Type

Checking

Previously, in PL...

Scoping rules match identfifier uses with identifier
definifions.

A type is a set of values coupled with a set of
operations on those values.

A type system specifies which operations are valid for
which types.

Type checking can be done statically (at compile
time) or dynamically (at run fime).

#2

Today, In PL (one slide summary)

A type environment gives types for free variables. You
typecheck a let-body with an environment that has
been updated to contain the new let-variable.

If an object of type X could be used when one of type
Y is acceptable then we say X is a subtype of Y, also
written X <'Y.

A type system is sound if

VY E. dynamic_type(E) < static_type(E)

Lecture Outline

Typing Rules

Typing Environments
“Let” Rules
Subtyping

Wrong Rules

MEET THE AMAZING .

> pre———

NIN T L\mo S

ULTIMATE (G COLOR T
JOX=TYACHNE | e COMPATIBLI
|
&)

TO PLAY AND [INTERACTIVE
HAVE FUN atog oA JOYSTICK
ALONG WITH - f BEST GAMES
YOUR FAMILY | 1 AVAILADLI
AND FRIENDS § . SUITABLE

h " § ENTERTAINMENT

g f [A

['OR YOUR. KIDS &

\;'? ;: " "f o :

4
: 4

Type Checking Proofs

A type checker’s goal is to make sure that the program
follows the rules for the given language’s type system.

Type checking proves facts e . T (read as: the
expression e has type T).

o One type rule is used for each kind of expression

In a type rule used for a node e:

O The hypotheses are the proofs of types of e’s
subexpressions

O The conclusion is the proof of the type of e itself (the fact
that we're trying to prove, namely that e has type T).

#5

Review Example: 1 + 2

- 1

: Int

-2

: Int

F1+2:Int

#6

If we can
prove it, then
it's true!
O e
A type system is sound if
o Whenever Fe:T
O Then e evaluates to a value of

type T

We only want sound rules

O But some sound rules are better
than others:

(i is an integer)
-1 : Object

THE BAS5 FROM
THAT (AR 1S
DRIVING ME NUTS.

THOMPA
THQMPAf

ME To0.
GIVE ME A
HAND HERE,

e

IM AFRAID
TO ASK.

THIS SYSTEM DETECTS
BASS RHYTHMS AND
FLOODS THE TARGET
" WITH A PHASE-SHIFTED
REPUCA SIGNAL.

THE RESONANCE. SHOULD
BLOW QUT THER SPEAKERS.

|

THUY\ @ | B
\ - \O
P
i | (€0

HORRIFYING.

OKAY, NOW THROW
THE SWITCH LABELED
“MACARENA®

Soundness: Why we care.

If the type system is sound, then we can say that “a
well-typed program won't have runtime type

mistakes.”

Completeness is the converse of soundness: A logical
system is complete if
o Whenever e evaluates to a value of type T

o ThenkFe:T

There's a tug-of-war, here; we'll get back to this idea
later.

#8

Rules for Constants

- false : Bool

s . String

[Bool]

[String]

(s is a string
constant)

#9

Rule for New

new T produces an object of type T
o Ignore SELF_TYPE for now . ..

[New]
Fnew T : T

#10

Two More Rules

- e : Bool

[Not]
- not e : Bool
- e, : Bool
Fe,: T

)) [Loop]
- while e, loop e, pool : Object

#11

Two More Rules

- e : Bool

type derivation
using this rule
look like?

