
#1

LR ParsingLR Parsing

Table ConstructionTable Construction

#2

Outline

• Review of bottom-up parsing

• Computing the parsing DFA
– Closures, LR(1) Items, States
– Transitions

• Using parser generators
– Handling Conflicts

#3

In One Slide

• An LR(1) parsing table can be constructed
automatically from a CFG. An LR(1) item is a
pair made up of a production and a
lookahead token; it represents a possible
parser context. After we extend LR(1) items
by closing them they become LR(1) DFA
states. Grammars can have shift/reduce or
reduce/reduce conflicts. You can fix most
conflicts with precedence and associativity
declarations. LALR(1) tables are formed from
LR(1) tables by merging states with similar
cores.

#4

Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string
to the start symbol

• The state of the parser is described as

 I 
–  is a stack of terminals and non-terminals
–  is the string of terminals not yet examined

• Initially: I x1x2 . . . xn

#5

Shift and Reduce Actions (Review)

• Recall the CFG: E ! int | E + (E)

• A bottom-up parser uses two kinds of actions:

• Shift pushes a terminal from input on the stack

E + (I int)  E + (int I)

• Reduce pops 0 or more symbols off of the stack
(production RHS) and pushes a non-terminal on
the stack (production LHS)

E + (E + (E) I)  E +(E I)

#6

Key Issue:
When to Shift or Reduce?

• Idea: use a finite automaton (DFA) to decide
when to shift or reduce
– The input is the stack
– The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine the
resulting state X and the token tok after I
– If X has a transition labeled tok then shift

– If X is labeled with “A !  on tok” then reduce

#7

LR(1) Parsing. An Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift
int I + (int) + (int)$ E ! int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ E ! E+(E)
E I + (int)$ shift (x3)
E + (int I)$ E ! int
E + (E I)$ shift
E + (E) I $ E ! E+(E)
E I $ accept

int

E

)

#9

Key Issue: How is the DFA
Constructed?

• The stack describes the context of the parse
– What non-terminal we are looking for
– What production rhs we are looking for
– What we have seen so far from the rhs

#10

LR(1) Table Construction
Three hours later, you can finally parse E ! E + E | int

#11

Parsing Contexts

• Consider the state:

– The stack is E + (I int) + (int)

• Context:
– We are looking for an E ! E + (² E)

• Have have seen E + (from the right-hand side

– We are also looking for E ! ² int or E ! ² E + (E)
• Have seen nothing from the right-hand side

• One DFA state describes several contexts

E

int++int int()()

Red dot =
where we are.

#12

LR(1) Items

• An LR(1) item is a pair:
X ! ², a

– X !  is a production
– a is a terminal (the lookahead terminal)
– LR(1) means 1 lookahead terminal

• [X !², a] describes a context of the parser
– We are trying to find an X followed by an a, and
– We have  already on top of the stack
– Thus we need to see next a prefix derived from a

#13

Note

• The symbol I was used before to separate
the stack from the rest of input
–  I , where  is the stack and  is the

remaining string of terminals

• In LR(1) items ² is used to mark a prefix of a
production rhs:

X ! ², a
– Here  might contain non-terminals as well

• In both case the stack is on the left

#14

Convention

• We add to our grammar a fresh new start
symbol S and a production S ! E
– Where E is the old start symbol
– No need to do this if E had only one production

• The initial parsing context contains:
S ! ² E, $

– Trying to find an S as a string derived from E$
– The stack is empty

#15

LR(1) Items (Cont.)

• In context containing
 E ! E + ² (E), +
– If (follows then we can perform a shift to

context containing

 E ! E + (² E), +

• In context containing
 E ! E + (E) ², +
– We can perform a reduction with E ! E + (E)
– But only if a + follows

#16

LR(1) Items (Cont.)

• Consider a context with the item
E ! E + (² E) , +

• We expect next a string derived from E) +
• There are two productions for E

 E ! int and E ! E + (E)

• We describe this by extending the context
with two more items:
 E ! ² int ,)

 E ! ² E + (E) ,)

#17

The Closure Operation

• The operation of extending the context with
items is called the closure operation

Closure(Items) =
 repeat

 for each [X ! ²Y, a] in Items

 for each production Y ! 
 for each b 2 First(a)

 add [Y ! ², b] to Items

 until Items is unchanged

#18

Constructing the Parsing DFA (1)

• Construct the start context:
Closure({S ! ²E, $}) = S ! ²E, $

E ! ²E+(E), $
E ! ²int, $
E ! ²E+(E), +
E ! ²int, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

• We abbreviate as:

#19

#20

Constructing the Parsing DFA (2)

