

Figure 5.6 Register sets of the x86 (top) and MIPS IV (bottom). In both cases, only those reg-
isters of interest to the user-level programmer are shown; implementations of both architectures
include special-purpose registers of use to the operating system. Not shown are eight 128-bit
“streaming registers” introduced with the SSE extensions to the x86 and a 192-bit accumulator
introduced with the MDMX extensions to the MIPS. Also omitted are eight segment registers
in the x86 that support the obsolete 80286 addressing system; these are not used by modern
compilers.
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one on the x86; and an eight-bit floating-point condition code register. Branches
based on the outcome of integer operations employ combination instructions that
test or compare values in registers and branch based on the outcome; there are no
integer condition codes. In early generations of the MIPS, integer registers were
32 bits wide; in more recent generations they are 64. Double-precision (64-bit)
floating-point arithmetic has always been available, but in early generations it
required that the floating-point registers be used together in pairs.

Integer register r0 on the MIPS always contains a zero. This design trick allows
several simplifications in instruction encoding. To move a value from one register
to another, for example, we can perform an add (or a sub or an or) with r0;
we don’t need a separate instruction. To negate a value we can subtract it from
r0. To branch unconditionally, we can “test” whether r0 = r0. The only other
nonuniformity in the treatment of MIPS registers appears in the subroutine call
instruction, jal (jump and link): it places its return address in register r31.

Integer multiply instructions on the MIPS write their results to registers LO
and HI (with n-bit operands, the result of a multiply may require 2n bits). Divides
always generate both a quotient and a remainder, in LO and HI respectively. Special
move instructions copy from LO and/or HI to/from integer registers. As noted
above, the x86 overloads registers eax and edx for these purposes.

In a manner analogous to the MMX and SSE extensions to the x86, recent MIPS
processors also support small integer and floating-point vector operations. Data
for these operations are kept in the floating-point registers, and in a new 192-bit
vector accumulator that allows the results of a series of integer vector multiplies
to be totaled without overflow.

Register Conventions Beyond the special treatment given some registers in
hardware, the designers of both the x86 and the MIPS recommend additional
conventions to be enforced by software. On the x86, register ebp is generally
used for a frame pointer, whether or not the compiler makes use of special frame
management instructions. Function values are returned in register eax (or in the
pair eax:edx in the case of 64-bit return values). Any subroutine that modifies
registers ebx, esi, or edi must save their old values in memory, and restore them
before returning. Any caller that needs the values in eax, ecx, or edx must save
them before making a call. (Calling sequences will be discussed in more detail in
Section 5.5.2.)

Conventions are even more elaborate on the MIPS. Register r1 is reserved
for the assembler, which uses it when expanding certain pseudoinstructions into
sequences of real instructions. Registers r2 and r3 are used for expression evalu-
ation and function returns. Registers r4..r7 are used for subroutine parameters.
Registers r16..r23 are “callee saves” registers comparable to ebx, esi, and edi
on the x86. Registers r8..r15, r24, and r25 are “caller saves” registers. Registers
r26 and r27 are reserved for use by the operating system kernel; from the point
of view of a user program their values can change spontaneously. Register r28 is
used as a base for displacement addressing of global variables. Registers r29 and
r30 are used for the stack pointer and frame pointer, respectively.
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Instructions

While it can be difficult to count the instructions in a given instruction set (the
x86 can branch on any of 16 different combinations of the condition codes; does
this mean it has 16 conditional branch instructions, or one with 16 variants?), it
is still clear that the x86 has more, and more complex, instructions than does the
MIPS. Some of the features of the x86 not found in the MIPS include:

Binary-coded decimal arithmetic (see the sidebar on page 296).

Character-string search, compare, and copy operations.

Bit test and set operations.

Bit string search and copy operations.

Miscellaneous “combination” instructions. These perform the same task as
some multi-instruction sequence, but require less code space and presumably
run faster. Examples include byte and register swaps, subroutine calls and
returns, stack operations, and loop control.

Instructions to support the obsolete 80286 segmented memory system.

On the other hand, the MIPS provides:

“Building-block” instructions that allow a 32-bit quantity to be loaded into a
register with a two-instruction sequence.

Separate 32- and 64-bit versions of most of the arithmetic, logical, and
memory-access (load/store) instructions.

Nullifying branches (discussed in Section 5.5.1).

Conditional traps. These provide a fast way to drop into the operating system
on a dynamic semantic error.

More important than any difference in the number or types of instructions,
however, is the difference in how those instructions are encoded. Like most CISC
machines, the x86 places a heavy premium on minimizing code size (and thus the
need for memory at run time), at the expense of comparatively difficult instruction
decoding. Instructions range from 1 to 17 bytes in length, with a myriad of internal
formats. Similar fields do not necessarily have the same length, or appear at the
same offset, in different instructions. Operand specifiers vary in length depending
on the choice of addressing mode. One-byte prefix codes can be prepended to
certain instructions to modify their behavior, causing them to repeat multiple
times, access operands in a different segment of the 80286 address space, or lock
the bus for atomic access to main memory.

Floating-point operations are perhaps the most baroque component of the
x86 instruction set. The designers of the original floating-point co-processor,
the Intel 8087,chose to conserve space in floating-point instructions by treating the
floating-point registers as a stack. A floating-point load instruction, for example,
does not specify a destination register; instead it pushes its operand into the
top location on the register stack, designated st(0). The previous contents of
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registers st(0) through st(6) move down so that what used to be in st(4), for
example, is now in st(5). The content of st(7) is lost. Arithmetic instructions,
likewise, manipulate the stack. The simplest add instruction, for example, does
not specify operand or destination registers; instead it reads its operands implicitly
from st(0) and st(1), and replaces the content of st(0) with the result. A
variant of the add instruction pops its operands: the contents of registers st(2)
through st(7) move up one position, and st(0) gets the result of adding the
old st(0) and st(1). Additional instruction variants take one operand from an
explicitly named register farther down the stack, or from a location in memory.
Noncommutative operations, such as subtraction and division, have variants that
use their operands in either order.