I_ nOt e . BOO[g/ What does a

- e, : Bool
Fe,: T

- while e, loop e, pool : Object

[Loop]

#12

Typing: Example

while not false loop 1 + 2 * 3 pool

#13

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

hot +
J /\
false 1 *

#14

Typing: Example

while not false loop 1 + 2 * 3 pool

e, : Bool
Fe,: T

- while e, loop e, pool : Object

Loop rule:

while loop pool

.

hot +
, /\
false 1 *
/\‘
2 3

#15

Typing: Example

while not false loop 1 + 2 * 3 pool

e, : Bool

Loop rule:

while loop pool

.

hot +
J /\
false 1 *
/\‘
2 3

#16

Typing: Example

while not false loop 1 + 2 * 3 pool
e, : Bool

Loop rule:

-

hot

false

#17

Typing: Example

while not false loop 1 + 2 * 3 pool

hot

false

#18

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

hot +

fa

se 1

#19

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

hot +
| /\
false 1 *

#20

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not +

| N

I false : Bool f(] se 1

#21

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not +

|l T

*
I false : Bool f(] se: Bool 1

— T
2 3

#22

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not +

- not e : Bool ‘\ /\
v

false: Bool 1 *

— T
2 3

e : Bool

#23

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

- e : Bool
not: Bool +
 not e : Bool
| ‘\ /\
*
false: Bool 1 .

2 3

#24

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

not: Bool +
I ‘\ /\
false: Bool 1 *

— T
2 3

#25

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +

|l T

false: Bool 1:Int *

— T
2 3

#26

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +

|l T

false: Bool 1:Int *

/\’
2. Int 3

#27

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +

|l T

false: Bool 1:Int *

/\’
2. Int 3: Int

#28

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +

v

fa

| T

se: Bool 1:Int

#29

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +: Int

e

false: Bool 1:Int

#30

Typing: Example

while not false loop 1 + 2 * 3 pool

while loop pool

.

not: Bool +: Int

e

false: Bool 1:Int Aﬁ*i\

2. Int 3: Int

#31

Typing: Example

while not false loop 1 + 2 * 3 pool

e, : Bool
Fe,: T

- while e, loop e, pool : Object

Loop rule:

while loop pool

.

not: Bool +: Int
I X %
false: Bool 1:Int * ¢ Int

ﬁk\

2: Int 3:Int

#32

Typing: Example

while not false loop 1 + 2 * 3 pool

e, : Bool
Fe,: T

- while e, loop e, pool : Object

Loop rule:

while loop pool: Object

s~

not: Bool +: Int

e

false: Bool 1:Int ﬁ*i\

2: Int 3:Int

#33

Typing: Example

while not false loop 1 + 2 * 3 pool

e, : Bool
Fe,: T

- while e, loop e, pool : Object

Loop rule:

wh 200 0 “ool - Object

L =

not: Bool +: Int
I X %
false: Bool 1:Int * ¢ Int

ﬁk\

2: Int 3:Int

#34

Typing Derivations

This typing reasoning can be expressed as a tree:

F2:Int F 3 :Int
- false : Bool -1 :Int F2*3:Int

- not false : Bool F1+2%*3:Int
- while not false loop 1 + 2 * 3 : Object

The root of the tree is the whole expression (while not
false loop 1 + 2 * 3 pool).

Each node is an instance of a typing rule.

Leaves are the rules with no hypotheses

#35

A Problem

What is the type of a variable reference?

5 [Var] (xisan
=X identifier)

The local structural rule does not carry enough
Information o give x a type.

#36

A Problem

What is the type of a variable reference?

'Varl (X is an

=X ﬁAI I_|den’r|f|er)

The local structural relemdoesn orearnry enough
Information o give x a Type.

#37

Solution: add information 1o the rules!

A type environment gives types for free variables. It is @
mapping from Object_ldentifiers to Types

A variable is free in an expression if the expression
contains an occurrence of the variable that refers to a
declaration outside the expression.

Examples:

O in the expression “x”, the variable “x" is free
o in‘letx:Intfinx+y"” only “y"is free
o in“x+letx:Intinx+y"” both “x"”, “y" are free

#38

Type Environments

Let O be a function from Object_ldentifiers to Types

The sentence O F e : Tisread:

o “Under the assumption that variables have the types
given by O, it is provable that the expression € has the
type T."

