AHELUTHUA

COREMTERFAHE

Ira

CHLE

EiiCAw

T EHD

BRIk

BRI

L

Boo-LamD FRENCH

LITTLE

EWE gt a0bo i T R
CHUMMEL ¢ cropas
AT L 'EEHI.T"
BT A Tuh

B0 Enma

ME DI RE
L L]

EFAR

CHFRLRS

EMbDOR CHEESE

HorHlART
MELY GAMEFELIE
DHBOUT

Vo BHLA

MORERRET

RANT A WEMA,

AAGE N THA

CLERA
BCEL ARD

(W {5 TTA T

L LR

OrHRLAAK

Mat s cascan FERU

B

FAHISTAN

kFPY LAND
BlaEr il
MR DOR L

[N

ETHOPG

CRBAE | T T

AKTARCTIC EMPIRE

B ML

(How Not To
Global Optimizat

MEOCLE
E&RTH

Fi R Gy A BT LA

HELS&LUS

JEF RN

WAL AT ERA

GERAMANT
By BATARL
A THL

SCUTH HORER
MO, LAID
Wa T seEE

AF AN JDETH EOREA
PARERG

oT CHIMA
il
AANGLADESH
FIDORE S
LAL S
BOLMNA

B T Svyaiga
CaADRIFY
Py T

LEBRAPCR
ALENTREL LK

[EEE

0)

One-Slide Summary

e A global optimization changes an entire
method (consisting of multiple basic blocks).

« We must be conservative and only apply
global optimizations when they preserve the
original semantics.

e We use global data flow analyses to
determine if it is OK to apply an
optimization.

e Flow analyses are built out of simple
transfer functions and can work forwards or
backwardes.

#2

Lecture Outline

e Global flow analysis

e Global constant
propagation

e Liveness analysis

-. The Bogton Globe -~ -

INCREDIBLE... NO NEWS

All around the world nothing happened

Bl T e p——
el o i Aakica s Pt

Today like yesterday

Inside Today

Nothing to tell Nothing to nothing
NO - -
NEWS
Boston.co o

m
” ’

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

X:=3 X:=3
Y:i=Z*W) o7y) o7y
Q:=X+Y Q:=3+Y Q:=3+Y

T MUST BE
HEW AND GROUND
BREARNG, YET
FoLLOW THE SAME
VISIoN AND PROTO-
CoLS | ESTABLIGHED

YOUR THESIS MUST
BE AN ORMGMNAL
PIECE OF WORK,

7 S0, WhiE el
| L= W ORSTAL,
pu eV CTUALLY
MOEE OF THE
SAME, BUT

_JA.l = .
DIFFERENT,

.. BUT HOT Too
ORESMAL | CANT /
MAKE SURE You

TONT EMBARRASS
ME,
Ly] | [

C

#4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X =3
B>0O
Y=Z+W Yi=0

#5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X =3
B>0O
Y=Z+W Yi=0

#6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X =3
B>0O
Y=Z+W Yi=0

#7

Correctness

« How do we know it is OK to globally
propagate constants?

e There are situations where it is incorrect:

‘,‘
B>0

Y=Z+W Yi=0

Correctness (Cont.)

To replace a use of x by a constant k we must
know this correctness condition:

On every path to the use of x, the last
assignment to x is x := k **

Test:

1. What impertant event Yook
place on December 16, 17737

I do Not BELIEVE iM LiNEAR
TiME. THERE 1% Mo Past and
futuRE: all 15 ONE, aMd
EXiSTENCE M tHE YEMPoRal SEMSE
i% IRLUSeRY, THS QUESHOoN,
HEREFoRE, 15 MEAN|NGLESS and
MpossiBLE Yo ANSER .

qlfr%
L

I .ﬂ*ﬁi‘

{ ml.Eu. M DOUBT,
'1 ALl TEEMS
hHT:I DEFIHITIONS

Example 1 Revisited

#10

Example 2 Revisited

#11

Discussion

e The correctness condition is not trivial to
check

e “All paths” includes paths around loops and
through branches of conditionals

e Checking the condition requires global
analysis
- Global = an analysis of the entire control-flow
graph for one method body

#12

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property
P at a particular point in program execution

- Proving P at any point requires knowledge of the
entire method body

- Property P is typically undecidable!

ii Word cannot edit the Unknown.

