
#1

Local Local
OptimizationsOptimizations

#2

One-Slide Summary

• An optimization changes a program so that
it computes the same answer in less time (or
using less of some other resource).

• We represent the program using a special
intermediate form.

• Each method is viewed as a control flow
graph where the nodes as basic blocks of
instructions with known entry and exit
points. The instructions have been changed
so that a single assignment defines each
variable.

#3

Review: Dispatch

so, E, S ` e0.f(e1,…,en) : v, Sn+3

so, E, S ` e1 : v1 , S1

so, E, S1 ` e2 : v2 , S2

…

so, E, Sn-1 ` en : vn , Sn

so, E, Sn ` e0 : v0, Sn+1

v0 = X(a1 = l1,…, am = lm)

imp(X, f) = (x1,…, xn, ebody)

lxi = newloc(Sn+1) for i = 1,…,n

E’ = [x1 : lx1, …, xn : lxn, a1 : l1,…,am : lm]

Sn+2 = Sn+1[v1/lx1,…,vn/lxn]

v0 , E’, Sn+2 ` ebody : v, Sn+3

Evaluate arguments

Evaluate receiver object

Find type and attributes

Find formals and body

New
environment

New store
Evaluate body

#4

Operational Semantics: Summary

• Operational rules are very precise
– Nothing is left unspecified

• Operational rules contain a lot of details
– Read them carefully

• Most languages do not have a well specified
operational semantics (Ruby!)

• When portability is important an operational
semantics becomes essential
– But not always using the exact notation we used

for Cool

#5

Lecture Outline

• Intermediate code

• Local optimizations

• Next time: larger-

scale program

analyses

#6

Why Optimize?

• What's the point?
• Do we care about this in real life?

#7

When To Optimize?
• When to perform optimizations

– On AST (just like type checking)
• Pro: Machine independent
• Cons: Too high level

– On assembly language (compilers only)
• Pro: Exposes optimization opportunities
• Cons: Machine dependent
• Cons: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities
• Cons: One more language to worry about

#8

Intermediate Languages

• Each compiler uses its own intermediate
language
– IL design is still an active area of research

• Intermediate language = high-level assembly
language
– Uses register names, but has an unlimited

number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• e.g., push translates to several assembly instructions
• Most opcodes correspond directly to assembly opcodes

#9

Three-Address Intermediate Code

• Each instruction is of the form
 x := y op z

– y and z can be only registers, variables or
constants

• Common form of intermediate code
• The AST expression x + y * z is translated as

 t1 := y * z

 t2 := x + t1

– Each subexpression lives in a temporary

#10

Generating Intermediate Code

• igen(e, t) function generates code to
compute the value of e in register t

• Example:
igen(e1 + e2, t) =

 igen(e1, t1) (t1 is a fresh register)

 igen(e2, t2) (t2 is a fresh register)

 t := t1 + t2

• Unlimited number of registers
 simple code generation

#11

An Intermediate Language

P ! S P | 
S ! id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• ids are register names

• Constants can replace ids

• Typical operators: +, -, *

#12

Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump into a basic block (except at

beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed

after all the preceding instructions have been
executed (this is the important concept)

#13

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before

#14

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x

#15

Basic Block Example

• Consider the basic block
1. L1:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L2

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

#16

Control-Flow Graphs

• A control-flow graph is a directed graph:
– Basic blocks as nodes
– An edge from block A to block B if the execution

can (potentially) flow from the last instruction in
A to the first instruction in B

– e.g., the last instruction in A is jump LB

– e.g., the execution can fall-through from block A
to block B

• Frequently abbreviated as CFG

#17

Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
– The “start node”

• All “return” nodes are
terminal

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

#18

CFG
'

Flow
Chart

#19

Optimization Overview

• Optimization seeks to improve a program’s
utilization of some resource
– Execution time (most often)
– Code size
– Network messages sent
– Battery power used, etc.

• Optimization should not alter what the
program computes
– The answer must still be the same
– First Rule of Optimization Club: Don't Break The Build

#20

A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation

2. Global optimizations
• Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
• Apply across method boundaries

• Most compilers do (1), many do (2) and very few
do (3)

• Some interpreters do (1), few do (2), basically
none do (3)

#21

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization
known

• Why?

#22

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization
known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in terms of

compilation/interpretation time
– The fancy optimizations are both hard and costly

• The goal: maximum improvement with
minimum of cost

Q: Movies (363 / 842)

• This 1993 US National Film Registry
inductee, a favorite of many Buddhists,
"begins" with the following radio
banter: "Rise and shine, campers, and
don't forget your booties 'cause it's
cooooold out there today. / It's cold out
there every day. What is this, Miami
Beach? / Not hardly. So the big question
on everybody's lips / -- On their
chapped lips -- / their chapped lips is,
does Phil feel lucky?"

Q: Books (763 / 842)
• This 18th- and 19th-century English poet,

painter and religious printmaker believed in
racial and sexual equality and rejected
imposed secular authority. Peter Marshall
described him as, "a revolutionary anarchist,
[...] anticipating modern anarchism and
social ecology. With William Godwin, he
stands as a great forerunner of British
Anarchism". His poem Night includes: "The
sun descending in the west, / The evening
star does shine; / The birds are silent in
their nest. / And I must seek for mine."