While floating-point arithmetic instructions (and compare and test instruc-
tions) update the floating-point condition codes, there are no special branch
instructions to alter control flow based on these codes. Instead, an fnstsw instruc-
tion must be used to copy the floating-point status word to one of the 16-bit integer
registers, where a subsequent bit test instruction can access the desired condition
codes. This instruction in turn sets the integer condition codes, which can be used
to direct a branch.

Like most RISC machines, the MIPS employs fixed-length, 32-bit instructions
with relatively simple encodings. The first six bits specify the opcode. The remain-
ing bits contain (1) a 26-bit jump displacement, (2) a pair of register specifiers
and a 16-bit constant, or (3) three register specifiers and 11 additional bits, some
of which are used by special-purpose instructions. Many of the register-register
operations contain unused bits, and operations that might be specified with, say,
40 bits on the x86 require two full instructions (64 bits) on the MIPS. Like the x86,
the MIPS implements the IEEE 754 floating-point standard, but its floating-point
instruction set is much more simple and straightforward—very similar to the inte-
ger set. Floating-point branch instructions have direct access to the floating-point
condition codes.

3CHECK YOUR UNDERSTANDING

29. Describe the most general (complex) addressing modes of the x86 and MIPS
architectures.

30. How many integer and floating-point registers are provided by each machine?
How wide are these registers?

31. Explain the utility of register zero on the MIPS.

32. Summarize the register usage conventions of the x86 and MIPS.

33. List at least three “complex” instructions provided by the x86 instruction set
but not provided by the MIPS instruction set.

34. Name a “simple” instruction provided by the MIPS but not by the x86.
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35. Describe the floating-point stack of the x86.

36. Summarize the differences in instruction encoding between the x86 and MIPS.

5.5 Compiling for Modern Processors

Programming a RISC machine by hand, in assembly language, is a tedious under-
taking. Only loads and stores can access memory, and then only with limited
addressing modes. Moreover the limited space available in fixed-size instructions
means that a nonintuitive two-instruction sequence is required to load a 32-bit
constant or to jump to an absolute address. In some sense, complexity that used to
be hidden in the microcode of CISC machines has been exported to the compiler.
Fortunately, compilers don’t get bored or make careless mistakes, and can easily
deal with comparatively primitive instructions. In fact, when compiling for recent
implementations of the x86, compilers generally limit themselves to a small, RISC-
like subset of the instruction set, which the processor can pipeline effectively. Old
programs that make use of more complex instructions still run, but not as fast;
they don’t take full advantage of the hardware.

The real difficulty in compiling for modern processors lies not in the need to
use primitive instructions, but in the need to keep the pipeline full and to make
effective use of registers. A user who traded in a Pentium III PC for one with aEXAMPLE 5.14

Performance �= clock rate Pentium 4 would typically find that while old programs ran faster on the new
machine, the speed improvement was nowhere near as dramatic as the difference
in clock rates would have led one to expect. Improvements would generally be
better if one could obtain new program versions that were compiled with the
newer processor in mind. �

5.5.1 Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

1. Cache misses. A load instruction or an instruction fetch may miss in the cache.

2. Resource hazards. Two concurrently executing instructions may need to use the
same functional unit at the same time.

3. Data hazards. An instruction may need an operand that has not yet been
produced by an earlier but still executing instruction.

4. Control hazards. Until the outcome (and target) of a branch instruction are
determined, the processor does not know the location from which to fetch
subsequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
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building larger or more highly associative caches.4 Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area,
and power consumption) to consider a lengthy “window” of instructions, and
make progress on any of them for which operands and hardware resources are
available.

Of course, even out-of-order execution works only if the processor is able to
fetch instructions, and thus it is control hazards that have the largest potential
negative impact on performance. Branches constitute something like 10% of all
instructions in typical programs,5 so even a one-cycle stall on every branch could
be expected to slow down execution by 9% on average. On a deeply pipelined
machine one might naively expect to stall for more like five or even ten cycles while
waiting for a new program counter to be computed. To avoid such intolerable
delays, most workstation-class processors incorporate hardware to predict the
outcome of each branch, based on past behavior, and to execute speculatively down
the predicted path. Assuming that it takes care to avoid any irreversible operations,
the processor will suffer stalls only in the case of an incorrect prediction.

On the software side, the compiler has a major role to play in keeping the
pipeline full. For any given source program, there is an unbounded number of
possible translations into machine code. In general we should prefer shorter trans-
lations over longer ones, but we must also consider the extent to which various
translations will utilize the pipeline. On an in-order processor (one that always
executes instructions in the order they appear in the machine language program),
a stall will inevitably occur whenever a load is followed immediately by an instruc-
tion that needs the loaded value, because even first-level cache requires at least
one extra cycle to respond. A stall may also occur when the result of a slow-
to-complete floating-point operation is needed too soon by another instruction,
when two concurrently executing instructions need the same functional unit in
the same cycle, or, on a superscalar processor, when an instruction that uses a
value is executed concurrently with the instruction that produces it. In all these
cases performance may improve significantly if the compiler chooses a translation
in which instructions appear in a different order.

The general technique of reordering instructions at compile time so as to
maximize processor performance is known as instruction scheduling. On an in-
order processor the goal is to identify a valid order that will minimize pipeline

4 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower, but suffer fewer such
conflicts.