Undecidability
of Program Properties

e Rice’s Theorem: Most interesting dynamic
properties of a program are undecidable:

- Does the program halt on all (some) inputs?
e This is called the halting problem

- Is the result of a function F always positive?
e Assume we can answer this question precisely

e Oops: We can now solve the halting problem.

« Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

e Contradiction!
e Syntactic properties are decidable!
- e.g., How many occurrences of “x” are there?

e Programs without looping are also decidable! a

Conservative Program Analyses

e S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

e Itis OK to b conservative.

#15

Conservative Program Analyses

e S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

e It is OK to be conservative. If the optimization
requires P to be true, then want to know either

- P is definitely true
- Don’t know if P is true

e Let's call this truthiness

" Truthiness

. ——:. & r
N .
& -

ﬁ_.
3
¢C
N
é; o o ®

Ty

Conservative Program Analyses

So, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

It is OK to be conservative. If the optimization
requires P to be true, then want to know either

- P is definitely true
- Don’t know if P is true

It is always correct to say “don’t know”
- We try to say don’t know as rarely as possible

All program analyses are conservative

#17

Global Optimization: Review

X:=3

B>0O
— —
=Z+W Y:=0

#18

Global Optimization: Review

X:=3 X:=3
B>0 B>0
— — — —
Yi=Z+W Y:=0 Yi=Z+W Y:=0
\/ X:i=4 _/
A:=2*3
A:=2*X

#19

Global Optimization: Review

><3|
B>OJ

X:=3
B>0
— — —
Yi=Z+W Yi=0 Yi=Z+W
\/ X:i=4
A=2%*3 y.

SN

>§4
Ai=2%*3 y

e To replace a use of x by a constant k we

must know that:

On every path to the use of x, the last
assignment to x is x := k **

#20

Review

e The correctness condition is hard to check

o Checking it requires global analysis

- An analysis of the entire control-flow graph for
one method body

« We said that was impossible, right?

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIONAL

UNINFORMED
CRITICISMS.

\ 17

o W [~

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

THIS DESIGN WILL
MEVER LJORK IN
THE REAL WORLD.

J
T/

CI""""""
R §
J 3 gl JI | i ! I
© Scott Adams, Inc./Dist. by UFS, Inc.

2008 Scott Adams, Inc./Dist by UFS, Ins.

wwnardilbert.com scotindama®aol. com

3
3

#21

Global Analysis

e Global dataflow analysis is a standard
technique for solving problems with these
characteristics

e Global constant propagation is one example
of an optimization that requires global
dataflow analysis

#22

Global Constant Propagation

e Global constant propagation can be
performed at any point where ** holds

e Consider the case of computing ** for a
single variable X at all program points

e Valid points cannot hide!
 We will find you!

- (sometimes)

DISGUISE SKILL

Global Constant Propagation

(Cont.)

« To make the problem precise, we

associate one of the following values with

X at every program point

value

interpretation

#

This statement is
not reachable

X = constant c

Don’t know if X is
a constant

#24

Example

Get out a piece of paper. Let's fill in these blanks now.

=%

«— X =

X:=3
B>0O

Recall: # = not reachable, ¢ = constant, * = don't know.

#25

X

Example Answers

#26

Using the Information

e Given global constant information, it is easy
to perform the optimization

- Simply inspect the x = ? associated with a
statement using x

- If x is constant at that point replace that use of x
by the constant

e But how do we compute the properties x = ?

#27

The ldea

The analysis of a complicated program can
be expressed as a combination of simple
rules relating the change in information

between adjacent statements

SOMETIMES T FREEL LIVE OUR | | WELL, THOREN) SRS, " SIMAUIRY, T HATE 1T WHEN THEY
LIFE HAS GOTTEM TOO QOMALL-| | SIMPLIFY." MAYBE Wi NEED
CATED,. THAT WEVE ACCUMIALMTED

Explanation

e The idea is to “push” or “transfer”
information from one statement to the next

e For each statement s, we compute
information about the value of x
immediately before and after s

C..(x,s) = value of x before s

C_..(x,s) = value of x after s

out

#29

Transfer Functions

e Define a transfer function that transfers
information from one statement to another

#30

Real-World Languages

e The official language of Sri Lanka and
Singapore is spoken by over 66 million boasts
a rich literature stretching back over 2000
years. Unlike most Indian languages, it does
not distinguish between aspirated and
unaspirated consonants. It uses suffices to
mark number, case and verb tense and uses a
flexible S-O-V ordering. It uses postpositions
rather than prepositions.