#39

Modified Rules

The type environment is added to the earlier rules:

[Int]
OFi:lInt (i is an integer)
OFe,:Int
OFe,:Int
[Add]

OFe, +e,:Int

#40

And we can write new rules:

[Var] (O(x)=T)

OFx:T
Equivalently:
Ox)=T

[Var]

OFx:T

#41

Let

O[Ty/x]Fe : T,

[Let-No-Init]
OFletx:T,ine, : T,

O[Ty/x] means “O modified fo map x to T, and
behaving as O on all other arguments’:

O[To/x] (x) =Tg
O[To/x] (y) = Oly)

(You can write O[x/T,] on tests/assignments.)

#42

Let Example

Consider the Cool expression
letx:Toin(lety:T,inE,)+ (letx:T,inF

(where E, , and F, , are some Cool expression

that contain occurrences of “x” and "y")

x,y)

Scope
o of "y"isE
o of outer “x”

X" is Ey
o of inner

x"is Fy

This Is captured precisely in the typing rule.

#43

Example of Typing “Let”

letx:Tyin (lety:T,inE)+ (letx:T,inF,)

#44

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

IZT X . To In I
+
le‘ry:Tlinl let x : T, in
E. |
| o
X

#45

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O+ IZTX:TOinl

+
le‘ry:Tlinl let x : T, in
E. |
: FX,Y

#46

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O+ IZTX:TOinl

N

O[Ty/x]F +
le‘ry:Tlinl let x : T, in
E’f’y |
Fy y

#47

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O[To/X] - +
O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in
E>E<,y !
| Fo

#48

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O+ IZTX:TOinl

N

O[T,/x]F +

.

O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in

(O[To/xDITy/y]lF E>:<,y

X

#49

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.

N

O[To/X] - +

Y

O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in

(OLTo/x DTyl E,

(O[To/xDITy /Yyl x

#50

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O+ IZTX:TOinl

N

O[T,/x]F +

.

O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in

™~

(O[TO/X]?[T/Y] - E>_<,y \ L

(O[T/xD[T,/x] F F;(,y

(O[To/xDITy /Yyl x

#51

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.

N

O[To/X] - +

Y

O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in

™~

(O[TO/X]?[T/Y] - E>_<,y \ L

(O[To/X D[T,/x] - F;,y

LN
0
......
. .

#52

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.

N

O[To/X] - +

Y

O[To/X]F lety: T, inl O[Ty/x]Hlet x: T,in

™~

(O[To/XDIT/yl+ E,, :int \ |

(O[To/X D[T,/x] - F;,y

LN
0
......
. .

#53

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O[To/X] - +

Y

O[To/X]F lety: T, inl pint O[Ty/x]kHlet x: T,in

(O[To/xDIT:/yl E,, :int \ |

(O[To/X D[T,/x] - F;,y

LN
......
e .
. .

#54

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
O[To/X] - +

Y

O[To/X]F lety: T, inl pint O[Ty/x]kHlet x: T,in

N \
OIT/x)IT/yl - E,, :int |

(O[To/xDITo/x1+ F,, :int

.,
0
. . .
.
............
...........

. .

#55

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
Types OQX T in I
O[To/X] - +

Y

O[To/X]F lety: T, inl tint O[Ty/x]Fletx:T,in| ‘int

N \
O[T/xDTyIF E,, :int |

(O[To/xDITo/x1+ F,, :int

.,
0
. . .
.
............
...........

. .

#56

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
Types OQX T in I
O[To/X] = + . ln1'

T

O[To/X]F lety: T, inl tint O[Ty/x]Fletx:T,in| ‘int

N \
O[T/xDTyIF E,, :int |

(O[To/xDITo/x1+ F,, :int

.,
0
. . .
.
............
...........

. .

#57

The type environment gives types to the free identfifiers
in the current scope

The type environment is passed down the AST from the
root towards the leaves

Types are computed up the AST from the leaves
towards the root

#58

Example of Typing “Let”

AsT letx:Tyin(lety:T,inE,)+ (letx:T,inF,)

Type env.
Types OQX T in I
O[To/X] = + . ln1'

T

O[To/X]F lety: T, inl tint O[Ty/x]Fletx:T,in| ‘int

N \
O[T/xDTyIF E,, :int |

(O[To/xDITo/x1+ F,, :int

.,
0
. . .
.
............
...........

