
CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 39 1–867

3Names, Scopes, and Bindings

3.8 Separate Compilation

Probably the most straightforward mechanisms for separate compilation can be
found in module-based languages such as Modula-2, Modula-3, and Ada, which
allow a module to be divided into a declaration part (or header) and an imple-
mentation part (or body). As we noted in Section 3.3.4, the header contains all and
only the information needed by users of the module (or needed by the compiler
in order to compile such a user); the body contains the rest.

As a matter of software engineering practice, a design team will typically define
module interfaces early in the lifetime of a project, and codify these interfaces
in the form of module headers. Individual team members or subteams will then
work to implement the module bodies. While doing so, they can compile their code
successfully using the headers for the other modules. Using preliminary copies of
the bodies, they may also be able to undertake a certain amount of testing.

In a simple implementation, only the body of a module needs to be compiled
into runnable code: the compiler can read the header of module M when com-
piling the body of M, and also when compiling the body of any module that uses
M . In a more sophisticated implementation, the compiler can avoid the over-
head of repeatedly scanning, parsing, and analyzing M ’s header by translating it
into a symbol table, which is then accessed directly when compiling the bodies
of M and its users. Most Ada implementations compile their module headers.
Implementations of Modula-2 and 3 vary: some work one way, some the other.

As a practical matter, many languages allow the header of a module to be
subdivided into a “public” part, which specifies the interface to the rest of the
program, and a “private” part, which is not visible outside the module, but is
needed by the compiler, for example to determine the storage requirements of
opaque types. Ideally, one would include in the header of a module only that
information that the programmer needs to know to use the abstraction(s) that
the module provides. Restricted exports, and the public and private portions of
headers, are compromises introduced to allow the compiler to generate code in
the face of separate compilation.

Copyright c© 2009 by Elsevier Inc. All rights reserved. 39



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 40 1–867

40 Chapter 3 Names, Scopes, and Bindings

At some point prior to execution, modules that have been separately compiled
must be“glued together”to form a single program. This job is the task of the linker.
At the very least, the linker must resolve cross-module references (loads, stores,
jumps) and relocate any instructions whose encoding depends on the location of
certain modules in the final program. Typically it also checks to make sure that
users and implementors of a given interface agree on the version of the header file
used to define that interface. In some environments, the linker may perform addi-
tional tasks as well, including certain kinds of interprocedural (whole-program)
code improvement. We will return to the subject of linking in Chapters 14 and 15.

3.8.1 Separate Compilation in C

Theinitialversionof CwasdesignedatBellLaboratoriesaround1970. Ithasevolved
considerably over the years, but not, for the most part, in the area of separate com-
pilation. Here the language remains comparatively primitive. In particular, there
is in general no way for the compiler or the linker to detect inconsistencies among
declarations or uses of a name in different files. The C89 standards committee intro-
duced a new explanation of separate compilation based on the notion of linkage,
but this served mainly to clarify semantics, not to change them. The current rules
can be summarized as follows (certain details and special cases are omitted):

If the declaration of a global object (variable or function) contains the word
static, then the object has internal linkage, and is identified with (linked to)
any other internally linked declaration of the same name in the same file.

If the declaration of a function does not contain the keyword static, then
it has external linkage, and is identified with any other (nonstatic) declaration
of the same function in any file of the program. (A function declaration may
consist of just the header.)

If the declaration of a variable contains the keyword extern, then the variable
has the same linkage as any visible, internally or externally linked declaration
of the same name appearing earlier in the file. If there is no earlier declaration,
then the variable has external linkage, and is identified with any other declara-
tion of the same external variable in any file of the program. In other words,
files in the same program that contain matching external variable declarations
actually share the same variable. A global variable also has external linkage if
its declaration says neither static nor extern.

If an object is declared with both internal and external linkage, the behavior
of the program is undefined.

An object (variable or function) that is externally linked must have a definition
in exactly one file of a program. A variable is defined when it is given an initial
value, or is declared at the global level without the extern keyword. A function
is defined when its body (code) is given.

