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(How (How NotNot To Do) To Do)
Global OptimizationsGlobal Optimizations
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One-Slide Summary

• A global optimization changes an entire 
method (consisting of multiple basic blocks). 

• We must be conservative and only apply 
global optimizations when they preserve the 
original semantics. 

• We use global data flow analyses to 
determine if it is OK to apply an 
optimization. 

• Flow analyses are built out of simple 
transfer functions and can work forwards or 
backwards. 
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Lecture Outline

• Global flow analysis

• Global constant 
propagation

• Liveness analysis
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3
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Correctness
• How do we know it is OK to globally 

propagate constants?
• There are situations where it is incorrect:

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X



#9

Correctness (Cont.)

To replace a use of x by a constant k we must 
know this correctness condition:

On every path to the use of x, the last 
assignment to x is x := k    **
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Example 1 Revisited

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Example 2 Revisited

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X
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Discussion

• The correctness condition is not trivial to 
check

• “All paths” includes paths around loops and 
through branches of conditionals

• Checking the condition requires global 
analysis
– Global = an analysis of the entire control-flow 

graph for one method body
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Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property 

P at a particular point in program execution
– Proving P at any point requires knowledge of the 

entire method body
– Property P is typically undecidable!
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Undecidability 
of Program Properties

• Rice’s Theorem: Most interesting dynamic 
properties of a program are undecidable:
– Does the program halt on all (some) inputs?

• This is called the halting problem

– Is the result of a function F always positive?
• Assume we can answer this question precisely
• Oops: We can now solve the halting problem.
• Take function H and find out if it halts by testing function         

F(x) = { H(x); return 1; } to see if it has a positive result 
• Contradiction!

• Syntactic properties are decidable!
– e.g., How many occurrences of “x” are there?

• Programs without looping are also decidable!
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Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
– Then, how can we apply constant propagation?

• It is OK to be conservative. 
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Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
– Then, how can we apply constant propagation?

• It is OK to be conservative. If the optimization 
requires P to be true, then want to know either
– P is definitely true
– Don’t know if P is true

• Let's call this truthiness
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Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
– Then, how can we apply constant propagation?

• It is OK to be conservative. If the optimization 
requires P to be true, then want to know either
– P is definitely true
– Don’t know if P is true

• It is always correct to say “don’t know”
– We try to say don’t know as rarely as possible

• All program analyses are conservative 
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Global Optimization: Review

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Global Optimization: Review

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * 3

• To replace a use of x by a constant k we 
must know that:
On every path to the use of x, the last 

assignment to x is x := k    **
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Review

• The correctness condition is hard to check
• Checking it requires global analysis

– An analysis of the entire control-flow graph for 
one method body

• We said that was impossible, right? 
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Global Analysis

• Global dataflow analysis is a standard 
technique for solving problems with these 
characteristics

• Global constant propagation is one example 
of an optimization that requires global 
dataflow analysis
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Global Constant Propagation

• Global constant propagation can be 
performed at any point where ** holds

• Consider the case of computing ** for a 
single variable X at all program points

• Valid points cannot hide!
• We will find you!

– (sometimes)
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Global Constant Propagation 
(Cont.)

• To make the problem precise, we 
associate one of the following values with 
X at every program point

Don’t know if X is 
a constant

*

X = constant cc

This statement is 
not reachable

#

interpretationvalue
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Example

X = *
X = 

X = 

X = 
X = 

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 

X = 

X = 

Get out a piece of paper. Let's fill in these blanks now.

Recall: # = not reachable, c = constant, * = don't know.
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Example Answers

X = *
X = 3

X = 3

X = 3
X = 4

X = *

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = *
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Using the Information

• Given global constant information, it is easy 
to perform the optimization
– Simply inspect the x = ? associated with a 

statement using x
– If x is constant at that point replace that use of x 

by the constant

• But how do we compute the properties x = ?
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The Idea

The analysis of a complicated program can 
be expressed as a combination of simple 
rules relating the change in information 

between adjacent statements
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Explanation

• The idea is to “push” or “transfer” 
information from one statement to the next

• For each statement s, we compute 
information about the value of x 
immediately before and after s

Cin(x,s) = value of x before s

Cout(x,s) = value of x after s
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Transfer Functions

• Define a transfer function that transfers 
information from one statement to another
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Real-World Languages

• The official language of Sri Lanka and 
Singapore is spoken by over 66 million boasts 
a rich literature stretching back over 2000 
years. Unlike most Indian languages, it does 
not distinguish between aspirated and 
unaspirated consonants. It uses suffices to 
mark number, case and verb tense and uses a 
flexible S-O-V ordering. It uses postpositions 
rather than prepositions. 
– Example: ௦௧௨௩௪௫௬௭௮௯௰௱௲
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Real-World Computer Languages

• In January 1999, Anders Hejlsberg formed a 
team to design a new language called Cool, a 
“C-like Object Oriented Language”. It was 
renamed to avoid trademarks and became a 
this, and was “intended to be a simple, 
modern, general-purpose, object-oriented 
programming language.” It supports strong 
type checking, array boudns checking, 
garbage collection, components, portability, 
internationalization, and functional 
programming. 
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Rule 1

 Cout(x, s) = #  if Cin(x, s) = #

s
X = #

X = #

Recall: # = “unreachable code”
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Rule 2

 Cout(x, x := c) = c  if c is a constant

x := c
X = ?

X = c
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Rule 3

 Cout(x, x := f(…)) = *

x := f(…)
X = ?

