Programming Language
Syntax

Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky language
hierarchy. At each level of the hierarchy, machines can be either deterministic or
nondeterministic. A deterministic automaton always performs the same operation
in a given situation. A nondeterministic automaton can perform any of a set of
operations. A nondeterministic machine is said to accept a string if there exists
a choice of operation in each situation that will eventually lead to the machine
saying “yes.” As it turns out, nondeterministic and deterministic finite automata
are equally powerful: every DFA is, by definition, a degenerate NFA, and the
construction in Example 2.14 (page 56) demonstrates that for any NFA we can
create a DFA that accepts the same language. The same is not true of push-down
automata: there are context-free languages that are accepted by an NPDA but not
by any DPDA. Fortunately, DPDAs suffice in practice to accept the syntax of real
programming languages. Practical scanners and parsers are always deterministic.

24.] Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a
finite set Q of states, (2) a finite alphabet ¥ of input symbols, (3) a distinguished
initial state q; € Q, (4) a set of distinguished final states F C Q, and (5) a
transition function § : Q x X — Q that chooses a new state for M based on the
current state and the current input symbol. M begins in state g;. One by one it
consumes its input symbols, using § to move from state to state. When the final
symbol has been consumed, M is interpreted as saying “yes” if it is in a state in
F; otherwise it is interpreted as saying “no.” We can extend ¢ in the obvious way
to take strings, rather than symbols, as inputs, allowing us to say that M accepts
string x if (g1, x) € F. We can then define L(M), the language accepted by M,
to be the set {x | d(q1,x) € F}. In a nondeterministic finite automaton (NFA),

Copyright (©) 2009 by Elsevier Inc. All rights reserved. 13

©14 Chapter 2 Programming Language Syntax

Start

Figure 2.31 Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for0,1,2,3,4,5,6,7,8,9".

the transition function, J, is multivalued: the automaton can move to any of a set
of possible states from a given state on a given input. In addition, it may move
from one state to another “spontaneously”; such transitions are said to take input

symbol e.
ExampLe 2.50 We can illustrate these definitions with an example. Consider the circles-and-
Formal DFA for arrows automaton of Figure ©)2.32 (adapted from Figure 2.10 in the main text).
d*(.d|d.)d* This is the minimal DFA accepting strings of decimal digits containing a single

decimal point. ¥ = {0,1,2,3,4,5,6,7,8,9, .} is the machine’s input alpha-
bet. Q = {q1, ¢, 3, qa } is the set of states; q; is the initial state; F = {q4} (a
singleton in this case) is the set of final states. The transition function can be rep-
resented by a set of triples § = {(q1,0, q2),---> (91,9, 42), (q1, -, 43), (2, 0, @),
cee (q27 9, q2)7 (q27 © q4)7 (q37 0, ‘14)7 SRR (q37 9, ‘14)7 (q47 0, q4)7 SRR (q47 9, q4)}
In each triple (g, a, gj), (g, a) = g;.

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate
that there exists a regular expression that generates the language accepted by any
given DFA. We illustrate the required construction below for our decimal strings
example (Figure ©)2.32). More formal and general treatment of all the regular
language constructions can be found in standard automata theory texts [HMUO1,
Sip97].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a
set of simple regular expressions that describe the transition function, J. For all
states 7, we define

. la e
m

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

2.4.1 Finite Automata @15

where{a |a, | ... | a }=1{al|d(q;a)= g} isthesetof characterslabeling
the “self-loop” from state g; back to itself. If there is no such self-loop, rg = e
Similarly, for i # j, we define

where{a | a,| ... [a }={a]d(q,a)= qj}isthesetofcharacterslabeling
the arc from ql to g;. If there is no such arc, r is the empty regular expression.
(Note the difference here: we can stay in state qz by not acceptlng any input, so €
is always one of the alternatives in rJ, but not in r when i # j.)

i’
Given these r” expressions, the dynamic programmrng algorithm inductively
calculates expressions ri’]‘» with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from g; to g;. We
assume that states are numbered starting with gy, so when k = 0 we must transi-
tion directly from g; to g;, with no intervening states.
exampLe 2.57 In our small example DFA, 1)} = r); = ¢, andr), =r), =0 | 1| 2| 3| 4|
Reconstructing a regular 5|6]7]8]9]| e whichwewill abbreviate d | €. Similarly, r{y =), = .,and

expression for the decimal
string DFA

), = 13, = d. Bxpressions ry, 3y, rds, 13, 15, 19}, 13, and rd; are all empty.

For k > 0, the ri’J‘- expressions will generally generate multicharacter strings. At

each step of the dynamic programming algorithm, we let

ry = r,-];_l | r,];(lr,fk l*r,]; !

