

#2

 “Wizard is about to die.”
• PA5 checkpoint is due Monday April 16th – two

weeks from now.
• I have two auto-tester submissions so far.

– I am predicting that you haven't started PA5c yet.

• You will have second midterms in this class
(and others!) soon.

• If you can't interpret hello-world.cl shortly, I
forsee regret, remorse and lack of sleep in
your future. :-)

#3

One-Slide Summary

• Real-world programs must have error-
handling code. Errors can be handled where
they are detected or the error can be
propagated to a caller.

• Passing special error return codes is itself
error-prone.

• Exceptions are a formal and automated way
of reporting and handling errors. Exceptions
can be implemented efficiently and
described formally.

#4

Language System Structure

• We looked at each stage
in turn

• A new language feature
affects many stages

• We will add exceptions

Source

Lexer

Parser

Code Generator

Runtime System

Run it!

Type checker

#5

Lecture Summary

• Why exceptions ?

• Syntax and informal semantics

• Semantic analysis (i.e., type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#6

Exceptional Motivation

• “Classroom” programs are written with optimistic
assumptions

• Real-world programs must consider “exceptional”
situations:
– Resource exhaustion (disk full, out of memory, network

packet collision, …)
– Invalid input
– Errors in the program (null pointer dereference)

• It is usual for code to contain 1-5% error handling
code (figures for modern Java open source code)
– With 3-46% of the program text transitively reachable

#7

Why do we care?

• Are there any implications if software makes
mistakes?

#8

Approaches To Error Handling

Two ways of dealing with errors:
• Handle them where you detect them

• e.g., null pointer dereference ! stop execution

• Let the caller handle the errors:
• The caller has more contextual information

e.g. an error when opening a file:
a) In the context of opening /etc/passwd
b) In the context of opening a log file

• But we must tell the caller about the error!

#9

Error Return Codes

• The callee can signal the error by returning a
special return value or error code:
– Must not be one of the valid inputs
– Must be agreed upon beforehand (i.e., in API)

• What's an example?

• The caller promises to check the error return
and either:
– Correct the error, or
– Pass it on to its own caller

#10

Error Return Codes

• It is sometimes hard to select return codes
– What is a good error code for:

• divide(num: Double, denom: Double) : Double { … }

• How many of you always check errors for:
– malloc(int) ?
– open(char *) ?
– close(int) ?
– time(struct time_t *) ?

• Easy to forget to check error return codes

#11

Example:
Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
dbset(gradesdb, sid, grade);

}
void extraCredit(int sid) {

setGrade(sid, 0.33 + getGrade(sid));

}
void grade_inflator() {

while(gpa() < 3.0) { extraCredit(random()); }

}

• What errors are we ignoring here?

#12

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

#13

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

A lot of extra
code

#14

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

Some functions
change their type

A lot of extra
code

#15

Example: Automated Grade
Assignment

float getGrade(int sid) {
 float res; int err = dbget(gradesdb, sid, &res);
 if(err < 0) { return -1.0;}
 return res;
}

int extraCredit(int sid) {
 int err; float g = getGrade(sid);
 if(g < 0.0) { return 1; }
 err = setGrade(sid, 0.33 + g));
 return (err < 0);
}

Some functions
change their type

Error codes are
sometimes arbitrary

A lot of extra
code

#16

Exceptions

• Exceptions are a language mechanism
designed to allow:
– Deferral of error handling to a caller

– Without (explicit) error codes

– And without (explicit) error return code checking

#17

Adding Exceptions to Cool

• We extend the language of expressions:
e ::= throw e | try e catch x : T) e2

• (Informal) semantics of throw e
– Signals an exception
– Interrupts the current evaluation and searches

for an exception handler up the activation tree
– The value of e is an exception parameter and can

be used to communicate details about the
exception

#18

Adding Exceptions to Cool

(Informal) semantics of try e catch x : T) e2

– e is evaluated first
– If e’s evaluation terminates normally with v

 then v is the result of the entire expression

 Else (e’s evaluation terminates exceptionally)
 If the exception parameter is of type · T then