Q: Books (764 / 842)

•Name the 1957 novel and the
controlling protagonist
associated with one of the
following three companies:
Taggart Transcontinental,
Rearden Steel and d'Anconia
Copper.

Real World Languages

• This language, with 5.2 million speakers, is
often written either in Cyrillic or its own
script. It features vowel harmony and suffices
for verbs and nouns. Word order is relatively
free and verbs change with voice, aspect,
tense, and epistemic modality. The language
is on the decline with younger speakers in
favor of Mandarin Chinese. The earliest
surviving text is perhaps the Stele of
Yisüngge, a report on sports from 1224.

#27

CFG

• This CFG stuff
sounds
complicated ...

• Can't we skip it
for now?

#28

Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure

body
– Just the basic block in question

• Example:
– algebraic simplification
– constant folding
– Python 2.5+ does stuff like this if you say “–O”

#29

Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
 x := x * 0  x := 0

 y := y ** 2  y := y * y

 x := x * 8  x := x << 3

 x := x * 15  t := x << 4; x := t - x
(on some machines << is faster than *; but not on

all!)

#30

Constant Folding

• Operations on constants can be computed
before the code executes

• In general, if there is a statement
 x := y op z
– And y and z are constants
– Then y op z can be computed early

• Example: x := 2 + 2  x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?

#31

Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or “fall

through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the program

smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)

#32

Single Assignment Form

• Most optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be
in single assignment form
x := a + y x := a + y
a := x  a1 := x
x := a * x x1 := a1 * x
b := x + a b := x1 + a1

 (x1 and a1 are fresh temporaries)

#33

Single Assignment vs.
Functional Programming

• In functional programming variable values
do not change

• Instead you make a new variable with a
similar name

• Single assignment form is just like that!
x := a + y let x = a + y in
a1 := x ' let a1 = x in
x1 := a1 * x let x1 = a

1
 * x in

b := x1 + a1 let b = x1 + a1 in

#34

Common Subexpression
Elimination

• Assume:
– Basic block is in single assignment form

• Then all assignments with same right-hand
side compute the same value (why?)

• Example:
x := y + z x := y + z

…  …
w := y + z w := x

• Why is single assignment important here?

#35

Copy Propagation

• If w := x appears in a block, all subsequent uses of
w can be replaced with uses of x

• Example:
 b := z + y b := z + y

 a := b  a := b
 x := 2 * a x := 2 * b

• This does not make the program smaller or faster
but might enable other optimizations
– Constant folding
– Dead code elimination (we’ll see this in a bit!)

• Again, single assignment is important here.

#36

Copy Propagation and
Constant Folding

• Example:
a := 5 a := 5
x := 2 * a  x := 10
y := x + 6 y := 16
t := x * y t := x << 4

#37

Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x  a := b  x := 2 * b
x := 2 * a x := 2 * b

#38

Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opts

• Typical optimizing compilers repeatedly
perform optimizations until no improvement
is possible

• Interpreters and JITs must be fast!
– The optimizer can also be stopped at any time to

limit the compilation time

#39

An Example

• Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

#40

An Example

• Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

#41

An Example

• Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

#42

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

#43

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

#44

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

#45

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

#46

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

#47

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

#48

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

#49

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

#50

An Example

• Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

#51

An Example

• Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

• This is the final form
– Could we get to g = 12 * a ?

#52

Cool and Intermediate Form

• Cool does not have goto
• Cool does not have break
• Cool does not have exceptions
• How would you make basic blocks from a

Cool AST?

#53

Local Optimization Notes

• Intermediate code is helpful for many
optimizations
– Basic Blocks: known entry and exit
– Single Assignment: one definition per variable

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in

any reasonable sense
– “Program improvement” is a more appropriate

term

• Next: larger-scale program changes

#54

Homework
• WA5 due Monday April 2
• WA4 due Today (but extension ...)
• Midterm 2 – Wednesday Apr 18 (23 days)

	Local Optimizations
	One-Slide Summary
	Operational Semantics of Dispatch
	Conclusions
	Lecture Outline
	Slide 6
	When To Optimize?
	Intermediate Languages
	Three-Address Intermediate Code
	Generating Intermediate Code
	An Intermediate Language
	Basic Blocks
	Basic Block Example
	Slide 14
	Slide 15
	Control-Flow Graphs
	Control-Flow Graphs. Example.
	CFG ' Flow Chart
	Optimization Overview
	A Classification of Optimizations
	Cost of Optimizations
	Slide 22
	Q: Movies (363 / 842)
	Q: Books (763 / 842)
	Q: Books (764 / 842)
	Slide 26
	Slide 27
	Local Optimizations
	Algebraic Simplification
	Constant Folding
	Flow of Control Optimizations
	Single Assignment Form
	Single Assignment vs. Functional Programming
	Common Subexpression Elimination
	Copy Propagation
	Copy Propagation and Constant Folding
	Dead Code Elimination
	Applying Local Optimizations
	An Example
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Cool and Intermediate Form
	Local Optimization Notes
	Homework

