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Extra Credit Question

• Given this grammar G:
– E  E + T
– E  T
– T  T * int
– T  int
– T  ( E )

• Is the string int * (int + int) in L(G)? 
– Give a derivation or prove that it is not.
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Revenge of Theory

• How do we tell if DFA P is equal to DFA Q?
– We can do: “is DFA P empty?”

• How?

– We can do: “P := not Q” 
• How?

– We can do: “P := Q intersect R” 
• How?

– So do: “is P intersect not Q empty?”

• Does this work for CFG X and CFG Y?
• Can we tell if s is in CFG X? 
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         Outline
• Recursive Descent Parsing

• Left Recursion

• LL(1) Parsing
– LL(1) Parsing Tables
– LP(1) Parsing Algorithm

• Constructing LL(1) Parsing Tables
– First, Follow
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In One Slide

• An LL(1) parser reads tokens from left to 
right and constructs a top-down leftmost 
derivation. LL(1) parsing is a special case of 
recursive descent parsing in which you can 
predict which single production to use from 
one token of lookahead. LL(1) parsing is fast 
and easy, but it does not work if the 
grammar is ambiguous, left-recursive, or not 
left-factored (i.e., it does not work for most 
programming languages). 
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Intro to Top-Down Parsing

• Terminals are seen in order 
of appearance in the token 
stream: 

t1  t2  t3  t4  t5

The parse tree is 
constructed
– From the top
– From left to right

A

t1 B

C

t2

D

t3

t4

t4
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Recursive Descent Parsing

• We’ll try recursive descent parsing first
– “Try all productions exhaustively, backtrack” 

• Consider the grammar
      E  T + E  |  T

      T  ( E )  |  int   |  int * T 

• Token stream is:   int * int
• Start with top-level non-terminal E

• Try the rules for E in order
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Recursive Descent Example

• Try E0  T1 + E2 

• Then try a rule for T1  ( E3 )
– But ( does not match input token int

• Try T1  int . Token matches. 

– But + after T1 does not match input token *

• Try T1  int * T2

– This will match but + after T1 will be unmatched

• Have exhausted the choices for T1

– Backtrack to choice for E0

E  T + E  |  T
T  ( E )  |  int   |  int * T 
Input = int * int
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Recursive Descent Example (2)

• Try E0  T1

• Follow same steps as before for T1

– And succeed with T1  int * T2 and T2  int

– With the following parse tree
E0

T1

int * T2

int

E  T + E  |  T
T  ( E )  |  int   |  int * T 
Input = int * int
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Recursive Descent Parsing

• Parsing: given a string of tokens t1 t2 ... tn, 
find its parse tree

• Recursive descent parsing: Try all the 
productions exhaustively
– At a given moment the fringe of the parse tree 

is: t1 t2 … tk A …

– Try all the productions for A: if A ! BC is a 
production, the new fringe is t1 t2 … tk B C … 

– Backtrack when the fringe doesn’t match the 
string  

– Stop when there are no more non-terminals
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When Recursive Descent 
Does Not Work

• Consider a production S  S a:
– In the process of parsing S we try the above rule
– What goes wrong?

• A left-recursive grammar has 
S + S   for some 

Recursive descent does not work in such cases
– It goes into an 1 loop
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What's Wrong With That Picture?
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Elimination of Left Recursion

• Consider the left-recursive grammar
S  S  | 

• S generates all strings starting with a  and 
followed by a number of 

• Can rewrite using right-recursion
                 S   T

                 T   T | 
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Example of
Eliminating Left Recursion

• Consider the grammar
S ! 1 | S 0     

  (  = 1 and  = 0 )

It can be rewritten as
  S ! 1 T

     T ! 0 T | 
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More Left Recursion Elimination

• In general
S  S 1 | … | S n | 1 | … | m

• All strings derived from S start with one of 
1,…,m and continue with several instances 
of 1,…,n 

• Rewrite as
             S  1 T | … | m T

             T  1 T | … | n T |  
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General Left Recursion

• The grammar 
S  A  | 
A  S 

 is also left-recursive because

S + S  
• This left-recursion can also be eliminated
• See book, Section 2.3
• Detecting and eliminating left recursion are 

popular test questions



#17

Summary of Recursive Descent
• Simple and general parsing strategy

– Left-recursion must be eliminated first
– … but that can be done automatically

• Unpopular because of backtracking
– Thought to be too inefficient (repetition)

• We can avoid backtracking
– Sometimes ...
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Predictive Parsers

• Like recursive descent but parser can 
“predict” which production to use
– By looking at the next few tokens
– No backtracking 

• Predictive parsers accept LL(k) grammars
– First L means “left-to-right” scan of input
– Second L means “leftmost derivation”
– The k means “predict based on k tokens of 

lookahead”

