
CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 311 3–867

14Building a Runnable Program

14.7 Dynamic Linking

To be amenable to dynamic linking, a library must either (1) be located at the
same address in every program that uses it, or (2) have no relocatable words
in its code segment, so that the content of the segment does not depend on its
address. The first approach is straightforward but restrictive: it generally requires
that we assign a unique address to every sharable library; otherwise we run the
risk that some newly created program will want to use two libraries that have
been given overlapping address ranges. In Unix System V R3, which took the
unique-address approach, shared libraries could only be installed by the system
administrator. This requirement tended to limit the use of dynamic linking to
a relatively small number of popular libraries. The second approach, in which a
shared library can be linked at any address, requires the generation of position-
independent code. It allows users to employ dynamic linking whenever they want,
without administrator intervention.

The cost of user-managed dynamic linking is that executable programs are no
longer self-contained. They depend for correct execution on the availability of
appropriate dynamic libraries at execution time. If different programs are built
with different expectations of (which versions of) which libraries will be available,
conflicts can arise. On Microsoft platforms, where dynamic libraries have names
ending in .dll, compatibility problems are sometimes referred to as “DLL hell.”
The frequency and severity of the problem can be minimized with good software
engineering practice. In particular, a package management system may maintain a
database of dependences between programs and libraries, and among the libraries
themselves. If installer programs use the database correctly, problems will be
detected at install time, when they can reasonably be addressed, rather than at the
arbitrarily delayed point at which a program first attempts to use an incompatible
or missing library.

Copyright c© 2009 by Elsevier Inc. All rights reserved. 311

CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 312 3–867

312 Chapter 14 Building a Runnable Program

14.7.1 Position-Independent Code

A code segment that contains no relocatable words is said to constitute position-
independent code (PIC). To generate PIC, the compiler must observe the following
rules.

1. Use PC-relative addressing, rather than jumps to absolute addresses, for all
internal branches.

2. Similarly, avoid absolute references to statically allocated data, by using dis-
placement addressing with respect to some standard base register. If the code
and data segments are guaranteed to lie at a known offset from one another,
then an entry point to a shared library can compute an appropriate base reg-
ister value using the PC. Otherwise the caller must set the base register as part
of the calling sequence.

3. Use an extra level of indirection for every control transfer out of the PIC seg-
ment, and for every load or store of static memory outside the corresponding
data segment. The indirection allows the (non-PIC) target address to be kept
in the data segment, which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. ConventionsEXAMPLE 14.22
PIC under MIPS/IRIX for SGI’s compilers for the MIPS architecture, under the IRIX 6.2 version of Unix,

are illustrated in Figure 14.15. Each shared code segment is accompanied, at a
static offset, by a nonshared linkage table and, at an arbitrary offset, by a nonshared
data segment. The linkage table lists the addresses of all external symbols refer-
enced in the code segment. Under MIPS/IRIX conventions, register gp (the“global
pointer”) is used to hold a reference to the linkage table.

As described in Section 8.2.2, any nonleaf subroutine must allocate space in
its stack frame to hold the value of the ra (return address) register, and must save
and restore this register in its prologue and epilogue. Similarly, any subroutine
that may call into a dynamically linked shared library must save the gp register
in the prologue, and restore it after every call into a different dynamically linked
shared library. At code-generation time, the compiler must know which external
symbols lie in such libraries. For a call to one of them, the usual jal (jump-and-
link) instruction is replaced by a sequence of three instructions. The first of these
loads register t9 from the linkage table, using gp-relative addressing. The second
is a jalr (jump-and-link-register) instruction, which takes its target address from
t9. The third (to be executed after the return) restores the gp. In a similar vein,
any load or store of a datum located in a dynamically linked shared library must
employ a two-instruction sequence. The first instruction loads the address of the
datum from the linkage table using gp-relative addressing. The second loads or
stores the datum itself.

The prologue of any subroutine foo that serves as an entry to a dynamically
linked shared library must establish a new gp. To do so it takes the value in t9
(i.e., the address of foo) and adds the (statically known) signed distance between
the code and the linkage table. �

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 313 3–867

14.7.2 Fully Dynamic (Lazy) Linking 313

Dynamically linked
shared library

Shared code
(PIC)

Linkage table
(one copy
per process)

Private data
(one copy
per process)

main:
 *(sp+N) := gp
 . . .

-- call foo:
 t9 := *(gp+A)
 jalr t9
 gp := *(sp+N)
 . . .

--load X:
 t0 := *(gp+C)
 t0 := *t0
 . . .