– Evaluate e2 with x bound to the exception parameter

– The (normal or exceptional) result of ev

– aluating e2 becomes the result of the entire expression

 Else
– The entire expression terminates exceptionally

#19

Example:
Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {

if(grade < 0.0 || grade > 4.0) { throw (new NaG); }
dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) {
 try extraCredit(random())
 catch x : Object) print “Aie!?\n”; }
}

#20

Example Notes

• Only error handling code remains
• But no error propagation code

– The compiler handles the error propagation
– No way to forget about it
– And also much more efficient (we’ll see)

• Two kinds of evaluation outcomes:
– Normal return (with a return value)
– Exceptional “return” (with an exception

parameter)
– No way to get confused which is which

#21

Where do exceptions come from?

#22

Overview

Why exceptions ?

Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#23

Typing Exceptions
• We must extend the Cool typing judgment

 O, M, C ` e : T
– Type T refers to the normal return value!

• We’ll start with the rule for try:
– Parameter “x” is bound in the catch expression
– try is like a conditional

O, M , C ` try e catch x : T) e’ : T1 t T2

O, M, C ` e : T1 O[T/x], M, C ` e’ : T2

#24

Typing Exceptions

• What is the type of “throw e” ?
• The type of an expression:

– Is a description of the possible return values, and
– Is used to decide in what contexts we can use the

expression

• “throw” does not return to its immediate
context but directly to the exception handler!

• The same “throw e” is valid in any context:
if throw e then (throw e) + 1 else (throw e).foo()

• As if “throw e” has any type!

#25

Typing Exceptions

• As long as “e” is well typed, “throw e” is
well typed with any type needed in the
context
– T2 is unbound!

• This is convenient because we want to be
able to signal errors from any context

O, M , C ` throw e : T2

O, M, C ` e : T1

#26

Real-World Languages

• This language group has more native speakers
(almost one billion) than any other language.
Dialects are typically tonal, analytic languages with
word order and particles used instead of inflection
or affixes. The standard word order is S-V-O. Its rich
literary history includes Four Great Classical Novels:
Water Margin (水滸傳), Romance of the Three
Kingdoms (三國演義), Journey to the West (西遊記),
and Dream of the Red Chamber (紅樓夢).

#27

Real-World Languages

• Hangul is the recently-constructed (well, 15th
century) alphabet for this language. It
contains 24 constants and vowels, but is
written in syllable blocks of two to five
letters. For example, 한 looks like a single
character but is composed of three distinct
letters: ㅎ h, ㅏ a, and ㄴ n. The shapes of
the letters are related to the features of the
sounds they represent.

#28

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

• Operational semantics

• Code generation

• Runtime system support

#29

Operational Semantics of
Exceptions

• Several ways to model the behavior of
exceptions

• A generalized value is
– Either a normal termination value, or
– An exception with a parameter value
 g ::= Norm(v) | Exc(v)

• Thus given a generalized value we can:
– Tell if it is normal or exceptional return, and
– Extract the return value or the exception

parameter

#30

Operational Semantics of
Exceptions (1)

• The existing rules change to use Norm(v) :

so, E, S ` e1 + e2 : Norm(Int(n1 + n2)), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Norm(Int(n2)), S2

so, E, S ` id : Norm(v), S

E(id) = lid
S(lid) = v

so, E, S ` self : Norm(so), S

#31

Operational Semantics of
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?

#32

Operational Semantics of
Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?