That is, to get from g; to g; without going through any states numbered higher
than k, we can either go from g; to g; without going through any state numbered
higher than k — 1 (which we already know how to do), or else we can go from g; to
qx (without going through any state numbered higher than k — 1), travel out from
qr and back again an arbitrary number of times (never visiting a state numbered
higher than k — 1 in between), and finally go from g to g; (again without visiting
a state numbered higher than k — 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is i} | rfy | ... | rj};, where n = |Q| is the total number of states and
F ={q5.45,---,q5} is the set of final states.

Because rfl = € and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; thatis, Vi [r} = r2]. The
second step is a bit more interesting Since we are now allowed to go through State
2, wehaverzz—rzzzrzz2 r22 (d]e)|(d]e)]| (d | 6)*| (d|e)|=d*.
Because 1, 33, I, and 1}, are empty, however, r, r3;, and r, remain the same
as r{}, 11, and r},. In a similar vein, we have

m=d|d(d|e)*(d]e)=d"
h=d(d]e)*.=d".
= (d]e)(d]e).=dx.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©16 Chapter 2 Programming Language Syntax

EXAMPLE 2.58

A regular language with a
large minimal DFA

EXAMPLE 2.59

Exponential DFA blow-up

Missing transitions and empty expressions from the previous step leave r3

S 2 _ 1 : 2 2 2 2 2 2 2 :
=13 = . and r5, = r3, = d. Expressions 13}, 133, 13> sy 11> Tap> and 135 remain
empty.
In the third inductive step, we have
n=. | . e*e = .
m=dt. | .exd=4d".|.d

m=d|e*d = d

All other expressions remain unchanged from the previous step.
Finally, we have

ra=(d" .| d)[(d" .| d)(d]e)*(d]e)
=(dt.|.d)|(d".|.d)d*
=(d*.|.d)a*
=d".a*|.ad"

Since F has a single member (g4), this expression is our final answer.

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a DFA
may lead to exponential blow-up in the number of states. Certainly this did not
happen in our decimal string example: the NFA of Figure 2.8 has 14 states, while
the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of Figures 2.10
and ©)2.32 has only 4.

Consider, however, the subset of (a | b | ¢)* in which some letter appears at
least three times. The minimal DFA for this language has 28 states. As shown in
Figure ©)2.33, 27 of these are states in which we have seen 7, j, and k as, bs, and
cs, respectively. The 28th (and only final) state is reached once we have seen at
least three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as shown
in Figure ©)2.34. It requires that we “guess,” at the outset, whether we will see three
as, three bs, or three cs. It mirrors the structure of the natural regular expression
(a]blc)*a(al|b|c)*a(a|b|c)*|(a]|b]c)*b(a]|b]|c)*
b(a|b|c)*|(a]blc)*c(a]|b]c)*c(a]b]c)*.

Of course, the eight-state NFA does not emerge directly from the construction
of Section 2.2.1; that construction produces a 52-state machine with a certain
amount of redundancy, and with many extraneous states and epsilon productions.

But consider the similar subsetof (0 | 1 | 2|3 |4 |5]|6|7|8]|9)*in
which some digit appears at least ten times. The minimal DFA for this language
has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

2.4.1 Finite Automata @17

020 120 220
i /\/Y\j ab
110 210

010
Start b j /'\

Figure 2.33 DFA for the language consisting of all strings in (a | b | ¢)* in which some letter appears at least three times.
State name ijk indicates that i as, j bs,and k cs have been seen so far. Within the cubic portion of the figure, most edge labels
are elided: a transitions move to the right, b transitions go back into the page, and ¢ transitions move down.

(oft]...]9)f 0 (o]t]...]9)* 0 (O]1]...]9)F 0 (O]1]...]9)* 0O
(o]1]...]9)* 0 (o|t]...]9)* 0 (O]1]...]9)* 0 (O|1]...]9)* 0O
(o]1]...]9)* 0 (0]1]...]9)* 0 (e 19)*)

| CCojt]...]9)* 1 (of1]...]9)* 1 (O]1]...[]9)* 1 (O|1]...]9)* 1
(o]1]...]9)* 1 (oft]...|9)* 1 (O]1]...]9)* 1 (O]L]...]9)* 1

| 1]e.0]9)% 1 (0]1]...|9)* 1 (O]1]...]9)*)

[CCoft]...]9)* 9 (O]1]...]9)* 9 (O]1]...]9)* 9 (O|1]...|9)* 9
(o]1]...]9)* 9 (o|1]...]9)* 9 (O]1]...|9)* 9 (O|1]...]9)* 9
(o]t]...]9)* 9 (O|t]...]9)* 9 (0O]1]...]9)*)

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©18 Chapter 2 Programming Language Syntax

Figure 2.34 NFA corresponding to the DFA of Figure ©)2.33.