• An LR(1) DFA state is a closed set of LR(1)
items
– This means that we performed Closure

• The start state contains [S ! ²E, $]

• A state that contains [X ! ², b] is labeled
with “reduce with X !  on b”

• And now the transitions …

#21

The DFA Transitions

• A state “State” that contains [X ! ²y, b]
has a transition labeled y to a state that
contains the items “Transition(State, y)”
– y can be a terminal or a non-terminal

Transition(State, y) =
 Items Ã ;

 for each [X ! ²y, b] 2 State

 add [X ! y², b] to Items

 return Closure(Items)

#22

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

#23

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0 1

2

int

E

#24

LR(1) DFA Construction Example

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

2

int

E

#25

LR(1) DFA Construction Example

E ! int
on $, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

2

int

E

#26

LR(1) DFA Construction Example

E ! int
on $, +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

S ! E², $
E ! E²+(E), $/+

2

int

E

#27

LR(1) DFA Construction Example

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0
E ! int², $/+

1

S ! E², $
E ! E²+(E), $/+

2

int

E +

#28

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +

#29

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

#30

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

#31

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#32

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

5

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#33

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+ E ! int
on), +

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

5

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#34

LR(1) DFA Construction Example

E ! E+² (E), $/+

E ! int
on $, +

accept
on $

E ! E+(²E), $/+
E ! ²E+(E),)/+
E ! ²int,)/+

E ! int²,)/+ E ! int
on), +

E ! E+(E²), $/+
E ! E²+(E),)/+

and so on…

S ! ²E, $
E ! ²E+(E), $/+
E ! ²int, $/+

0

3

4

56

E ! int², $/+
1

S ! E², $
E ! E²+(E), $/+

2

int

E +
(

E

int

#35

Natural Language, 20th Century

• Identify the United Kingdom poet associated
with one of these verses:

He was my North, my South, my East and West,

My working week and my Sunday rest

My noon, my midnight, my talk, my song;

I thought that love would last forever, I was wrong.

 Turning and turning in the widening gyre

 The falcon cannot hear the falconer;

 Things fall apart; the centre cannot hold;

 Mere anarchy is loosed upon the world,

 The blood-dimmed tide is loosed, and everywhere

 The ceremony of innocence is drowned;

 The best lack all conviction, while the worst

 Are full of passionate intensity.

Q: Movie Music (420 / 842)

•In a 1995 Disney movie that has
been uncharitably referred to as
"Hokey-Hontas", the Stephen
Schwartz lyrics "what I love most
about rivers is: / you can't step
in the same river twice" refer to
the ideas of which Greek
philosopher?

Leading Pop Culture Question

• Name either one of:
– The Star Trek: The Next Generation

two-part cliffhanger episode in which
the Borg attack Earth and Picard
becomes Locutus.

– The bubblegum rock Hannah Montana
main theme, performed by Miley
Cyrus, that showcases the protagonist's
double life.

Philosophy
• In his 1710 French work Essais de

Théodicée sur la bonté de Dieu, la
liberté de l'homme et l'origine du mal,
Gottfried Leibniz (yes, the Calculus one)
coined this term to describe his solution
to the problem of evil in theodicy:
– If God is omnibenevolent, omnipotent and

omniscient, how do we account for the
suffering and injustice that exist?

Natural Language, Poetry

•This metrical line is commonly
used in verse. The rhythm
involves a fixed number of
double-syllable “feet”, as in this
example by Keats:

#40

LR Parsing Tables. Notes

• Parsing tables (= the DFA) can be
constructed automatically for a CFG
– “The tables which cannot be constructed are

constructed automatically in response to a CFG
input. You asked for a miracle, Theo. I give you
the L-R-1.” – Hans Gruber, Die Hard

• But we still need to understand the
construction to work with parser generators
– e.g., they report errors in terms of sets of items

• What kind of errors can we expect?

#41

#42

Shift/Reduce Conflicts

• If a DFA state contains both
 [X ! ²a, b] and [Y ! ², a]

• Then on input “a” we could either
– Shift into state [X ! a², b], or

– Reduce with Y ! 

