
#1

Automatic Memory ManagementAutomatic Memory Management

#2

One-Slide Summary
• An automatic memory management system

deallocates objects when they are no longer used
and reclaims their storage space.

• We must be conservative and only free objects
that will not be used later.

• Garbage collection scans the heap from a set of
roots to find reachable objects. Mark and Sweep
and Stop and Copy are two GC algorithms.

• Reference Counting stores the number of pointers
to an object with that object and frees it when that
count reaches zero.

#3

Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting

#4

Why Automatic Memory Mgmt?

• Storage management is still a hard problem
in modern programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on... (can be big security problems)

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in

time and program text from the source

#5

Type Safety and
Memory Management

• Some storage bugs can be prevented in a
strongly typed language
– e.g., you cannot overrun the array limits

• Can types prevent errors in programs with
manual allocation and deallocation of
memory?
– Some fancy type systems (linear types) were

designed for this purpose but they complicate
programming significantly

• If you want type safety then you must use
automatic memory management

#7

The Basic Idea

• When an object that takes memory space is
created, unused space is automatically
allocated
– In Cool, new objects are created by new X

• After a while there is no more unused space
• Some space is occupied by objects that will

never be used again (= dead objects?)
• This space can be freed to be reused later

#8

Dead Again?

• How can we tell whether an object will
“never be used again”?
– In general it is impossible (undecideable) to tell
– We will have to use a heuristic to find many (not

all) objects that will never be used again

• Observation: a program can use only the
objects that it can find:

let x : A Ã new A in { x Ã y; ... }

– After x Ã y there is no way to access the newly
allocated object

#9

Garbage

• An object x is reachable if and only if:
– A local variable (or register) contains a pointer to

x, or
– Another reachable object y contains a pointer to

x

• You can find all reachable objects by starting
from local variables and following all the
pointers (“transitive”)

• An unreachable object can never by referred
to by the program
– These objects are called garbage

#10

Reachability is an Approximation

• Consider the program:
x Ã new Ant;

y Ã new Bat;

x Ã y;

if alwaysTrue() then x Ã new Cow else x.eat() fi

• After x Ã y (assuming y becomes dead there)
– The object Ant is not reachable anymore
– The object Bat is reachable (through x)
– Thus Bat is not garbage and is not collected
– But object Bat is never going to be used

#11

Cool Garbage

• At run-time we have two mappings:
– Environment E maps variable identifiers to

locations
– Store S maps locations to values

• Proposed Cool Garbage Collector
– for each location l 2 domain(S)
– let can_reach = false
– for each (v,l2) 2 E

– if l = l2 then can_reach = true

– if not can_reach then reclaim_location(l)

Does this
work?

#12

Does That Work?

#13

Cooler Garbage

– Environment E maps variable identifiers to locations
– Store S maps locations to values

• Proposed Cool Garbage Collector
– for each location l 2 domain(S)

– let can_reach = false

– for each (v,l2) 2 E

– if l = l2 then can_reach = true

– for each l3 2 v // v is X(…, ai = li, …)

– if l = l3 then can_reach = true

– if not can_reach then reclaim_location(l)

#14

Garbage Analysis

• Could we use the proposed Cool Garbage
Collector in real life?

• How long would it take?

• How much space would it take?

• Are we forgetting anything?
– Hint: Yes. It's still wrong.

#15

Tracing Reachable Values

• In Cool, local variables are easy to find
– Use the environment mapping E
– and one object may point to other objects, etc.

• The stack is more complex
– each stack frame (activation record) contains:

•method parameters (other objects)

• If we know the layout of a stack frame we
can find the pointers (objects) in it

#16

Reachability
Can Be Tricky
• Many things may

look legitimate
and reachable
but will turn out
not to be.

• How can we
figure this out
systematically?

#17

A Simple Example

• Start tracing from local vars and the stack
– they are called the roots

• Note that B and D are not reachable from
local vars or the stack

• Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Elocal var

stack

#18

Elements of Garbage Collection

• Every garbage collection scheme has the
following steps
– Allocate space as needed for new objects
– When space runs out:

– Compute what objects might be used again
(generally by tracing objects reachable from
a set of roots)

– Free space used by objects not found in (a)

• Some strategies perform garbage collection
before the space actually runs out

Q: Games (545 / 842)
• This 1993 id Software game was the first

truly popular first-person shooter (15 million
estimated players). You play the role of a
space marine and fight demons and zombies
with shotguns, chainsaws and the BFG9000.
It was controversial for diabolic overtones
and has been dubbed a "mass murder
simulator." CMU and Intel, among others,
formed special policies to prevent people
from playing it during working hours.

Q: Books (726 / 842)

•Paraphrase any one of Isaac
Asimov's 1942 Three Laws of
Robotics.

Q: Movie Music (428 / 842)

•What's "the biggest word" Dick
Van Dyke had "ever heard" in the
1964 film "Mary Poppins"?