Many C implementations prior to C89 relaxed the final rule to permit zero or
one definitions of an external variable; some permitted more than one. In these

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 41 1–867

3.8.1 Separate Compilation in C 41

implementations, the linker unified multiple definitions, and created an implicit
definition for any variable (or set of linked variables) for which the program
contained only declarations.

The “linkage” rules of C89 provide a way to associate names in one file with
names in another file. The rules are most easily understood in terms of their
implementation. Most language-independent linkers are designed to deal with
symbols: character-string names for locations in a machine-language program.
The linker’s job is to assign every symbol a location in the final program, and
to embed the address of the symbol in every machine-language instruction that
makes a reference to it. To do this job, the linker needs to know which symbols can
be used to resolve unbound references in other files, and which are local to a given
file. C89 rules suffice to provide this information. For the programmer, however,
there is no formal notion of interface, and no mechanism to make a name visible
in some, but not all files. Moreover, nothing ensures that the declarations of an
external object found in different files will be compatible: it is entirely possible,
for example, to declare an external variable as a multifield record in one file and
as a floating-point number in another. The compiler is not required to catch such
errors, and the resulting bugs can be very difficult to find.

Header Files

Fortunately, C programmers have developed conventions on the use of external
declarations that tend to minimize errors in practice. These conventions rely on
the file inclusion facility of a macro preprocessor. The programmer creates files
in pairs that correspond roughly to the interface and the implementation of a
module. The name of an interface file ends with.h; the name of the corresponding
implementation file ends with .c. Every object defined in the .c file is declared
in the .h file. At the beginning of the .c file, the programmer inserts a directive
that is treated as a special form of comment by the compiler, but that causes
the preprocessor to include a verbatim copy of the corresponding .h file. This
inclusion operation has the effect of placing “forward” declarations of all the
module’s objects at the beginning of its implementation file. Any inconsistencies
with definitions later in the file will result in error messages from the compiler. The
programmer also instructs the preprocessor at the top of each.c file to include a
copy of the.h files for all of the modules on which the.c file depends. As long as
the preprocessor includes identical copies of a given.h file in all the.c files that
use its module, no inconsistent declarations will occur. Unfortunately, it is easy to
forget to recompile one or more .c files when a .h file is changed, and this can
lead to very subtle bugs. Tools like Unix’s make utility help minimize such errors
by keeping track of the dependences among modules.

Namespaces

Even with the convention of header files, C89 still suffers from the lack of scoping
beyond the level of an individual file. In particular, all global names must be
distinct, across all files of a program, and all libraries to which it links. Some
coding standards encourage programmers to embed a module’s name in the name

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 42 1–867

42 Chapter 3 Names, Scopes, and Bindings

of each of its external objects (e.g., scanner_nextSym), but this practice can be
awkward, and is far from universal.

To address this limitation, C++ introduced a namespace mechanism that gen-
eralizes the scoping already provided for classes and functions, breaks the tie
between module and compilation unit, and strengthens the interface conventions
of.h files. Any collection of names can be declared inside a namespace:EXAMPLE 3.49

Namespaces in C++
namespace foo {

class foo_type_1; // declaration
...

}

Actual definitions of the objects within foo can then appear in any file:

class foo::foo_type_1 { ... // full definition

Definitions of objects declared in different namespaces can appear in the same file
if desired. �

A C++ programmer can access the objects in a namespace using fully qualifiedEXAMPLE 3.50
Using names from another
namespace

names, or by importing (using) them explicitly:

foo::foo_type_1 my_first_obj;

or

using foo::foo_type_1;
...
foo_type_1 my_first_obj;

or

using namespace foo; // import everything from foo
...
foo_type_1 my_first_obj;

There is no notion of export; all objects with external linkage in a namespace
are visible elsewhere if imported. Note that linkage remains the foundation for
separate compilation:.h files are merely a convention. �

3.8.2 Packages and Automatic Header Inference

The separate compilation facilities of Java and C# eliminate .h files. Specifically,EXAMPLE 3.51
Packages in Java Java introduces a formal notion of module, called a package. Every compilation

unit, which may be a file or (in some implementations) a record in a database,
belongs to exactly one package, but a package may consist of many compilation

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 43 1–867

3.8.3 Module Hierarchies 43

units, each of which begins with an indication of the package to which it
belongs:

package foo;
public class foo_type_1 { ...