5 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP07, 3rd ed., pp. 138–139].
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stalls at run time. To achieve this goal the compiler requires a detailed model
of the pipeline. On an out-of-order processor the goal is simply to maximize
instruction-level parallelism (ILP): the degree to which unrelated instructions lie
near one another in the instruction stream (and thus are likely to fall within the
processor’s instruction window). A compiler for such an out-of-order machine
may be able to make do with a less detailed processor model. At the same time, it
may need to ensure a higher degree of ILP, since out-of-order execution tends to
be found on machines with several pipelines.

Instruction scheduling can have a major impact on resource and data haz-
ards. On machines with so-called delayed branches it can also help with control
hazards. We will consider the topic of instruction scheduling in some detail in
Section 16.6. In the remainder of the current subsection we focus on the two
cases—loads and branches—where issues of instruction scheduling may actually
be embedded in the processor’s instruction set. Software techniques to reduce
the incidence of cache misses typically require large-scale restructuring of con-
trol flow or data layout. Though the better commercial compilers may reorganize
loops for better cache locality in scientific programs (a topic we will consider in
Section 16.7.2), most simply assume that every memory access will hit in the
primary cache. The assumption is generally a good one: most programs on most
machines achieve a cache hit rate of well over 90% (often over 99%). The impor-
tant goal is to make sure that the pipeline can continue to operate during the time
that it takes the cache to respond.

Loads

Consider a load instruction that hits in the primary cache. The number of cycles
that must elapse before a subsequent instruction can use the result is known as the
load delay. Most current machines have a one-cycle load delay. If the instruction
immediately after a load attempts to use the loaded value, a one-cycle load penalty
(a pipeline stall) will occur. Longer pipelines can have load delays of two or even
three cycles.

To avoid load penalties (in the absence of out-of-order execution), the compiler
may schedule one or more unrelated instructions into the delay slot (s) between a
load and a subsequent use. In the following code, for example, a simple in-orderEXAMPLE 5.15

Filling a load delay slot pipeline will incur a one-cycle penalty between the second and third instructions:

r2 := r1 + r2
r3 := A – – load
r3 := r3 + r2

If we swap the first two instructions, the penalty goes away:

r3 := A – – load
r2 := r1 + r2
r3 := r3 + r2

The second instruction gives the first instruction time enough to retrieve A before
it is needed in the third instruction. �
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To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later
instruction uses a value produced by an earlier instruction.

Anti-dependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruction
overwrites a value written by a previous instruction.

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, anti-dependences prevent us from movingEXAMPLE 5.16

Renaming registers for
scheduling

either the instruction before the load or the one after the add into the delay slot
of the load:

r3 := r1 + 3 – – immovable×↓
r1 := A – – load
r2 := r1 + r2

r1 := 3 – – immovable×↑
If we use a different register as the target of the load, however, then either instruc-
tion can be moved:

r3 := r1 + 3 – – movable↓
r5 := A – – load
r2 := r5 + r2

r1 := 3 – – movable↑
becomes

r5 := A – – load
r3 := r1 + 3
r1 := 3
r2 := r5 + r2 �

The need to rename registers in order to move instructions can increase the
number of registers needed by a given stretch of code. To maximize opportuni-
ties for concurrent execution, out-of-order processor implementations may per-
form register renaming dynamically in hardware, as noted in Section 5.4.3.
These implementations possess more physical registers than are visible in the
instruction set. As instructions are considered for execution, any that use the
same architectural register for independent purposes are given separate physical
copies on which to do their work. If a processor does not perform hardware reg-
ister renaming, then the compiler must balance the desire to eliminate pipeline
stalls against the desire to minimize the demand for registers (so that they can
be used to hold loop indices, local variables, and other comparatively long-lived
values).

Branches

Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed, or has even been fully decoded.
With fixed-size instructions a processor can infer this address for straight-line
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code, but not for the code that follows a branch.6 In an attempt to minimize the
impact of branch delays, several early RISC machines provided delayed branch
instructions: with these, the instruction immediately after the branch is executed
regardless of the outcome of the branch. If the branch is not taken, all occurs as one
would normally expect. If the branch is taken, however, the order of instructions
is the branch itself, the instruction after the branch, and then the instruction at
the target of the branch.

Because control may go either of two directions at a branch, finding an instruc-
tion to fill a delayed branch slot is slightly trickier than finding one to fill a delayed
load slot. The few instructions immediately before the branch are the most obvi-EXAMPLE 5.17

Filling a branch delay slot ous candidates to move, provided that they do not contribute to the calculation
that controls the branch, and that we don’t have to move them past the target of
some other branch:

B := r2 – – movable↓
r1 := r2 * r3 – – immovable×↓
if r1 > 0 goto L1
nop

becomes
r1 := r2 * r3
if r1 > 0 goto L1
B := r2

(This code sequence assumes that branches are delayed. Unless otherwise noted,
we will assume throughout the remainder of the book that they are not.) �

To address the problem of unfillable branch delay slots, some RISC machines
provide nullifying conditional branch instructions. A nullifying branch includes
a bit that indicates the direction that the compiler “expects” the branch to go.
The hardware executes the instruction in the delay slot only if the branch goes

DESIGN & IMPLEMENTATION

Delayed load instructions
In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To mini-
mize chip area, several of the very early RISC processors provided this hardware
only in the case of cache misses. The result was an architecturally visible delayed
load instruction similar to the delayed branches discussed elsewhere in this sec-
tion. The value of the register targeted by a delayed load was undefined in the
immediately subsequent instruction slot. Filling the delay slot of a delayed load
with an unrelated instruction was thus a matter of correctness, not just of per-
formance. If a compiler was unable to find a suitable “real” instruction, it had
to fill the delay slot with a no-op (nop)—an instruction that has no effect. More
recent RISC machines have abandoned delayed loads; their implementations
are fully interlocked. Within processor families old binaries continue to work
correctly; the (nop) instructions are simply redundant.