Real-World Languages

• This Romance language features about 80
million speakers, primarily from Europe. It
derives from Latin, retaining that language's
contrast between long and short consonants
and much of its vocabulary. Its modern
incarnation was formalized by Dante Alighieri
in the fourteenth century. The letters j, k, w,
x and y do not appear natively.
– Example: lunedì, martedì, mercoledì, giovedì

#23

Mark And Sweep

• Our first GC algorithm
• Two phases:

– Mark
– Sweep

#24

Mark and Sweep

• When memory runs out, GC executes two
phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark

phase

#25

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

#26

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

#27

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:

#28

The Mark Phase
let todo = { all roots } (* worklist *)
while todo  ; do
 pick v 2 todo
 todo Ã todo - { v }
 if mark(v) = 0 then (* v is unmarked so far *)
 mark(v) Ã 1
 let v1,...,vn be the pointers contained in v
 todo Ã todo [{v1,...,vn}
 fi
od

#29

The Sweep Phase

• The sweep phase scans the (entire) heap
looking for objects with mark bit 0
– these objects have not been visited in the mark

phase
– they are garbage

• Any such object is added to the free list
• The objects with a mark bit 1 have their

mark bit reset to 0

#30

The Sweep Phase (Cont.)

/* sizeof(p) is size of block starting at p */
p Ã bottom of heap
while p < top of heap do
 if mark(p) = 1 then
 mark(p) Ã 0
 else
 add block p...(p+sizeof(p)-1) to freelist
 fi
 p Ã p + sizeof(p)
od

#31

Mark and Sweep Analysis

• While conceptually simple, this algorithm
has a number of tricky details
– this is typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we

cannot reserve space for it a priori

#32

Mark and Sweep Details

• The todo list is used as an auxiliary data
structure to perform the reachability
analysis

• There is a trick that allows the auxiliary data
to be stored in the objects themselves
– pointer reversal: when a pointer is followed it is

reversed to point to its parent

• Similarly, the free list is stored in the free
objects themselves

#33

Mark and Sweep Evaluation

• Space for a new object is allocated from the
new list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment memory
• Advantage: objects are not moved during GC

– no need to update the pointers to objects
– works for languages like C and C++

#34

Another Technique:
Stop and Copy

• Memory is organized into two areas
– Old space: used for allocation
– New space: used as a reserve for GC

old space new space

heap pointer

• The heap pointer points to the next free word in
the old space
• Allocation just advances the heap pointer

#35

Stop and Copy GC

• Starts when the old space is full
• Copies all reachable objects from old space

into new space
– garbage is left behind
– after the copy phase the new space uses less

space than the old one before the collection

• After the copy the roles of the old and new
spaces are reversed and the program
resumes

#36

Stop and Copy Garbage
Collection. Example

A B C D Froot E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

Q: Theatre (004 / 842)

• Identify the character singing these
1965 musical lines: "Hear me now /
Oh thou bleak and unbearable
world, / Thou art base and
debauched as can be; / And a
knight with his banners all bravely
unfurled / Now hurls down his
gauntlet to thee! / I am I, ..."

Q: General (480 / 842)

•This process, typically involving
gamma rays, can be used to
preserve perishable foods like
strawberries, as well as to
sterilize some tools like syringes
and even to turn glass brown.

#39

Implementing Stop and Copy

• We need to find all the reachable objects
– Just as in mark and sweep

• As we find a reachable object we copy it into
the new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old
copy a forwarding pointer to the new copy
– when we later reach an object with a forwarding

pointer we know it was already copied
– How can we identify forwarding pointers?

#40

Implementation of Stop and Copy
• We still have the issue of how to implement

the traversal without using extra space
• The following trick solves the problem:

– partition new space in three contiguous regions

copied and scanned

scan

copied objects
whose pointer
fields were followed
and fixed

copied objects
whose pointer
fields were NOT
followed

emptycopied

allocstart

#41

Stop and Copy. Example (1)

A B C D Froot E new space

• Before garbage collection

start
scan
alloc

#42

Stop and Copy. Example (2)

A B C D Froot E

• Step 1: Copy the objects pointed by roots
and set forwarding pointers (dotted arrow)

A

start
scan

alloc

#43

Stop and Copy. Example (3)

A B C D Froot E

• Step 2: Follow the pointer in the next
unscanned object (A)
– copy the pointed objects (just C in this case)
– fix the pointer in A
– set forwarding pointer

A

scan
alloc

C

start

#44

Stop and Copy. Example (4)

A B C D Froot E

• Follow the pointer in the next unscanned
object (C)
– copy the pointed objects (F in this case)

A

scan
alloc

C F

start

#45

Stop and Copy. Example (5)