• In practice, LL(1) is used
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Sometimes Things Are Perfect

• The “.ml-lex” format you emit in PA2 
• Will be the input for PA3

– actually the reference “.ml-lex” will be used

• It can be “parsed” with no lookahead 
– You always know just what to do next

• Ditto with the “.ml-ast” output of PA3
• Just write a few mutually-recursive functions
• They read in the input, one line at a time
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LL(1)
• In recursive descent, for each non-terminal 

and input token there may be a choice of 
which production to use

• LL(1) means that for each non-terminal and 
token there is only one production that could 
lead to success

• Can be specified as a 2D table
– One dimension for current non-terminal to 

expand
– One dimension for next token
– Each table entry contains one production
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Predictive Parsing 
and Left Factoring
• Recall the grammar

   E  T + E | T
   T  int  | int * T | ( E )

• Impossible to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use 
for predictive parsing



#22

Left-Factoring Example

• Recall the grammar
      E  T + E | T

      T  int  | int * T | ( E )

• Factor out common prefixes of productions

     E  T X
     X  + E |  
     T  ( E ) | int Y
     Y  * T |  
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Introducing: Parse Tables
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LL(1) Parsing Table Example
• Left-factored grammar

E  T X                               X  + E |  
T  ( E ) | int Y                   Y  * T |  

• The LL(1) parsing table ($ is a special end 
marker):

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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LL(1) Parsing Table 
Example Analysis

• Consider the [E, int] entry
– “When current non-terminal is E and next input 

is int, use production E   T X”
– This production can generate an int in the first 

position

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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LL(1) Parsing Table 
Example Analysis

• Consider the [Y,+] entry
– “When current non-terminal is Y and current 

token is +, get rid of Y”
– We’ll see later why this is so

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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LL(1) Parsing Tables: Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with * 

from non-terminal E”

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Using Parsing Tables

• Method similar to recursive descent, except
– For each non-terminal S
– We look at the next token a
– And choose the production shown at [S,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input  
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LL(1) Parsing Algorithm

initialize stack = <S $> 
next = (pointer to tokens)

repeat
   match stack with

|  <X, rest>: if T[X,*next] = Y1…Yn

then stack  <Y1… Yn rest>
else error ()   

   |  <t, rest>: if t == *next ++ 
then stack  <rest>
else error ()

until stack == < >
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Stack Input       Action       
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int



#32

Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ 
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ 
X $ $ 
 

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Stack Input       Action       
E $ int * int $   T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ 
X $ $ 
$ $ ACCEPT

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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LL(1) Languages
• LL(1) languages can be LL(1) parsed  

– A language Q is LL(1) if there exists an LL(1) 
table such the LL(1) parsing algorithm using that 
table accepts exactly the strings in Q

• No table entry can be multiply defined
• Once we have the table

– The parsing algorithm is simple and fast
– No backtracking is necessary

• Want to generate parsing tables from CFG!



Q:  Movies  (263 / 842) 

• This 1982 Star Trek film features 
Spock nerve-pinching McCoy, Kirstie 
Alley "losing" the Kobayashi Maru , 
and Chekov being mind-controlled 
by a slug-like alien. Ricardo 
Montalban is "is intelligent, but not 
experienced. His pattern indicates 
two-dimensional thinking."  



Q:  Music  (238 / 842) 
• For two of the following four lines from the 

1976 Eagles song Hotel California, give 
enough words to complete the rhyme. 
–  So I called up the captain / "please bring me my 

wine" 
–  Mirrors on the ceiling / pink champagne on ice 
–  And in the master's chambers / they gathered 

for the feast 
–  We are programmed to receive / you can 

checkout any time you like,  



Q:  Books  (727 / 842) 

•Name 5 of the 9 major 
characters in A. A. Milne's 1926 
books about a "bear of very 
little brain" who composes 
poetry and eats honey.  
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Top-Down Parsing. Review
• Top-down parsing expands a parse tree from 

the start symbol to the leaves
– Always expand the leftmost non-terminal

E

T E
+

int   *    int  +   int
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Top-Down Parsing. Review
• Top-down parsing expands a parse tree from 

the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

T E
+

int   *    int  +   int

• The leaves at any point 
form a string A
–   contains only terminals
– The input string is b
– The prefix  matches
– The next token is b



#47

Top-Down Parsing. Review
• Top-down parsing expands a parse tree from 

the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int   *    int  +   int

• The leaves at any point 
form a string A
–   contains only terminals
– The input string is b
– The prefix  matches
– The next token is b
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Top-Down Parsing. Review
• Top-down parsing expands a parse tree from 

the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int

int   *    int  +   int

• The leaves at any point 
form a string A
–   contains only terminals
– The input string is b
– The prefix  matches
– The next token is b
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Constructing 
Predictive Parsing Tables

• Consider the state S !* A
– With b the next token
– Trying to match b

There are two possibilities:
•  b belongs to an expansion of A

• Any A !  can be used if b can start a string 
derived from 

     In this case we say that b 2 First()

Or…
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Constructing 
Predictive Parsing Tables

•  b does not belong to an expansion of A
– The expansion of A is empty and b belongs to an 

expansion of (e.g., b)
– Means that b can appear after A in a derivation 

of the form S !* Ab 

– We say that b 2 Follow(A) in this case

– What productions can we use in this case?