• This is called a shift-reduce conflict

#43

Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar
• Classic example: the dangling else

S ! if E then S | if E then S else S | OTHER

• Will have DFA state containing
 [S ! if E then S², else]

 [S ! if E then S² else S, x]

• If else follows then we can shift or reduce
• Default (bison, CUP, etc.) is to shift

– Default behavior is as needed in this case

#44

More Shift/Reduce Conflicts

• Consider the ambiguous grammar
E ! E + E | E * E | int

• We will have the states containing
[E ! E * ² E, +] [E ! E * E², +]

[E ! ² E + E, +] E [E ! E ² + E, +]

 … …

• Again we have a shift/reduce on input +
– We need to reduce (* binds more tightly than +)
– Solution: declare the precedence of * and +

#45

More Shift/Reduce Conflicts
• In bison declare precedence and associativity:

 %left +
 %left * // high precedence

• Precedence of a rule = that of its last terminal
– See bison manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
– no precedence declared for either rule or terminal
– input terminal has higher precedence than the rule
– the precedences are the same and right associative

#46

Using Precedence
to Solve S/R Conflicts

• Back to our example:
[E ! E * ² E, +] [E ! E * E², +]

[E ! ² E + E, +] E [E ! E ² + E, +]

 … …

• Will choose reduce on input + because
precedence of rule E ! E * E is higher than
of terminal +

#47

Using Precedence
to Solve S/R Conflicts

• Same grammar as before
E ! E + E | E * E | int

• We will also have the states
 [E ! E + ² E, +] [E ! E + E², +]

 [E ! ² E + E, +] E [E ! E ² + E, +]

 … …

• Now we also have a shift/reduce on input +
– We choose reduce because E ! E + E and +

have the same precedence and + is left-
associative

#48

Using Precedence
to Solve S/R Conflicts

• Back to our dangling else example
 [S ! if E then S², else]

 [S ! if E then S² else S, x]

• Can eliminate conflict by declaring else with
higher precedence than then
– Or just rely on the default shift action

• But this starts to look like “hacking the parser”
• Avoid overuse of precedence declarations or

you’ll end with unexpected parse trees
– The kiss of death …

#49

Reduce/Reduce Conflicts

• If a DFA state contains both

 [X ! ², a] and [Y ! ², a]

– Then on input “a” we don’t know which
production to reduce

• This is called a reduce/reduce conflict

#50

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the
grammar

• Example: a sequence of identifiers
 S !  | id | id S

• There are two parse trees for the string id
 S ! id
 S ! id S ! id

• How does this confuse the parser?

#51

More on Reduce/Reduce Conflicts

• Consider the states [S ! id ², $]

 [S’ ! ² S, $] [S ! id ² S, $]

 [S ! ², $]  id [S ! ², $]

 [S ! ² id, $] [S ! ² id, $]

 [S ! ² id S, $] [S ! ² id S, $]

• Reduce/reduce conflict on input $
 S’ ! S ! id

 S’ ! S ! id S ! id

• Better rewrite the grammar: S !  | id S

#52

Can’s someone learn this for me?

#53

Using Parser Generators
• Parser generators construct the parsing DFA

given a CFG
– Use precedence declarations and default

conventions to resolve conflicts
– The parser algorithm is the same for all

grammars (and is provided as a library function)

• But most parser generators do not construct
the DFA as described before
– Why might that be?

#54

Using Parser Generators
• Parser generators construct the parsing DFA

given a CFG
– Use precedence declarations and default

conventions to resolve conflicts
– The parser algorithm is the same for all

grammars (and is provided as a library function)

• But most parser generators do not construct
the DFA as described before
– Because the LR(1) parsing DFA has 1000s of

states even for a simple language

#55

LR(1) Parsing Tables are Big

• But many states are similar, e.g.

 and

• Idea: merge the DFA states whose items
differ only in the lookahead tokens
– We say that such states have the same core

• We obtain

E ! int
on $, +

E ! int², $/+ E ! int²,)/+ E ! int
on), +

51

E ! int
on $, +,)

E ! int², $/+)
1’

#56

The Core of a Set of LR Items

• Definition: The core of a set of LR items is
the set of first components
– Without the lookahead terminals

• Example: the core of

 { [X ! ², b], [Y ! ², d]}

 is

 {X ! ², Y ! ²}

#57

LALR States
• Consider for example the LR(1) states

 {[X ! ², a], [Y ! ², c]}

 {[X ! ², b], [Y ! ², d]}

• They have the same core and can be merged
• And the merged state contains:

 {[X ! ², a/b], [Y ! ², c/d]}

• These are called LALR(1) states
– Stands for LookAhead LR
– Typically 10x fewer LALR(1) states than LR(1)

#58

LALR(1) DFA

• Repeat until all states have distinct core
– Choose two distinct states with same core
– Merge the states by creating a new one with the

union of all the items
– Point edges from predecessors to new state
– New state points to all the previous successors

A

ED

CB

F

A
BE

D

C

F

#59

Example LALR(1) to LR(1)
int

E ! int
on $, +

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(
int

E

)

accept
on $

int
E ! int
on $, +,)