- Example: 082m & ([6T g0,

#31

Real-World Computer Languages

e In January 1999, Anders Hejlsberg formed a
team to design a new language called Cool, a
“C-like Object Oriented Language”. It was
renamed to avoid trademarks and became a
this, and was “intended to be a simple,
modern, general-purpose, object-oriented
programming language.” It supports strong
type checking, array boudns checking,
garbage collection, components, portability,
internationalization, and functional
programming.

#32

Rule 1

l — X=#

S
l — X=#

C..(X,s)=4# if C (X, s)=#

Recall: # = “unreachable code”

#33

Rule 2

0
N

x
o

C...(X, x :=c) = c if cis a constant

#34

C.(X,x:=1(..)="

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 5, but we won't even try!

out

#35

Rule 4

#36

The Other Half

e Rules 1-4 relate the in of a statement to the out
of the same statement

- they propagate information across statements

« Now we need rules relating the out of one
statement to the in of the successor statement

- to propagate information forward across CFG edges

e In the following rules, let statement s have
immediate predecessor statements p,,...,p.

#37

if C_..(X, p;) = for some i, then C _(x,s) ="

#38

if Co..(x, p;) =c and C (X, p;) =d and d=c
thenC_(x,s)="

#39

if C_.(X, p;) =c or# foralli,
then C (x,s) =cC

#40

Rule 8

X=# X%

X=# X =
\%

S

if C (X, p;) =# foralli,
then C (x,s)=#

#41

An Algorithm

For every entry s to the program, set
C.(x,s)="

Set C. (x, s) =C_.(x, s) =# everywhere else

Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the
appropriate rule

#42

The Value #

e To understand why we need #, look at a loop

X
X:=3 X
B>0O

X:3— —=———_ — X=3

#43

The Value #

e To understand why we need #, look at a loop

#44

The Value # (Cont.)

e Because of cycles, all points must have
values at all times during the analysis

e Intuitively, assigning some initial value
allows the analysis to break cycles

e The initial value # means “so far as we
know, control never reaches this point”

#45

Sometimes
all paths
lead to the
same
place.

#46

4—X:%‘3

We are done
when all rules
are satisfied !

#47

Another Example

X:=3 Let's do it on paper!
B>0

Y=Z+W

#48

Another Example: Answer

«— X=*

X :=3
B>0O

— X:}&3

XK 3 o X=K3

Y=Z+W

Yi=0

X:%3\A/X:,¥X* T

—x=K X

TX-= % 4 Must continue

until all rules

are satisfied !

#49

Orderings

 We can simplify the presentation of the
analysis by ordering the values

< Cc < *©

Drawing a picture with “lower” values
drawn lower, we get

-1 0 1 -
| am called \L//
#

#50

Orderings (Cont.)

e *is the greatest value, # is the least
- All constants are in between and incomparable

e Let lub be the least-upper bound in this
ordering

e Rules 5-8 can be written using lub:
C..(x,s)=lub { C (X, p) | pisa predecessor of s }

#51

Termination

o Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

e The use of lub explains why the algorithm
terminates

- Values start as # and only increase
- # can change to a constant, and a constant to *
- Thus, C_(x, s) can change at most twice

#52

Number Crunching

The algorithm is polynomial in program size:
Number of steps =

Number of C_(....) values changed * 2 =
(Number of program statements)? * 2

#53

Liveness Analysis

Once constants have been globally propagated, we
would like to eliminate dead code

X:=3
B>0O

A=2*X
After constant propagation, X := 3 is dead
(assuming this is the entire CFG)

#54

Live and Dead

The first value of x is
dead (never used)

The second value of x is
live (may be used)

Liveness i1s an
important concept

Compilers for credit:
you must do it for PA7
(plus more ...)