#33

Operational Semantics of
Exceptions (3)

• “throw e” always returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Exc(v), S1

• What if the evaluation of e itself throws an
exception?
• e.g. “throw (1 + (throw 2))” is like “throw 2”
• Formally:

#34

Operational Semantics of
Exceptions (4)

• All existing rules are changed to propagate
the exception:

so, E, S ` e1 + e2 : Exc(v), S1

so, E, S ` e1 : Exc(v), S1

so, E, S ` e1 + e2 : Exc(v), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Exc(v), S2

• Note: the evaluation of e2 is aborted

#35

Operational Semantics of
Exceptions (5)

• The rules for “try” expressions:
– Multiple rules (just like for a conditional)

so, E, S ` try e catch x : T) e’ : Norm(v), S1

so, E, S ` e : Norm(v), S1

• What if e terminates exceptionally?
• We must check whether it terminates with an

exception parameter of type T or not

#36

Operational Semantics for
Exceptions (6)

• If e does not throw the expected exception

• If e does throw the expected exception

so, E, S ` try e catch x : T) e’ : g, S2

so, E, S ` e : Exc(v), S1

v = X(…)
X · T

lnew = newloc(S1)
so, E[lnew/x] , S1[v/lnew] ` e’ : g, S2

so, E, S ` try e catch x : T) e’ : Exc(v), S1

so, E, S ` e : Exc(v), S1

v = X(…)
not (X · T)

#37

Operational Semantics of
Exceptions. Notes

• Our semantics is precise
• But is not very clean

– It has two or more versions of each original rule

• It is not a good recipe for implementation
– It models exceptions as “compiler-inserted

propagation of error return codes”
– There are much better ways of implementing

exceptions

• There are other semantics that are cleaner
and model better implementations

#38

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

Operational semantics

• Code generation

• Runtime system support

#39

Code Generation for Exceptions

• One method is suggested by the operational
semantics

• Simple to implement
• But not very good

– We pay a cost at each call/return (i.e., often)
– Even though exceptions are rare (i.e., exceptional)

• A good engineering principle:
– Don’t pay often for something that you use rarely!

• What is Amdahl’s Law?

– Optimize the common case!

#40

Solutions?

#41

Long Jumps

• A long jump is a non-local goto:
– In one shot you can jump back to a function in the caller

chain (bypassing many intermediate frames)
– A long jump can “return” from many frames at once

• Long jumps are a commonly used implementation
scheme for exceptions
– Take a compilers class for details

• Disadvantage:
– (Minor) performance penalty at each try

#42

Implementing Exceptions with
Tables (1)

cgen(try e catch e’) =
 cgen(e) ; Code for the try block
 goto end_try
L_catch:
 cgen(e’) ; Code for the catch block
end_try:
 …
cgen(throw) =
 jmp runtime_throw ; <- this is the trick!

• We do not want to pay for exceptions when
executing a “try”
– Only when executing a “throw”

#43

Implementing Exceptions with
Tables (2)

• The normal execution proceeds at full speed

• When a throw is executed we use a runtime
function that finds the right catch block

• For this to be possible the compiler produces
a table saying for each catch block to which
instructions it corresponds

#44

Implementing Exceptions with
Tables. Notes

• runtime_throw looks at the table and figures
which catch handler to invoke

• Advantage:
– No cost, except if an exception is thrown

• Disadvantage:
– Tables take space (even 30% of binary size)
– But at least they can be placed out of the way

• Java Virtual Machine uses this scheme

#45

try … finally …

• Another exception-related construct:
 try e1 finally e2

– After the evaluation of e1 terminates (either normally
or exceptionally) it evaluates e2

– The whole expression then terminates like e1

• Used for cleanup code:
try
 f = fopen(“treasure.directions”, “w”);
 … compute … fprintf(f, “Go %d paces to the west”, paces); …
finally
 fclose(f)

#46

Try-Finally Semantics

• Typing rule:

• Operational semantics:
O, M , C ` try e1 finally e2 : T2

O, M, C ` e1 : T1 O, M, C ` e2 : T2

so, E, S ` try e1 finally e2 : g, S2

so, E, S ` e1 : Norm(v), S1
so, E, S1 ` e2 : g, S2

so, E, S ` try e1 finally e2 : Exc(v1), S2

so, E, S ` e1 : Exc(v1), S1
so, E, S1 ` e2 : Norm(v2), S2

#47

Psycho Corner Case

• Operational Semantics

• Difficulty in understanding try-finally is one
reason why Java programmers tend to make
at least 200 exception handling mistakes per
million lines of code