6 In this context, branches include not only the control flow for conditionals and loops, but also
subroutine calls and returns.
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the expected direction. While the branch instruction is making its way down
the pipeline, the hardware begins to execute the next instruction. Ideally, by the
time it must begin the instruction after that, it will know the outcome of the
branch. If the outcome matches the prediction, then the pipeline will proceed
without stalling. If the outcome does not match the prediction, then the (not
yet completed) instruction in the delay slot will be abandoned, along with any
instructions fetched from the target of the branch.

Unfortunately, as architects have moved to more aggressive, deeply pipelined
processor implementations, multicycle branch delays have become the norm, and
architecturally visible delay slots no longer suffice to hide them. A few processors
have been designed with an architecturally visible branch delay of more than
one cycle, but this is not generally considered a viable strategy: it is simply too
difficult for the compiler to find enough instructions to schedule into the slots.
Several processors retain one-slot delayed branches (sometimes with optional
nullification) for the sake of backward compatibility, and as a means of redu-
cing, but not eliminating, the number of pipeline stalls (the penalty) associated
with a branch. With or without delayed branches, many processors also employ
elaborate hardware mechanisms to predict the outcome and targets of branches
early, so that the pipeline can continue anyway. When a prediction turns out to
be incorrect, of course, the hardware must ensure that none of the incorrectly
fetched instructions have visible effects. Even when hardware is able to predict the
outcome of branches, it can be useful for the compiler to do so also, in order to
schedule instructions to minimize load delays in the most likely cross-branch code
paths.

5.5.2 Register Allocation

The load-store architecture of RISC machines explicitly acknowledges that mov-
ing data between registers and memory is expensive. A store instruction costs a
minimum of one cycle—more if several stores are executed in succession and the
memory system can’t keep up. A load instruction costs a minimum of one or two
cycles (depending on whether the delay slot can be filled), and can cost scores
or even hundreds of cycles in the event of a cache miss. These same costs are
present on CISC machines as well, even if they don’t stand out as prominently
in a casual perusal of assembly code. In order to minimize the use of loads and
stores, a good compiler must keep things in registers whenever possible. We saw an
example in Chapter 1: the most striking difference between the “optimized” code
of Example 1.2 (page 5) and the naive code of Figure 1.6 (page 34 ) is the absence
in the former of most of the loads and stores. As improvements in processor speed
continue to outstrip improvements in memory speed, the cost in cycles of a cache
miss continues to increase, making good register usage increasingly important.

Register allocation is typically a two-stage process. In the first stage the com-
piler identifies the portions of the abstract syntax tree that represent basic blocks:
straight-line sequences of code with no branches in or out. Within each basic
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block it assigns a “virtual register” to each loaded or computed value. In effect,
this assignment amounts to generating code under the assumption that the target
machine has an unbounded number of registers. In the second stage, the compiler
maps the virtual registers of an entire subroutine onto the architectural (hardware)
registers of the machine, using the same architectural register when possible to
hold different virtual registers at different times, and spilling virtual registers to
memory when there aren’t enough architectural registers to go around.

We will examine this two-stage process in more detail in Section 16.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling aEXAMPLE 5.18

Register allocation for a
simple loop

function that computes the variance σ2 of the contents of an n-element vector.
Mathematically,

σ2 =
1
n

∑

i

(xi − x)2 =

(
1
n

∑

i

x2
i

)

− x2

where x0 . . . xn−1 are the elements of the vector, and x = 1/n
∑

i xi is their
average. In pseudocode,

double sum := 0
double squares := 0
for int i in 0 . . n−1

sum +:= A[i]
squares +:= A[i] × A[i]

double average := sum / n
return (squares / n) − (average × average)

After some simple code improvements and the assignment of virtual registers, the
assembly language for this function on a RISC machine is likely to look something
like Figure 5.7. This code uses two integer virtual registers (v1 and v2) and eight
floating-point virtual registers (w1–w8). For each of these we can compute the
range over which the value in the register is useful, or live. This range extends
from the point at which the value is defined to the last point at which the value
is used. For register w4, for example, the range is only one instruction long, from
the assignment at line 8 to the use at line 9. For register v1, the range is the union
of two subranges, one that extends from the assignment at line 1 to the use (and
redefinition) at line 10, and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers we can create a
mapping onto the architectural registers of the machine. We can use a single
architectural register for two virtual registers only if their live ranges do not over-
lap. If the number of architectural registers required is larger than the number
available on the machine (after reserving a few for such special values as the stack
pointer), then at various points in the code we shall have to write (spill) some of
the virtual registers to memory in order to make room for the others.

In our example program, the live ranges for the two integer registers overlap,
so they will have to be assigned to separate architectural registers. Among the
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1. v1 := &A – – pointer to A[1]
2. v2 := n – – count of elements yet to go
3. w1 := 0.0 – – sum
4. w2 := 0.0 – – squares
5. goto L2
6. L1: w3 := *v1 – – A[i] (floating point)
7. w1 := w1 + w3 – – accumulate sum
8. w4 := w3 × w3
9. w2 := w2 + w4 – – accumulate squares

10. v1 := v1 + 8 – – 8 bytes per double-word
11. v2 := v2 – 1 – – decrement count
12. L2: if v2 > 0 goto L1
13. w5 := w1 / n – – average
14. w6 := w2 / n – – average of squares
15. w7 := w5 × w5 – – square of average
16. w8 := w6 – w7
17. . . . – – return value in w8

Figure 5.7 RISC assembly code for a vector variance computation.