X = *

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 5, but we won't even try!
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Rule 4

 Cout(x, y := …) = Cin(x, y := …)  if x  y

y := . . .
X = a

X = a
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The Other Half

• Rules 1-4 relate the in of a statement to the out 
 of the same statement
– they propagate information across statements

• Now we need rules relating the out of one 
statement to the in of the successor statement
– to propagate information forward across CFG edges

• In the following rules, let statement s have 
immediate predecessor statements p1,…,pn
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Rule 5

if Cout(x, pi) = * for some i, then Cin(x, s) = *

        s

X = *

X = *

X = ?X = ?X = ?
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Rule 6

if Cout(x, pi) = c  and Cout(x, pj) = d  and  d  c  

then Cin (x, s) = *

        s

X = d

X = *

X = ?X = ?X = c
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Rule 7

if Cout(x, pi) = c  or #  for all i,

then Cin(x, s) = c

        s

X = c

X = c

X = #X = # X = c
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Rule 8

if Cout(x, pi) = #  for all i,

then Cin(x, s) = #

        s

X = #

X = #

X = #X = # X = #
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An Algorithm

• For every entry s to the program, set       
Cin(x, s) = *

• Set Cin(x, s) = Cout(x, s) = # everywhere else

• Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the 

appropriate rule
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The Value #

• To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3
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The Value #

• To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3

X = ???
X = ???

X = ???
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The Value # (Cont.)

• Because of cycles, all points must have 
values at all times during the analysis

• Intuitively, assigning some initial value 
allows the analysis to break cycles

• The initial value # means “so far as we 
know, control never reaches this point”
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Sometimes 
all paths 

lead to the 
same 
place.

Thus you 
need #. 
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Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3

3

We are done
when all rules
are satisfied !
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Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

Let's do it on paper!
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Another Example: Answer

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3
4

4
*

*

Must continue 
until all rules
are satisfied !
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Orderings

• We can simplify the presentation of the 
analysis by ordering the values

#   <   c   <   *
Drawing a picture with “lower” values 

drawn lower, we get

#

*

-1 0 1… …
I am called
a lattice!
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Orderings (Cont.)

• * is the greatest value, # is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this 
ordering

• Rules 5-8 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }
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Termination

• Simply saying “repeat until nothing changes” 
doesn’t guarantee that eventually nothing 
changes

• The use of lub explains why the algorithm 
terminates
– Values start as # and only increase
– # can change to a constant, and a constant to *
– Thus, C_(x, s) can change at most twice
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Number Crunching

The algorithm is polynomial in program size:
Number of steps = 
Number of C_(….) values changed * 2 =
(Number of program statements)2 * 2
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Liveness Analysis

Once constants have been globally propagated, we 
would like to eliminate dead code

After constant propagation, X := 3 is dead 
(assuming this is the entire CFG)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Live and Dead

• The first value of x is 
dead (never used)

• The second value of x is 
live (may be used)

• Liveness is an 
important concept

• Compilers for credit: 
you must do it for PA7 
(plus more ...)

X := 3

X := 4

  Y := X
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Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x
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Global Dead Code Elimination

• A statement x := … is dead code if x is dead 
after the assignment

• Dead code can be deleted from the program
• But we need liveness information first . . .
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Computing Liveness

• We can express liveness in terms of 
information transferred between adjacent 
statements, just as in constant propagation

• Liveness is simpler than constant 
propagation, since it is a boolean property 
(true or false)
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Liveness Rule 1

 Lin(x, s) = true  if s refers to x on the rhs

…:= x + …
X = true

X = ?
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Liveness Rule 2

 Lin(x, x := e) = false  if e does not refer to x

x := e
X = false

X = ?
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Liveness Rule 3

 Lin(x, s) = Lout(x, s) if s does not refer to x

s
X = a

X = a
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Liveness Rule 4

Lout(x, p) =   { Lin(x, s) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?
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Algorithm

• Let all L_(…) = false initially

• Repeat process until all statements s satisfy 
rules 1-4 :

Pick s where one of 1-4 does not hold and 
update using the appropriate rule
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Liveness Example

X := 3

B > 0

Y := Z + W Y := 0

X := X * X

X := 4

A < B

L(X) = false 

L(X) = false 

L(X) = false 
L(X) = false 

L(X) = false 
L(X) = false 
L(X) = false 

L(X) = false 

L(X) = false 

L(X) = false 

L(X) = false 
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Liveness Example Answers

X := 3

B > 0

Y := Z + W Y := 0

X := X * X

X := 4

A < B

L(X) = false 

true

L(X) = false 

L(X) = false 
L(X) = false 

L(X) = false 
L(X) = false 
L(X) = false 

L(X) = false 

L(X) = false 

L(X) = false true true

true
true

true

truetrueL(X) = false 

true

Dead code
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Liveness Example Answers

X := 3

B > 0

Y := Z + W Y := 0

X := X * X

X := 4

A < B

L(X) = false 

true

L(X) = false 

L(X) = false 
L(X) = false 

L(X) = false 
L(X) = false 
L(X) = false 

L(X) = false 

L(X) = false 

L(X) = false true true

true
true

true

truetrueL(X) = false 

true

Dead code

Also dead code?
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Termination

• A value can change from false to true, but 
not the other way around

• Each value can change only once, so 
termination is guaranteed

• Once the analysis is computed, it is simple to 
eliminate dead code



#68

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis: 
information is pushed from inputs to outputs

Liveness is a backwards analysis: information 
is pushed from outputs back towards inputs
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Analysis Analysis
• There are many other global flow analyses

– Analysis Example: Optimization Enabled
– Available expressions: Common subexpression elimination

– Live variables: Dead code elimination

– Reaching definitions: Loop invariant code motion

– Definite assignment: Null check elimination

• Most can be classified as either forward or 
backward

• Most also follow the methodology of local 
rules relating information between adjacent 
program points
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Homework
• WA5 Due Monday
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