#55

Liveness

A variable x is live at statement s if
- There exists a statement s’ that uses x

- There is a path from s to s’

- That path has no intervening assignment to X

#56

Global Dead Code Elimination

e A statement x := ... is dead code if x is dead
after the assignment

e Dead code can be deleted from the program
e« But we need liveness information first . . .

Should have put more points in it, eh?

#57

Computing Liveness

« We can express liveness in terms of
information transferred between adjacent
statements, just as in constant propagation

e Liveness is simpler than constant
propagation, since it is a boolean property
(true or false)

#58

Liveness Rule 1

L. (X, s) = true if s refers to x on the rhs

#59

Liveness Rule 2

L. (X, x :=e) = false if e does not refer to x

#60

Liveness Rule 3

l ~— X-=-a

S
l «~— X-=-a

L. (X, s) = L,.(X, s) if s does not refer to x

#61

Liveness Rule 4

P e

/\X: "

X=?2 X=2 X = true X=2

L...(X p)= v{L.(X,s) | sasuccessor of p }

#62

Algorithm

e Letall L_(...) = false initially

e Repeat process until all statements s satisfy
rules 1-4 .

Pick s where one of 1-4 does not hold and
update using the appropriate rule

#63

Liveness Example

X :=3
B>0O

— L(X) = false
“— L(X) = false

L(X) = false /\4—[_()5) = false

Y:=0 — L(X) = false

Yi=Z+W
L(X) = false \A) = false
X = X * X
X:=4
A<B

—L(X) = false
+~— L(X) = false
“— L(X) = false

“~— L(X) = false

#64

Liveness Example Answers

X :=3
B>0O

— L(X) = false
— L(X) = fake true

Y=Z+W

—L(X) = fq>§e true

L(X) = f%e TFV\

Yi=0

= LX) = folse true

L(X) = quSe er) = f&(se true

/LX :
Dead code

X

X*X
=4

—L(X)-= fq&e true
+~— L(X) = false

— L(X) = f%e tr true

A «B_

— L(X) = folse

#65

Liveness Example Answers

Also dead code?—|

X :=3
B>0O

— L(X) = false
— L(X) = fake true

Y=Z+W

—L(X) = fq>§e true

L(X) = f%e TFV\

Yi=0

= LX) = folse true

L(X) = quSe er) = f&(se true

/LX :
Dead code

X

X*X
=4

—L(X)-= fq&e true
+~— L(X) = false

— L(X) = ff}%e tr true

A «B_

— L(X) = folse

#66

Termination

e A value can change from false to true, but
not the other way around

e Each value can change only once, so
termination is guaranteed

e Once the analysis is computed, it is simple to
eliminate dead code

#67

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information
is pushed from outputs back towards inputs

#68

Analysis Analysis

e There are many other global flow analyses

- Analysis Example: Optimization Enabled
- Available expressions: Common subexpression elimination
- Live variables: Dead code elimination
- Reaching definitions: Loop invariant code motion
- Definite assighment: Null check elimination
e Most can be classified as either forward or

backward

e Most also follow the methodology of local
rules relating information between adjacent
program points

#69

Homework
« WA5 Due Monday

#70

	(How Not To Do) Global Optimizations
	One-Slide Summary
	Lecture Outline
	Local Optimization
	Global Optimization
	Slide 6
	Slide 7
	Correctness
	Correctness (Cont.)
	Example 1 Revisited
	Example 2 Revisited
	Discussion
	Global Analysis
	Undecidability of Program Properties
	Conservative Program Analyses
	Slide 16
	Slide 17
	Global Optimization: Review
	Slide 19
	Slide 20
	Review
	Slide 22
	Global Constant Propagation
	Global Constant Propagation (Cont.)
	Example
	Slide 26
	Using the Information
	The Idea
	Explanation
	Transfer Functions
	Slide 31
	Slide 32
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	An Algorithm
	The Value #
	Slide 44
	The Value # (Cont.)
	Slide 46
	Slide 47
	Another Example
	Slide 49
	Orderings
	Orderings (Cont.)
	Termination
	Termination (Cont.)
	Liveness Analysis
	Live and Dead
	Liveness
	Global Dead Code Elimination
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Algorithm
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Forward vs. Backward Analysis
	Analysis Analysis
	Homework