1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1 – – no delay
7. f1 := f1 + f3 – – 1-cycle wait for f3
8. f3 := f3 × f3 – – no delay
9. f2 := f2 + f3 – – 4-cycle wait for f3

10. r1 := r1 + 8 – – no delay
11. r2 := r2 – 1 – – no delay
12. L2: if r2 > 0 goto L1 – – no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 – f1
17. . . . – – return value in f1

Figure 5.8 The vector variance example with architectural registers assigned. Also shown in
the body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one cycle penalty for loads, two cycle penalty for floating-point
adds, and four cycle penalty for floating-point multiplies.

floating-point registers, w1 overlaps with w2–w4, w2 overlaps with w3–w5, w5
overlaps with w6, and w6 overlaps with w7. There are several possible map-
pings onto three architectural floating-point registers, one of which is shown in
Figure 5.8. �
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1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1
7. r1 := r1 + 8 – – no delay
8. f4 := f3 × f3 – – no delay
9. f1 := f1 + f3 – – no delay

10. r2 := r2 – 1 – – no delay
11. f2 := f2 + f4 – – 1-cycle wait for f4
12. L2: if r2 > 0 goto L1 – – no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 – f1
17. . . . – – return value in f1

Figure 5.9 The vector variance example after instruction scheduling. All but one cycle of
delay has been eliminated. Because we have hoisted the multiply above the first floating-point
add, however, we need an extra architectural floating-point register.

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure 5.8 has at least
two problems. First, of the seven instructions in the loop, nearly half are devoted
to bookkeeping: updating the pointer, decrementing the loop count, and testing
the terminating condition. Second, when run on a pipelined machine, the code is
likely to experience a very high number of stalls. Exercise 5.23 explores a first
step toward addressing the bookkeeping overhead. We consider the stalls below,
and return to both problems in more detail in Chapter 16.

We noted in Section 5.5.1 that floating-point instructions commonly employEXAMPLE 5.19
Register allocation and
instruction scheduling

a separate, longer pipeline. Because they take more cycles to complete, there can
be a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by
two and four cycles, respectively, of unrelated computation (these are modest
figures; real machines often have longer delays). Also suppose that the result of
a load is not available for the usual one-cycle delay. In the context of our vector
variance example, these delays imply a total of five stalled cycles in every iteration
of the loop, even if the hardware successfully predicts the outcome and target of
the branch at the bottom. Added to the seven instructions themselves, this implies
a total of 12 cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure 5.9) we can eliminate
all but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and must use
an extra architectural register to hold on to the add’s second argument. This effect
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is not unusual: instruction scheduling has a tendency to overlap the live ranges of
virtual registers whose ranges were previously disjoint, leading to an increase in
the number of architectural registers required. �

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller will be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
a copy of the code at each call site, despite the resulting increase in code size.
This inlining of subroutines can be an important form of code improvement,
particularly for object-oriented languages, which tend to have very large numbers
of very small subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to per-
form register allocation makes a call to a subroutine, there are several issues to
consider:

Parameters must generally be passed. Ideally, we should like to pass them in
registers.

Any registers that the callee will use internally, but which contain useful values
in the caller, must be spilled to memory and then reread when the callee returns.

Any variables that the callee might load from memory, but which have been
kept in a register in the caller, must be written back to memory before the call,
so that the callee will see the current value.

Any variables to which the callee might store a value in memory, but which
have been kept in a register in the caller, must be reread from memory when
the callee returns, so that the caller will see the current value.

DESIGN & IMPLEMENTATION

In-line subroutines
Subroutine inlining presents, to a large extent, a classic time-space tradeoff.
Inlining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to perform
code improvement across the call without performing interprocedural analysis,
and typically improves locality, especially in the L1 instruction cache.
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If the caller does not know exactly what the callee might do (this is often the
case—the callee might not have been compiled yet), then the compiler must make
conservative assumptions. In particular, it must assume that the callee reads and
writes every variable visible in its scope. The caller must write any such variable
back to memory prior to the call, if its current value is (only) in a register. If it
needs the value of such a variable after the call, it must reread it from memory.

With perfect knowledge of both the caller and the callee, the compiler could
arrange across subroutine calls to save and restore precisely those registers that
are both in use in the caller and needed (for internal purposes) in the callee.
Without this knowledge, we can choose either for the caller to save and restore
the registers it is using, before and after the call, or for the callee to save and
restore the registers it needs internally, at the top and bottom of the subroutine.
In practice it is conventional to choose the latter alternative for at least some static
subset of the register set, for two reasons. First, while a subroutine may be called
from many locations, there is only one copy of the subroutine itself. Saving and
restoring registers in the callee, rather than the caller, can save substantially on
code size. Second, because many subroutines (particularly those that are called
most frequently) are very small and simple, the set of registers used in the callee
tends, on average, to be smaller than the set in use in the caller. We will look at
subroutine calling sequences in more detail in Chapter 8.

3CHECK YOUR UNDERSTANDING

37. What is a delayed load instruction?

38. What is a nullifying branch instruction?

39. List the four principal causes of pipeline stalls.

40. What is a pipeline interlock?

41. What is instruction scheduling ? Why is it important on modern machines?

42. What is branch prediction? Why is it important?

43. Describe the interaction between instruction scheduling and register alloca-
tion.

44. What is the live range of a register?

45. What is subroutine inlining ? What benefits does it provide? When is it possible?
What is its cost?

46. Summarize the impact of subroutine calls on register allocation.

5.6 Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate, and the sorts of code improvements it must effect in order to

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch05-P374514 [11:26 2009/2/25] SCOTT: Programming Language Pragmatics Page: 102 3–867

102 Chapter 5 Target Machine Architecture

obtain acceptable performance. Since the early 1980s, the trend in processor design
has been to equip the compiler with more and more knowledge of the low-
level details of processor implementation, so that the generated code can use
the implementation to its fullest. This trend has blurred the traditional dividing
line between processor architecture and implementation: while a compiler can
generate correct code based on an understanding of the architecture alone, it
cannot generate fast code unless it understands the implementation as well. In
effect, timing issues that were once hidden in the microcode of microprogrammed
processors (and which made microprogramming an extremely difficult and arcane
craft) have been exported into the compiler.