--load Y:
 t0 := *(gp+B)
 t0 := *t0

foo:
 gp := t9+(E-D)
 . . .

--load X:
 t0 := *(gp+F)
 t0 := *t0
 . . .

--load Y:
 t0 := *(gp+G)
 t0 := *t0

gp (main)

gp (foo)

X:

Y:

AB
C

F

D

G

E

Figure 14.15 A dynamically linked shared library. Because main calls foo, which lies in the library, its prologue and epilogue
must save and restore both ra (not shown) and gp. Calls to foo are made indirectly, using an address stored in main’s linkage
table. Similarly, references to variables X and Y, both of which are globally visible, must employ a level of indirection. In the
prologue of foo, gp is set to point to foo’s linkage table, using the value in t9. The calling sequence in main restores the old
gp when foo returns.

14.7.2 Fully Dynamic (Lazy) Linking

If all or most of the symbols exported by a shared library are referenced by the
parent program, then it makes sense to link the library in its entirety at load time.
In any given execution of a program, however, there may be references to libraries
that are not actually used, because the input data never cause execution to follow
the code path(s) on which the references appear. If these “potentially unnecessary”
references are numerous, we may avoid a significant amount of work by linking
the library lazily on demand. Moreover even in a program that uses all its symbols,
incremental lazy linking may improve the system’s interactive responsiveness by
allowing programs to begin execution faster. Finally, a language system that allows

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 314 3–867

314 Chapter 14 Building a Runnable Program

the dynamic creation of program components (e.g., as in Common Lisp or Java)
must use lazy linking to delay the resolution of external references in compiled
components.

The run-time data structures for lazy linking are almost the same as those inEXAMPLE 14.23
Dynamic linking under
MIPS/IRIX

Figure 14.15, but they are incrementally created. At load time, the program
begins with the main code segment and linkage table, and with all data segments
for which addresses need to appear in that linkage table. In our specific example,
we would load the data segments of both main and foo, because the addresses of
both X (which belongs to main) and Y (which belongs to foo) need to appear in
the main linkage table. We would not, however, load the code segment or linkage
table of foo, despite the fact that the address of foo needs to appear in the linkage
table. Instead, we would initialize that linkage table entry to refer to a stub routine,
created by the compiler and included in the main code segment. The code of the
stub looks like this:

t9 := *(gp+k) -- lazy linker entry point
t7 := ra
t8 := n -- index of stub
call *t9 -- overwrites ra

The lazy linker itself resides in a (nonlazy) shared library, linked to the program
at load time. (Here we have assumed that its address lies at offset k in the linkage
table.)

After branching to the lazy linker, control never returns to the stub. Instead,
the linker uses the constant n to index into the import table of the program’s
object file, where it finds the information it needs to identify both the name and
the library of the unresolved reference. The linker then loads the library’s code
segment into memory if it is not already there. At this point it can change (“patch”)
the linkage table entry through which the stub was called, so that it now points
to the library routine. If it needed to load the library’s code segment, the linker
also creates a copy of the library’s linkage table. It initializes all data entries in that
table, loading (copies of) the segments to which those entries refer if they (the
segments) have not already been loaded as part of an earlier linking operation.
For each subroutine entry in the library’s linkage table, the linker checks to see
whether the relevant code segment has already been loaded. If so, it initializes the
entry with the subroutine’s address. If not, it initializes it with the address of its
stub. Finally, the linker copies t7 into ra and jumps to the newly linked library
routine. At this point, everything appears as though the call had happened in the
normal fashion. �

As execution proceeds, further references to not-yet-loaded symbols extend the
“frontier” of the program. Because invocations of the linker occur on subroutine
calls and not on data references, the current frontier always includes a set of code
segments and the data segments to which those code segments refer. Each linking
operation brings in one new code segment, together with all of the additional data
segments to which that code refers. If we were willing to intercept page faults,
we could arrange to enter the linker on references to not-yet-loaded data. This

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 315 3–867

14.7.2 Fully Dynamic (Lazy) Linking 315

approach would avoid loading data segments that are never really used, but the
overhead of the faults might greatly increase execution time.

3CHECK YOUR UNDERSTANDING

31. Explain the addressing challenge faced by dynamic linking systems.

32. What is position-independent code? What is it good for? What special precau-
tions must a compiler follow in order to produce it?

33. Under MIPS/IRIX conventions, explain the significance of the gp (global
pointer) register in a program with dynamic linking.

34. What is the purpose of a linkage table?

35. What is lazy dynamic linking? What is its purpose? How does it work?

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 316 3–867