. .

#59

Q: Movies (362 / 842)

e In this 1992 comedy Dana Carvey
and Mike Myers reprise a
Saturday Night Live skit, sing
Bohemian Rhapsody and say of
a guitar: "Oh vyes, it will be
mine.”

Q: General (455 / 842)

e This numerical technique for finding
solutions to boundary-value problems
was initially developed for use in
structural analysis in the 1940's. The
subject is represented by a model
consisting of a number of linked
simplified representations of discrete
regions. It is often used to determine
stress and displacement in mechanical
systems.

Q: Movies (377 / 842)

e [dentify the subject or the speaker in 2
of the following 3 Star Wars quotes.

- "Aren't you a little short to be a
stormtrooper?”

- "| felt a great disturbance in the Force ...
as if millions of voices suddenly cried out
in terror and were suddenly silenced.”

- "l recognized your foul stench when | was
brought on board.”

Let with Initialization

Now consider let with initialization:

OFe,: T,
O[Ty/x] e, : T,

OFletx: Ty« ey;ine, : T,

[Let-Init]

This rule is weak. Whye

#63

Let with Initialization

Consider the example:

class C inherits P{ ... }

letx: P+~ new Cin ...

The previous let rule does not allow this code
o The rule is too weak or incomplete.

#64

Subtyping

Define a relation X <Y on classes to say that:

O An object of type X could be used when one of type Y is
acceptable, or equivalently, X conforms with Y

O In Cool, this means that X is a subclass of Y

Define a relation < on classes such that:
X< X
X <Y if Xinherits from Y
X<ZitX<YandY</Z/

#65

Let With Inifialization (Better)

OFey: T
T<T,
O[T,/x]Fe,: T, [Let-Init]

OFletx: Ty« eyine, : T,

Both rules for let are sound

But more programs type check with this new rule (it is

more complete). o

Dynamic And Static Types

The dynamic type of an object is the class C that is
used in the “new C" expression that creates the object

o A run-time nofion.

o Even languages that are not statically typed have the
notion of dynamic type.

The static type of an expression is a notation that
captures all possible dynamic types the expression
could take.

O A compile-time notion

#H67

Dynamic and Static Types. (Cont.)

In early type systems, the set of static types correspond
directly with the dynamic types.

Soundness theorem: for all expressions E

dynamic_type(E) = static_type(E)

(in all executions, E evaluates to values of the type inferred
by the compiler)

This gets more complicated in advanced type systems
(e.g., Java, Cool)

#68

Type System Tug-of-War

There is a tension between
o Flexible rules that do not constrain programming

o Restrictive rules that ensure safety of execution

#69

Static Type System Expressiveness

A static type system enables a compiler to detect
many commaon programming errors

The cost is that some correct programs are disallowed
o Some argue for dynamic type checking instead.
O ...others argue for more expressive static type checking.

But more expressive type systems are also more
complex

#70

Dynamic and Static Types in COOL

A variable of static type A can hold values of static
type B, if B < A

classA{ ..}
class B inherits A {.. h
ere, x’s value has

/ ass Main { — dynamlc type A
A X < new A;

X has static

A
type «__ Here, x’s value has

X < new B; dynamic type B

#71

Dynamic and Stafic Types

Soundness theorem for the Cool type system:
V E. dynamic_type(E) < static_type(E)

Why is this Ok
o For E, compiler uses static_type(E)

o All operations that can be used on an object of

type C can also be used on an object of type C' <
C

Examples: fetching the value of an attribute, or invoking @
method on the object

o Subclasses can only add attributes or methods

O Methods can be redefined, but with the same
types!