In the first several sections of this chapter we surveyed the organization of
memory and the representation of data (including integer and floating-point
arithmetic), the variety of typical assembly language instructions, and the evo-
lution of modern RISC machines. As examples we compared the x86 and the
MIPS. We also introduced a simple notation to be used for assembly language
examples in later chapters. In the final section we discussed why compiling for
modern machines is hard. The principal tasks include instruction scheduling, for
load and branch delays and for multiple functional units, and register allocation,
to minimize memory traffic. We noted that there is often a tension between these
tasks, and that both are made more difficult by frequent subroutine calls.

As of 2009 there are four principal commercial RISC architectures: ARM (Mar-
vell, Texas Instruments, Motorola, and dozens of others), MIPS (NEC, Toshiba,
Freescale, and many others), Power/PowerPC (IBM, Freescale), and SPARC (Sun,
Texas Instruments, Fujitsu, and several others). ARM is the property of ARM
Holdings, PLC, an intellectual property firm that relies on licensees for actual fab-
rication. Though ARM processors are not generally employed in desktop or laptop
computers, they power roughly three-quarters of the world’s embedded systems,
in everything from cell phones and PDAs to remote controls and the dozens of
devices in a modern automobile. MIPS processors, likewise, are now principally
employed in the embedded market, though they were once common in desktop
and high-end machines.

Despite the handicap of a CISC instruction set and the need for backward
compatibility, the x86 overwhelmingly dominates the desktop and laptop market,
largely due to the marketing prowess of IBM, Intel, and Microsoft, and to the suc-
cess of Intel and AMD in decoupling the architecture from the implementation.
Modern implementations of the x86 incorporate a hardware front end that trans-
lates x86 code, on the fly, into a RISC-like internal format amenable to heavily
pipelined execution. Recent processors from Intel and AMD are competitive with
the fastest RISC alternatives.

With growing demand for a 64-bit address space, a major battle developed
in the x86 world around the turn of the century. Intel undertook to design an
entirely new (and very different) instruction set for their IA-64/Itanium line of
processors. They provided an x86 compatibility mode, but it was implemented in a
separate portion of the processor—essentially a Pentium subprocessor embedded
in the corner of the chip. Application writers who wanted speed and address space
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enhancements were expected to migrate to the new instruction set. AMD took a
more conservative approach, at least from a marketing perspective, and developed
a backward-compatible 64-bit extension to the x86 instruction set; its AMD64
processors provided a much smoother upward migration path. In response to
market demand, Intel subsequently licensed the AMD64 architecture (which it
now calls Intel 64) for use in its 64-bit Pentium processors.

As processor and compiler technology continue to evolve, it is likely that proces-
sor implementations will continue to become more complex, and that compilers
will take on additional tasks in order to harness that complexity. Traditional CISC
machines remain popular almost entirely due to the need for backward com-
patibility, but both the CISC and RISC “design philosophies” are still very much
alive [SW94]. The “CISC-ish” philosophy says that newly available resources (e.g.,
increases in chip area) should be used to implement functions that must currently
be performed in software, such as vector or graphics operations, decimal arith-
metic, new addressing modes, or perhaps transactional memory (to be described
in Section 12.4.4). The “RISC-ish” philosophy says that resources should be used
to improve the speed of existing functions, for example by increasing cache size,
employing faster but larger functional units, increasing the number of cores, or
deepening the pipeline and decreasing the cycle time.

Where the first-generation RISC machines from different vendors differed from
one another only in minor details, later generations diverged, with the ARM
and MIPS taking the more RISC-ish approach, the Power/PowerPC family tak-
ing the more CISC-ish approach, and the SPARC somewhere in the middle. It
is not yet clear which approach will ultimately prove most effective, nor is it
even clear that this is the interesting question anymore. Heat dissipation and lim-
ited ILP are increasingly the main constraints on uniprocessor performance. In
response to these constrains, most vendors are now pursuing multicore versions
of their respective architectures. It is entirely possible that future processors will
be highly heterogeneous, with multiple implementation strategies—or even mul-
tiple instruction set architectures—deployed in different cores, each optimized for
a different sort of program. Such processors will certainly require new compiler
techniques. At perhaps no time in the past 25 years has the future of microarchi-
tecture been in so much flux. However it all turns out, it is clear that processor
and compiler technology will continue to evolve together.

5.7 Exercises

5.1 Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different “endian-ness”? How might you solve these problems?

5.2 What is the largest positive number in 32-bit two’s complement arithmetic?
What is the smallest (largest magnitude) negative number? Why are these
numbers not the additive inverse of each other?
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5.3 (a) Express the decimal number 1234 in hexadecimal.

(b) Express the unsigned hexadecimal number 0x2ae in decimal.

(c) Interpret the hexadecimal bit pattern 0xffd9 as a 16-bit 2’s complement
number. What is its decimal value?

(d) Suppose that n is a negative integer represented as a k-bit 2’s com-
plement bit pattern. If we reinterpret this bit pattern as an unsigned
number, what is its numeric value as a function of n and k?