E ! E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $

#60

The LALR Transform
Can Introduce Conflicts

• Consider for example the LR(1) states

 {[X ! ², a], [Y ! ², b]}

 {[X ! ², b], [Y ! ², a]}

• And the merged LALR(1) state

 {[X ! ², a/b], [Y ! ², a/b]}

• Has a new reduce-reduce conflict

• In practice such cases are rare

#61

LALR vs. LR Parsing

• LALR languages are not natural
– They are an efficiency hack on LR languages

• Any “reasonable” programming language
has a LALR(1) grammar

• LALR(1) has become a standard for
programming languages and for parser
generators

#62

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in Java”

#63

Notes on Parsing

• Parsing
– A solid foundation: context-free grammars
– A simple parser: LL(1)
– A more powerful parser: LR(1)
– An efficiency hack: LALR(1)
– LALR(1) parser generators

• Now we move on to semantic analysis

#64

Take a bow, you survived!

#65

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
Due to LALR Conversion
(from the bison manual)

#66

Strange Reduce/Reduce Conflicts

• Consider the grammar
 S ! P R , NL ! N | N , NL

 P ! T | NL : T R ! T | N : T

 N ! id T !id

• P - parameters specification
• R - result specification
• N - a parameter or result name
• T - a type name
• NL - a list of names

#67

Strange Reduce/Reduce Conflicts

• In P an id is a
– N when followed by , or :
– T when followed by id

• In R an id is a
– N when followed by :
– T when followed by ,

• This is an LR(1) grammar.
• But it is not LALR(1). Why?

– For obscure reasons

#68

A Few LR(1) States
P  ² T id

P  ² NL : T id

NL  ² N :

NL  ² N , NL :

N  ² id :

N  ² id ,

T  ² id id

1

R  ² T ,

R  ² N : T ,

T  ² id ,

N  ² id :

2

T  id ² id

N  id ² :

N  id ² ,

 id

3

T  id ² ,

N  id ² :
 id 4

T  id ² id/,

N  id ² :/,
 LALR merge

 LALR reduce/reduce
conflict on “,”

#69

What Happened?

• Two distinct states were confused because
they have the same core

• Fix: add dummy productions to distinguish
the two confused states

• E.g., add
 R ! id bogus

– bogus is a terminal not used by the lexer
– This production will never be used during parsing
– But it distinguishes R from P

#70

A Few LR(1) States After Fix
P  ² T id

P  ² NL : T id

NL  ² N :

NL  ² N , NL :

N  ² id :

N  ² id ,

T  ² id id
R  . T ,

R  . N : T ,

R  id bogus ,

T  . id ,

N  . id :

T  id ² id

N  id ² :

N  id ² ,

T  id ² ,

N  id ² :

R id ² bogus ,

 id

 id

1

2

3

4

 Different cores  no LALR merging

#71

Homework
• WA2 Due
• Midterm 1 in Class

	LR Parsing Table Construction
	Outline
	In One Slide
	Bottom-up Parsing (Review)
	Shift and Reduce Actions (Review)
	Key Issue: When to Shift or Reduce?
	LR(1) Parsing. An Example
	End of review
	Key Issue: How is the DFA Constructed?
	Slide 10
	Parsing Contexts
	LR(1) Items
	Note
	Convention
	LR(1) Items (Cont.)
	Slide 16
	The Closure Operation
	Constructing the Parsing DFA (1)
	Slide 19
	Constructing the Parsing DFA (2)
	The DFA Transitions
	LR(1) DFA Construction Example
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Q: Movie Music (420 / 842)
	Slide 37
	Slide 38
	Slide 39
	LR Parsing Tables. Notes
	Slide 41
	Shift/Reduce Conflicts
	Slide 43
	More Shift/Reduce Conflicts
	Slide 45
	Using Precedence to Solve S/R Conflicts
	Slide 47
	Using Precedence to Solve S/R Conflicts
	Reduce/Reduce Conflicts
	Slide 50
	More on Reduce/Reduce Conflicts
	Can’s someone learn this for me?
	Using Parser Generators
	Slide 54
	LR(1) Parsing Tables are Big
	The Core of a Set of LR Items
	LALR States
	LALR(1) DFA
	Example LALR(1) to LR(1)
	The LALR Parser Can Have Conflicts
	LALR vs. LR Parsing
	A Hierarchy of Grammar Classes
	Notes on Parsing
	Take a bow, you survived!
	Supplement to LR Parsing
	Strange Reduce/Reduce Conflicts
	Slide 67
	A Few LR(1) States
	What Happened?
	A Few LR(1) States After Fix
	Homework