#12

Subtyping Example

Consider the following Cool class definitions

Class A{a() :inf{0};}
Class B inherits A {b() :inf{1};}

An instance of B has methods “a” and “b”

An instance of A has method “a”

O A type error occurs if we fry to invoke method “b"” on an

iInstfance of A
#73

Example of Wrong Let Rule (1)

Now consider a hypothetical wrong let rule:
OFe,:T T<T, Ole,:T,
OFletx: Ty« ey,ine, : T,

How is it different from the correct rule?¢

The geod elephant in
airship dropped what things?

#r4

Example of Wrong Let Rule (1)

Now consider a hypothetical wrong let rule:

OFey:T T<LZT, Olte :T,

OFletx: Ty« ey,ine, : T,

How is it different from the correct rule?
The following good program does not typecheck
letx:Int<— Oinx + 1

Whye

#75

Example of Wrong Let Rule (2)

Now consider a hypothetical wrong let rule:

OFey:T Ty <T OfTy)/x]Fe,: T,

OFletx: Ty« ey,ine, : T,

How is it different from the correct rule?¢

#76

Example of Wrong Let Rule (2)

Now consider another hypothetical wrong let rule:

OFey:T Ty <T OfTy)/x]Fe,: T,

OFletx: Ty« ey,ine, : T,

How is it different from the correct rule?¢
The following bad program is well typed

let X : B+ new A in x.b()
Why is this program bad?

#r7

Example of Wrong Let Rule (3)

Now consider a third hypothetical wrong let rule:

OFey:T TLST, O[T/xX]Fe,:T,

OFletx: Ty« eyine, : T,

How is it different from the correct rule?¢

#78

Example of Wrong Let Rule (3)

Now consider a third hypothetical wrong let rule:

OFey:T TLST, O[T/xX]Fe,:T,

OFletx: Ty« eyine, : T,

How is It different from the correct rulee

The following good program is not well typed
letx: A<+ newBin{..x <+ newA; x.a(); }

Why is this program not well typed?

#79

Upshot: Typing Rule Notation

The typing rules use very concise notation
They are very carefully constructed

Virtually any change in a rule either:

o Makes the type system unsound (i.e., bad programs are
accepted as well typed)

o Or, makes the type system less usable or incomplete
(I.e. good programs are rejected)
But some good programs will always be

rejected, because the notion of a good program is
undecidable

#80

More uses of subtyping:

O(id) = T,
OFe, : T,

Ti=To [Assign]

OFid<«+ e, : T,

#81

Initialized Attributes

Let O(x) =T for all attributes x:T in class C
o O represents the class-wide scope

Attribute inifialization is similar to let, except for the
scope of names

Oc(id) = T,
OcFe : T,

T, < T,
O kid:T,+ e ; [Attr-Init]

If-Then-Else

Consider: if e, then e, else e, fi

The result can be either e, or e,; the dynamic type is
therefore either e,’s or e,'s type.

The best we can do statically is the smallest supertype
larger than both the types of e, and e,

#83

If-Then-Else example

Consider the class hierarchy

P
N
A/ B

... and the expression
if ... then new A else new B fi

Its type should allow for the dynamic type to be both A or B
o Smallest supertype is P

#84

Least Upper Bounds

Define: lub(X,Y) to be the least upper bound of X and
Y. lub(X,Y) is Z if

o X<IAYLIZ
/ is an upper bound
- X<I'ANYLT=ILT
/ 1s least among upper bounds

In Cool, the least upper bound of two types is their
least common ancestor in the inheritance tree

#85

If-Then-Else Revisited

O ¢, : Bool
OFe, : T,

O |- if e, then e, else e, fi : lub(T,, T,)

[If-Then-Else]

#86

Case

The rule for case expressions takes a lub over all
branches

OFey: T,
O[T/x/]F e : Ty [Case]

Oo[T./x.]Fe,: T/

O |- case e, of x: T, = ey;
ey X, o T. = e ; esac : lub(T,’,...,T.’)

#87

Type checking method dispatch

Type checking with SELF_TYPE in COQOL

#88

Homework

Get started on PA4
o Checkpoint due March 19

Before Next Class: Read Chapter 7.2

#89