5.4 What will the following C code print on a little-endian machine such as a
Pentium? What will it print on a big-endian machine such as a Sun?

unsigned short n = 0x1234;
unsigned char *p = (unsigned char *) &n;
printf ("%d\n", *p);

5.5 (a) Suppose we have a machine with hardware support for 8-bit integers.
What is the decimal value of 110110012, interpreted as an unsigned
quantity? As a signed, two’s complement quantify? What is its two’s
complement additive inverse?

(b) What is the 8-bit binary sum of 110110012 and 100100012? Does this
sum result in overflow if we interpret the addends as unsigned numbers?
As signed two’s complement numbers?

5.6 In Section 5.2.1 we observed that overflow occurs in two’s complement
addition when we add two nonnegative numbers and obtain an apparently
negative result, or add two negative numbers and obtain an apparently non-
negative result. Prove that it is equivalent to say that a two’s complement
addition operation overflows if and only if the carry into most significant
place differs from the carry out of most significant place. (This trivial check
is the one typically performed in hardware.)

5.7 In Section 5.2.1 we claimed that a two’s complement integer could be
correctly negated by flipping the bits, adding 1, and discarding any carry out
of the left-most place. Prove that this claim is correct.

5.8 What is the single-precision IEEE floating-point number whose value is
closest to 6.022 × 1023?

5.9 Occasionally one sees a C program in which a double-precision floating-
point number is used as an integer counter. Why might a programmer
choose to do this?

5.10 Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached
the point at which there is room on a chip to hold many more registers than
are found in the typical ISA. Why are we still using instruction sets with only
32 integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?
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5.11 Some early RISC machines (e.g., the SPARC) provided a “multiply step”
instruction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

5.12 Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Why not variable lengths?

5.13 Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the numbers
being manipulated (i.e., outside the range 0 . . 2n for unsigned arithmetic,
−2n−1 . . 2n−1−1 for signed arithmetic). Suppose we wish to branch on
condition A op B, where A and B are unsigned binary numbers, for op ∈
{<,≤, =, �=, >,≥}. Suppose we subtract B from A, using two’s complement
arithmetic. For each of the six conditions, indicate the logical combination
of condition-code bits that should be used to trigger the branch. Repeat
the exercise on the assumption that A and B are signed, two’s complement
numbers.

5.14 We implied in Section 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruc-
tion is (to first approximation) independent of the time required to execute
all other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

5.15 Suppose that loads constitute 25% of the typical instruction mix on a cer-
tain machine. Suppose further that 15% of these loads miss in the on-chip
(primary) cache, with a penalty of 40 cycles to reach main memory. What is
the contribution of cache misses to the average number of cycles per instruc-
tion? You may assume that instruction fetches always hit in the cache. Now
suppose that we add an off-chip (secondary) cache that can satisfy 90% of
the misses from the primary cache, at a penalty of only 10 cycles. What is
the effect on cycles per instruction?

5.16 Many recent processors provide a conditional move instruction that copies
one register into another if and only if the value in a third register is (or is
not) equal to zero. Give an example in which the use of conditional moves
leads to a shorter program.

5.17 The x86-64 architecture is backward compatible with the x86 instruction
set, just as the x86 is backward compatible with the 16-bit 8086 instruction
set. Less transparently, the IA-64 Itanium is capable of running legacy x86
applications in “compatibility mode.” But recent members of the ARM and
MIPS processor families support new 16-bit instructions as an extension to
the architecture. Why might designers have chosen to introduce these new,
less powerful modes of execution?
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5.18 Consider the following code fragment in pseudo-assembler notation:

1. r1 := K
2. r4 := &A
3. r6 := &B
4. r2 := r1 × 4
5. r3 := r4 + r2
6. r3 := *r3 – – load (register indirect)
7. r5 := *(r3 + 12) – – load (displacement)
8. r3 := r6 + r2
9. r3 := *r3 – – load (register indirect)

10. r7 := *(r3 + 12) – – load (displacement)
11. r3 := r5 + r7
12. S := r3 – – store

(a) Give a plausible explanation for this code (what might the correspond-
ing source code be doing?).

(b) Identify all flow, anti-, and output dependences.

(c) Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

(d) Can you do better if you rename registers?

5.19 With the development of deeper, more complex pipelines, delayed loads
and branches have become significantly less appealing as features of a RISC
instruction set. Why is it that designers have been able to eliminate delayed
loads in more recent machines, but have had to retain delayed branches?

5.20 Some processors, including the PowerPC and recent members of the x86
family, require one or more cycles to elapse between a condition-determining
instruction and a branch instruction that uses that condition. What options
does a scheduler have for filling such delays?

5.21 Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which
way the branch will usually go, encodes this guess in the instruction, and
schedules instructions for the expected path. In the dynamic approach, the
hardware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

5.22 Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Suppose
that in a typical program 20% of the instructions are conditional branches,
which the compiler or hardware manages to predict correctly 75% of the
time. What is the impact of incorrect predictions on the average number
of cycles per instruction? Suppose the accuracy of branch prediction can be
increased to 90%. What is the impact on cycles per instruction?
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Suppose that the number of cycles per instruction would be 1.5 with
perfect branch prediction. What is the percentage slowdown caused by mis-
predicted branches? Now suppose that we have a superscalar processor on
which the number of cycles per instruction would be 0.6 with perfect branch
prediction. Now what is the percentage slowdown caused by mispredicted
branches? What do your answers tell you about the importance of branch
prediction on superscalar machines?

5.23 Consider the code in Figure 5.9. In an attempt to eliminate the remaining
delay, and reduce the overhead of the bookkeeping (loop control) instruc-
tions, one might consider unrolling the loop: creating a new loop in which
each iteration performs the work of k iterations of the original loop. Show
the code for k = 2. You may assume that n is even, and that your target
machine supports displacement addressing. Schedule instructions as tightly
as you can. How many cycles does your loop consume per vector element?