A B C D Froot E

• Follow the pointer in the next unscanned
object (F)
– the pointed object (A) was already copied. Set

the pointer same as the forwading pointer

A

scan
alloc

C F

start

#46

Stop and Copy. Example (6)

root

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the

program

A

scan
alloc

C Fnew space

#48

Stop and Copy Details

• As with mark and sweep, we must be able to
tell how large an object is when we scan it
– And we must also know where the pointers are

inside the object

• We must also copy any objects pointed to by
the stack and update pointers in the stack
– This can be an expensive operation

#49

Stop and Copy Evaluation

• Stop and copy is generally believed to be the
fastest GC technique

• Allocation is very cheap
– Just increment the heap pointer

• Collection is relatively cheap
– Especially if there is a lot of garbage
– Only touch reachable objects

• But some languages do not allow copying
– C, C++, …

#50

Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to
find all reachable objects
– And it needs to find all pointers in an object

• In C or C++ it is impossible to identify the
contents of objects in memory
– e.g., how can you tell that a sequence of two

memory words is a list cell (with data and next
fields) or a binary tree node (with a left and
right fields)?

– Thus we cannot tell where all the pointers are

#51

Conservative Garbage Collection

• But it is OK to be conservative:
– If a memory word “looks like” a pointer it is

considered to be a pointer
• it must be aligned (what does this mean?)
• it must point to a valid address in the data segment

– All such pointers are followed and we
overestimate the reachable objects

• But we still cannot move objects because we
cannot update pointers to them
– What if what we thought to be a pointer is

actually an account number?

#52

Reference Counting

• Rather that wait for memory to be
exhausted, try to collect an object when
there are no more pointers to it

• Store in each object the number of pointers
to that object
– This is the reference count

• Each assignment operation has to
manipulate the reference count

#53

Implementing Reference Counts

• new returns an object with a ref count of 1
• If x points to an object then let rc(x) refer to

the object’s reference count
• Every assignment x Ã y must be changed:

 rc(y) Ã rc(y) + 1
 rc(x) Ã rc(x) - 1
 if (rc(x) == 0) then mark x as free
 x Ã y

#54

Reference Counting Evaluation

• Advantages:
– Easy to implement
– Collects garbage incrementally without large

pauses in the execution
• Why would we care about that?

• Disadvantages:
– Manipulating reference counts at each

assignment is very slow
– Cannot collect circular structures

#55

Garbage Collection Evaluation

• Automatic memory management avoids some
serious storage bugs

• But it takes away control from the
programmer
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Most garbage collection implementation stop
the execution during collection
– not acceptable in real-time applications

#56

Garbage Collection Evaluation

• Garbage collection is going to be around for
a while

• Researchers are working on advanced
garbage collection algorithms:
– Concurrent: allow the program to run while the

collection is happening
– Generational: do not scan long-lived objects at

every collection (infant mortality)
– Parallel: several collectors working in parallel
– Real-Time / Incremental: no long pauses

#57

In Real Life

• Python uses Reference Counting
– Because of “extension modules”, they deem it

too difficult to determine the root set
– Has a special separate cycle detector

• Perl does Reference Counting + cycles
• Ruby does Mark and Sweep
• OCaml does (generational) Stop and Copy
• Java does (generational) Stop and Copy

#58

Homework
• WA5 due
• Compilers: PA6 is creeping up ...

	Automatic Memory Management
	One-Slide Summary
	Lecture Outine
	Why Automatic Memory Management?
	Type Safety and Memory Management
	Slide 6
	The Basic Idea
	Dead Again?
	Garbage
	Reachability is an Approximation
	Cool Garbage
	Slide 12
	Cooler Garbage
	Garbage Analysis
	Tracing Reachable Values
	Slide 16
	A Simple Example
	Elements of Garbage Collection
	Q: Games (545 / 842)
	Q: Books (726 / 842)
	Q: Movie Music (428 / 842)
	Slide 22
	Slide 23
	Mark and Sweep
	Mark and Sweep Example
	Slide 26
	Slide 27
	The Mark Phase
	The Sweep Phase
	The Sweep Phase (Cont.)
	Mark and Sweep Analysis
	Mark and Sweep Details
	Mark and Sweep Evaluation
	Another Technique: Stop and Copy
	Stop and Copy GC
	Stop and Copy Garbage Collection. Example
	Q: Theatre (004 / 842)
	Q: General (480 / 842)
	Implementing Stop and Copy
	Implementation of Stop and Copy
	Stop and Copy. Example (1)
	Stop and Copy. Example (2)
	Stop and Copy. Example (3)
	Stop and Copy. Example (4)
	Stop and Copy. Example (5)
	Stop and Copy. Example (6)
	The Stop and Copy Algorithm
	Stop and Copy Details
	Stop and Copy Evaluation
	Why Doesn’t C Allow Copying?
	Conservative Garbage Collection
	Reference Counting
	Implementing Reference Counts
	Reference Counting Evaluation
	Garbage Collection Evaluation
	Slide 56
	In Real Life
	Homework