so, E, S ` try e1 finally e2 : ???, S2

so, E, S ` e1 : Exc(v1), S1
so, E, S1 ` e2 : Exc(v2), S2

#48

14.20.2 Execution of try-catch-finally
• A try statement with a finally block is executed by first executing the try block. Then there is

a choice:
• If execution of the try block completes normally, then the finally block is executed, and then

there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S.
• If execution of the try block completes abruptly because of a throw of a value V, then there is

a choice:
– If the run-time type of V is assignable to the parameter of any catch clause of the try statement,

then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of
the selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

• If the catch block completes normally, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes normally.
– If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.

• If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and reason R is

discarded).

– If the run-time type of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:

• If the finally block completes normally, then the try statement completes abruptly because of a throw of the
value V.

• If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason S (and
the throw of value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:

– If the finally block completes normally, then the try statement completes abruptly for reason R.
– If the finally block completes abruptly for reason S, then the try statement completes abruptly for

reason S (and reason R is discarded).

#49

Avoiding Code Duplication for
try … finally

• The Java Virtual
Machine
designers wanted
to avoid this
code duplication

#50

Avoiding Code Duplication for
try … finally

• The Java Virtual Machine designers wanted
to avoid this code duplication

• So they invented a new notion of subroutine
– Executes within the stack frame of a method
– Has access to and can modify local variables
– One of the few true innovations in the JVM

#51

JVML Subroutines Are
Complicated

• Subroutines are the most difficult part of the
JVML

• And account for the several bugs and
inconsistencies in the bytecode verifier
– And are used in practice for code obfuscation!

• Complicate the formal proof of correctness:
– 14 or 26 proof invariants due to subroutines
– 50 of 120 lemmas due to subroutines
– 70 of 150 pages of proof due to subroutines

#52

Are JVML Subroutines
Worth the Trouble ?

• Subroutines save space?
– About 200 subroutines in 650,000 lines of Java

(mostly in JDK)
– No subroutines calling other subroutines
– Subroutines save 2427bytes of 8.7 Mbytes

(0.02%)!

• Changing the name of the language from
Java back to Oak would save 13 times more
space !

#53

Exceptions. Conclusion

• Exceptions are a very useful construct

• A good programming language solution to
an important software engineering problem

• But exceptions are complicated:
– Hard to implement
– Complicate the optimizer
– Very hard to debug the implementation

(exceptions are exceptionally rare in code)

#54

Homework
• WA6 due soon!
• For Next Time – Read Graham paper on gprof

– Plus Chapter 15.3.2 and 15.3.3

	Exceptions
	Slide 2
	One-Slide Summary
	Language System Structure
	Lecture Summary
	Exceptional Motivation
	Slide 7
	Approaches To Error Handling
	Error Return Codes
	Slide 10
	Example: Automated Grade Assignment
	Example: Automated Grade Assignment
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Adding Exceptions to Cool
	Slide 18
	Example: Automated Grade Assignment
	Example Notes
	Slide 21
	Overview
	Typing Exceptions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Operational Semantics of Exceptions
	Operational Semantics of Exceptions (1)
	Operational Semantics of Exceptions (2)
	Slide 32
	Operational Semantics of Exceptions (3)
	Operational Semantics of Exceptions (4)
	Operational Semantics of Exceptions (5)
	Operational Semantics for Exceptions (6)
	Operational Semantics of Exceptions. Notes
	Slide 38
	Code Generation for Exceptions
	Slide 40
	Long Jumps
	Implementing Exceptions with Tables (1)
	Implementing Exceptions with Tables (2)
	Implementing Exceptions with Tables. Notes
	try … finally …
	Try-Finally Semantics
	Psycho Corner Case
	14.20.2 Execution of try-catch-finally
	Slide 49
	Avoiding Code Duplication for try … finally
	JVML Subroutines Are Complicated
	Are JVML Subroutines Worth the Trouble ?
	Exceptions. Conclusion
	Homework