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states!

14.1 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) %, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet I" of stack symbols, (7)
a distinguished initial stack symbol Z; € T, and (5’) a transition function ¢ :
QxT x{X¥U{e}} = Q x I'*, where I'* is the set of strings of zero or more
symbols from I'. N begins in state g;, with symbol Z; in an otherwise empty
stack. It repeatedly examines the current state q and top-of-stack symbol Z. If
0(q,€, Z) is defined, N moves to state r and replaces Z with « in the stack, where
(r,a) = d(q,€, Z). In this case N does not consume its input symbol. If §(g,¢, Z)
isundefined, N examines and consumes the current input symbol a. It then moves
to state s and replaces Z with (3, where (s,) = d(q, a,Z). N is interpreted as
accepting a string of input symbols if and only if it consumes the symbols and
ends in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of
a set of new states and stack symbol replacements when faced with a given state,
input, and top-of-stack symbol. If 6(q,€, Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite automata.
The proof is also of limited practical importance for compiler construction; we do

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

2.4.3 Grammar and Language Classes @19

not present it here. While it is possible to create an NPDA for any CFL, that NPDA
may in some cases require exponential time to recognize strings in the language.
(The O(n*) algorithms mentioned in Section 2.3 do not take the form of PDAs.)
Practical programming languages can all be expressed with LL or LR grammars,
which can be parsed with a (deterministic) PDA in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis of
the current input token and top-of-stack symbol, its state diagram is trivial. All but
one of the transitions is a self-loop from the initial state to itself. A final transition
moves from the initial state to a second, final state when it sees $$ on the input and
the stack. As we noted in Section 2.3.3 (page 91), the state diagram for an SLR(1)
or LALR(1) parser is substantially more interesting: it’s the characteristic finite-
state machine (CFSM). Full LR(1) parsers have similar machines, but usually with
many more states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the
CFSM, without its stack, is a DFA that recognizes the grammar’s viable prefixes.
These are all the strings of grammar symbols that can begin a sentential form
in the canonical (right-most) derivation of some string in the language, and
that do not extend beyond the end of the handle. The algorithms to construct
LL(1) and SLR(1) PDAs from suitable grammars were given in Sections 2.3.2
and 2.3.3.

243 Grammar and Language Classes

exampe 2.60 Aswenoted in Section 2.1.2,a scanner is incapable of recognizing arbitrarily nested
0"1" is not a regular constructs. The key to the proof is to realize that we cannot count an arbitrary
language number of left-bracketing symbols with a finite number of states. Consider, for

example, the problem of accepting the language 0”1”. Suppose there is a DFA M
that accepts this language. Suppose further that M has m states. Now suppose we
feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state g; twice while scanning this string. Without
loss of generality, let us assume it does so after seeing j zeros and again after seeing
k zeros, for j # k. Since we know that M accepts the string 0/1/ and the string
0*1*, and since it is in precisely the same state after reading 0/ and 0, we can
deduce that M must also accept the strings 0/ 1% and 0% 1/, Since these strings are
not in the language, we have a contradiction: M cannot exist.

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-
ahead, it is possible in principle to use more than one, thereby expanding the
set of grammars that can be parsed in linear time. In the top-down case we
can redefine FIRST and FOLLOWsets to contain pairs of tokens in a more or less
straightforward fashion. If we do this, however, we encounter a more serious

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©20 Chapter 2 Programming Language Syntax

EXAMPLE 2.6 I

Separation of grammar
classes

EXAMPLE 262

Separation of language
classes

version of the immediate error detection problem described in Section ©)2.3.4.
There we saw that the use of context-independent FOLLOW sets could cause us
to overlook a syntax error until after we had needlessly predicted one or more
epsilon productions. Context-specific FOLLOW sets solved the problem, but did
not change the set of valid programs that could be parsed with one token of
look-ahead. If we define LL(k) to be the set of all grammars that can be parsed
predictively using the top-of-stack symbol and k tokens of look-ahead, then it
turns out that for k > 1 we must adopt a context-specific notion of FOLLOW
sets in order to parse correctly. The algorithm of Section 2.3.2, which is based on
context-independent FOLLOW sets, is actually known as SLL (simple LL), rather
than true LL. For k = 1, the LL(1) and SLL(1) algorithms can parse the same
set of grammars. For k > 1, LL is strictly more powerful. Among the bottom-up
parsers, the relationships among SLR(k), LALR(k), and LR(k) are somewhat more
complicated, but extra look-ahead always helps.