5.8 Explorations

5.24 Skip ahead to the sidebar on decimal types on page 296 of the main text.
Write algorithms to convert BCD numbers to binary, and vice versa. Try
writing the routines in assembly language for your favorite machine (if your
machine has special instructions for this purpose, pretend you’re not allowed
to use them). How many cycles are required for the conversion?

5.25 Is microprogramming an idea that has outlived its usefulness, or are there
application domains for which it still makes sense to build a micropro-
grammed machine? Defend your answer.

5.26 If you have access to both CISC and RISC machines, compile a few pro-
grams for both machines and compare the size of the target code. Can you
generalize about the “space penalty” of RISC code?

5.27 The Intel IA-64 (Itanium) architecture is neither CISC nor RISC. It belongs
to an architectural family known as long instruction word (LIW) machines
(Intel calls it explicitly parallel instruction set computing [EPIC]). Find an
Itanium manual or tutorial and learn about the instruction set. Compare
and contrast it with the x86 and MIPS instruction sets. Discuss, from a
compiler writer’s point of view, the challenges and opportunities presented
by the IA-64.

5.28 Research the history of the x86. Learn how it has been extended over the
years. Write a brief paper describing the extensions. Identify the portions
of the instruction set that are still useful today (i.e., are targeted by mod-
ern compilers), and the portions that are maintained solely for the sake of
backward compatibility.

5.29 The x86-64 architecture is a backward-compatible 64-bit extension of the
x86. Find a manual or tutorial and learn about the instruction set. Describe
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the extensions it provides. Explain how it can execute 32-bit x86 instructions
without an explicit “compatibility mode.”

5.30 Several computers have provided more general versions of the conditional
move instructions described in Exercise 5.16. Examples include the c. 1965
IBM ACS, the Cray 1, the HP PA-RISC, the ARM, and the Intel IA-64
(Itanium). General-purpose conditional execution is sometimes known as
predication.

Learn how predication works in ARM or IA-64. Explain how it can some-
times improve performance even when it causes the processor to execute
more instructions.

5.31 If you have access to computers of more than one type, compile a few
programs on each machine and time their execution. (If possible, use the
same compiler [e.g., gcc] and options on each machine.) Discuss the factors
that may contribute to different run times. How closely do the ratios of run
times mirror the ratios of clock rates? Why don’t they mirror them exactly?

5.32 Branch prediction can be characterized as control speculation: it makes a
guess about the future control flow of the program that saves enough time
when it’s right to outweigh the cost of cleanup when it’s wrong. Some
researchers have proposed the complementary notion of value speculation,
in which the processor would predict the value to be returned by a cache
miss, and proceed on the basis of that guess. What do you think of this idea?
How might you evaluate its potential?

5.33 Can speculation be useful in software? How might you (or a compiler or
other tool) be able to improve performance by making guesses that are
subject to future verification, with (software) rollback when wrong? (Hint:
Think about operations that require communication over slow Internet
links.)

5.34 Translate the high-level pseudocode for vector variance (Example 5.18)
into your favorite programming language, and run it through your favorite
compiler. Examine the resulting assembly language. Experiment with dif-
ferent levels of optimization (code improvement). Discuss the quality of the
code produced.

5.35 Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

5.36 If you have access to a compiler that generates code for a machine with archi-
tecturally visible load delays, run some programs through it and evaluate the
degree of success it has in filling delay slots (an unfilled slot will contain a
nop instruction). What percentage of slots is filled? Suppose the machine
had interlocked loads. How much space could be saved in typical executable
programs if the nops were eliminated?

5.37 Experiment with small subroutines in C++ to see how much time can be
saved by expanding them inline.
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5.9 Bibliographic Notes

The standard reference in computer architecture is the graduate-level text by
Patterson and Hennessy [HP07]. More introductory material can be found in the
undergraduate computer organization text by the same authors [PH08]. Students
without previous assembly language experience may be particularly interested in
the text of Bryant and O’Hallaron [BO03], which surveys computer organization
from the point of view of the systems programmer, focusing in particular on the
correspondence between source-level programs in C and their equivalents in x86
assembler.

The “RISC revolution” of the early 1980s was spearheaded by three separate
research groups. The first to start (though last to publish [Rad82]) was the 801
group at IBM’s T. J. Watson Research Center, led by John Cocke. IBM’s Power
and PowerPC architectures, though not direct descendants of the 801, take sig-
nificant inspiration from it. The second group (and the one that coined the term
“RISC”) was led by David Patterson [PD80, Pat85] at UC Berkeley. The commer-
cial SPARC architecture is a direct descendant of the Berkeley RISC II design. The
third group was led by John Hennessy at Stanford [HJBG81]. The commercial
MIPS architecture is a direct descendant of the Stanford design.

Much of the history of pre-1980 processor design can be found in the text by
Siewiorek, Bell, and Newell [SBN82]. This classic work contains verbatim reprints
of many important original papers. In the context of RISC processor design, Smith
and Weiss [SW94] contrast the more “RISCy” and “CISCy” design philosophies
in their comparison of implementations of the PowerPC and Alpha architectures.
Hennessy and Patterson’s architecture text includes an appendix that summa-
rizes the similarities and differences among the major commercial instruction
sets [HP07, App. J]. Current manuals for all the popular commercial processors
are available from their manufacturers.

An excellent treatment of computer arithmetic can be found in Goldberg’s
appendix to the Hennessy and Patterson architecture text [Gol07]. The IEEE 754
floating-point standard was printed in ACM SIGPLAN Notices in 1985 [IEE87].
The texts of Muchnick [Muc97] and of Cooper and Torczon [CT04] are excellent
sources of information on instruction scheduling, register allocation, subroutine
optimization, and other aspects of compiling for modern machines.
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