Unless explicitly declared as public, a class in Java is visible in all and only those
compilation units that belong to the same package. �

As in C++, a compilation unit that needs to use classes from another packageEXAMPLE 3.52
Using names from another
package

can access them using fully qualified names, or via name-at-a-time or package-at-
a-time import:

foo.foo_type_1 my_first_obj;

or

import foo.foo_type_1;
...
foo_type_1 my_first_obj;

or

import foo.*; // import everything from foo
...
foo_type_1 my_first_obj; �

When asked to import names from package M, the Java compiler will search for
M in a standard (but implementation-dependent) set of places, and will recompile
it if appropriate (i.e., if only source code is found, or if the target code is out of
date). The compiler will then automatically extract the information that would
have been needed in a C++.h file or an Ada or Modula-3 header. If the compilation
of M requires other packages, the compiler will search for them as well, recursively.

C# follows Java’s lead in extracting header information automatically from
complete class definitions. Its module-level syntax, however, is based on the
namespaces of C++, which allow a single file to contain fragments of multiple
namespaces. There is also no notion of standard search path in C#: to build a
complete program, the programmer must provide the compiler with a complete
list of all the files required.

To mimic the software engineering practice of early header file construction, a
Java or C# design team can create skeleton versions of (the public classes of) its
packages or namespaces, which can then be used, concurrently and independently,
by the programmers responsible for the full versions.

3.8.3 Module Hierarchies

In Modula and Ada, the programmer can create a hierarchy of modules within a
single compilation unit by means of lexical nesting (module C, for example, may

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 44 1–867

44 Chapter 3 Names, Scopes, and Bindings

be declared inside of module B, which in turn is declared inside of module A).
In a similar vein, the Ada 95, Java, or C# programmer can create a hierarchy ofEXAMPLE 3.53

Multipart package names separately compiled modules by means of multipart names:

package A.B is ... -- Ada 95

package A.B; ... // Java

namespace A.B { ... // C#

In these examples package A.B is said to be a child of package A. In Ada 95 and
C# the child behaves as though it had been nested inside of the parent, so that all
the names in the parent are automatically visible. In Java, by contrast, multipart
names work by convention only: there is no special relationship between packages
A and A.B. If A.B needs to refer to names in A, then A must make them public,
and A.B must import them. Child packages in Ada 95 are reminiscent of derived
classes in C++, except that they support a module-as-manager style of abstraction,
rather than a module-as-type style. We will consider the Ada 95 facilities further
in Section 9.2.4. �

3CHECK YOUR UNDERSTANDING

49. What purpose(s) does separate compilation serve?

50. What does it mean for an external variable to be linked in C?

51. Summarize the C conventions for use of.h and.c files.

52. Describe the difference between a compilation unit and a C++ or C# name-
space.

53. Explain why Ada and similar languages separate the header of a module from
its body. Explain how Java and C# get by without.

DESIGN & IMPLEMENTATION

Separate compilation
The evolution of separate compilation mechanisms from early C and Fortran,
through C++, Modula-3, Ada, and finally Java and C#, reflects a move from an
implementation-centric viewpoint to a more programmer-centric viewpoint.
Interestingly, the ability to have zero definitions of an externally linked variable
in certain early implementations of C is inherited from Fortran: the assembly
language mnemonic corresponding to a declaration without a definition is
.common (for common block). (And as we noted in Section 3.3.1 [page 123], the
lack of type checking for common blocks was originally considered a feature,
not a bug!)

Copyright c© 2009 by Elsevier Inc. All rights reserved.