Containment relationships among the classes of grammars accepted by popular
linear-time algorithms appear in Figure ©)2.35. The LR class (no suffix) contains
every grammar G for which there exists a k such that G € LR(k); LL, SLL, SLR, and
LALR are similarly defined. Grammars can be found in every region of the figure.
Examples appear in Figure ©)2.36. Proofs that they lie in the regions claimed are
deferred to Exercise ©)2.30.

For any context-free grammar G and parsing algorithm P, we say that G is
a P grammar (e.g., an LL(1) grammar) if it can be parsed using that algo-
rithm. By extension, for any context-free language L, we say that L is a P lan-
guage if there exists a P grammar for L (this may not be the grammar we were
given). Containment relationships among the classes of languages accepted by
the popular parsing algorithms appear in Figure €)2.37. Again, languages can be
found in every region. Examples appear in Figure ©)2.38; proofs are deferred to
Exercise ©)2.31.

Note that every context-free language that can be parsed deterministically has
an SLR(1) grammar. Moreover, any language that can be parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has an LR(0) grammar. If we restrict our attention to
languages with an explicit $$ marker at end-of-file, then they all have the prefix
property, and therefore LR(0) grammars.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any
of the popular parsing algorithms, though the grammars are not always pretty, and
special-purpose “hacks” may sometimes be required when alanguage is almost, but
not quite, in a given class. The principal advantage of the more powerful parsing
algorithms (e.g., full LR) is that they can parse a wider variety of grammars for a
given language. In practice this flexibility makes it easier for the compiler writer
to find a grammar that is intuitive and readable, and that facilitates the creation
of semantic action routines.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

2.4.3 Grammar and Language Classes @21

LR(0)

LALR(1)

LALR(2)

R —

LR(1)

LL

Figure 135 Containment relationships among popular grammar classes. In addition to the
containments shown, SLL(k) is just inside LL(k), for k > 2, but has the same relationship to

everything else, and SLR(k) is just inside LALR(k), for k > 1, but has the same relationship to
everything else.

LL(2) but not SLL: SLL(k) and SLR(k) but not LR(k — 1):
S— aAal|bAba S — Aaf'b|Ba! ¢
A — ble A — €
B — ¢
SLL(k) but not LL(k — 1):
S — a ' p|at LALR(1) but not SLR:
S— bAb|Ac|ab
LR(0) but not LL: A— a
S — Ab
A— Aala LR(1) but not LALR:
S— a Ca|b Cb|aDhb]
SLL(1) but not LALR: bDa
S— Aa|Bb|cC C — ¢
C— Ab|Ba D — ¢
A — D
B — D Unambiguous but not LR:
D — € S— aSale

Figure 236 Examples of grammars in various regions of Figure (©)2.35.
Copyright (©) 2009 by Elsevier Inc. All rights reserved.

©22 Chapter 2 Programming Language Syntax

Inherently Nondeterministic
ambiguous context-free

LL=SLL

SLR(1) =LR
= deterministic

text-fi
LL(Z) _ SLL(Z) context-iree

LL(1) = SLL(1) LR(0)

= deterministic context-free
with prefix property

Figure 237 Containment relationships among popular language classes.

Nondeterministic language:
{a"p"c:n>1}U {a"bznd :n>1}

Inherently ambiguous language:
{a'v'c ti=jorj=k;ij k>1}

Language with LL(k) grammar but no LL(k—1) grammar:
{a"(b | c|ba)" :n>1}

Language with LR(0) grammar but no LL grammar:
{a"":n>1}u{a"c":n>1}

Figure 2.38 Examples of languages in various regions of Figure ©)2.37.

‘/CHECK YOUR UNDERSTANDING

56. What formal machine captures the behavior of a scanner? A parser?

51. State three ways in which a real scanner differs from the formal machine.

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

58.
59.

60.

6l.
62.
63.

64.
65.
66.
61.

2.4.3 Grammar and Language Classes ©23

What are the formal components of a DFA?

Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

What is the inherent “big-O” complexity of parsing with an NPDA? Why is
this worse than the O(n*) time mentioned in Section 2.3?

How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.
What are the viable prefixes of a CFG?

Summarize the proof that a DFA cannot recognize arbitrarily nested con-
structs.

Explain the difference between LL and SLL parsing.
Is every LL(1) grammar also LR(1)? Is it LALR(1)?
Does every LR language have an SLR(1) grammar?

Why are the containment relationships among grammar classes more complex
than those among language classes?

Copyright (©) 2009 by Elsevier Inc. All rights reserved.