• Any A !  can be used if  can expand to 
• We say that  2 First(A) in this case
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Computing First Sets

Definition  First(X) = { b | X * b}  { | X * }
• First(b) = { b }

• For all productions X ! A1 … An

• Add First(A1) – {} to First(X). Stop if    First(A1) 

• Add First(A2) – {} to First(X). Stop if    First(A2)

• …

• Add First(An) – {} to First(X). Stop if    First(An)

• Add  to First(X)
      (ignore Ai if it is X)
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Example First Set Computation

• Recall the grammar 
    E  T X                      X  + E |  
    T  ( E ) | int Y         Y  * T | 

• First sets
       First( ( ) = { ( } First( T ) = {int, ( }
       First( ) ) = { ) } First( E ) = {int, ( }

       First( int) = { int } First( X ) = {+,  }
       First( + ) = { + } First( Y ) = {*,  }
       First( * ) = { * }
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Computing Follow Sets

Definition      Follow(X) = { b | S *  X b  }
• Compute the First sets for all non-terminals first
• Add $ to Follow(S) (if S is the start non-terminal)

• For all productions Y ! … X A1 … An

• Add First(A1) – {} to Follow(X). Stop if    First(A1) 

• Add First(A2) – {} to Follow(X). Stop if    First(A2)

• …

• Add First(An) – {} to Follow(X). Stop if    First(An)

• Add Follow(Y) to Follow(X)
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Example Follow Set Computation

• Recall the grammar 
    E  T X X  + E |  
    T  ( E ) | int Y Y  * T | 

• Follow sets
    Follow( + ) = { int, ( } Follow( * ) = { int, ( } 
    Follow( ( ) = { int, ( } Follow( E ) = {), $} 
    Follow( X ) = {$, ) } Follow( T ) = {+, ) , $}
    Follow( ) ) = {+, ) , $} Follow( Y ) = {+, ) , $}
    Follow( int) = {*, +, ) , $}
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Constructing LL(1) Parsing Tables

• Here is how to construct a parsing table T for 
context-free grammar G

• For each production  A   in G do:
– For each terminal b  First() do

•T[A, b] =  

– If  ! * , for each b  Follow(A) do

•T[A, b] = 
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LL(1) Table Construction Example
• Recall the grammar 

    E  T X       X  + E |  
    T  ( E ) | int Y  Y  * T | 

• Where in the row of Y do we put Y ! * T ?
– In the columns of First( *T ) = { * }

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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LL(1) Table Construction Example
• Recall the grammar 

    E  T X       X  + E |  
    T  ( E ) | int Y  Y  * T | 

• Where in the row of Y we put Y ! ?
– In the columns of Follow(Y) = { $, +, ) }

( E )int YT

* T Y

+ EX

T XT XE

$)(+*int
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Avoid Multiple Definitions!
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Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not 
LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are 
not LL(1) (e.g., Java, Ruby, C++, OCaml, Cool, Perl, ...)

• There are tools that build LL(1) tables
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Simple Parsing Strategies

• Recursive Descent Parsing
– But backtracking is too annoying, etc. 

• Predictive Parsing, aka. LL(k)
– Predict production from k tokens of lookahead
– Build LL(1) table
– Parsing using the table is fast and easy
– But many grammars are not LL(1) (or even LL(k))

• Next: a more powerful parsing strategy for 
grammars that are not LL(1)
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Homework
• WA1 (written homework) due

– Turn in to drop-box.

• PA2 (Lexer) due
– You may work in pairs.

• Keep up with the reading ...


	Top-Down Parsing
	Outline
	Slide 3
	Slide 4
	In One Slide
	Intro to Top-Down Parsing
	Recursive Descent Parsing
	Recursive Descent Example
	Recursive Descent Example (2)
	Slide 10
	When Recursive Descent  Does Not Work
	Slide 12
	Elimination of Left Recursion
	Example of Eliminating Left Recursion
	More Left Recursion Elimination
	General Left Recursion
	Summary of Recursive Descent
	Predictive Parsers
	Sometimes Things Are Perfect
	LL(1)
	Predictive Parsing  and Left Factoring
	Left-Factoring Example
	Slide 23
	LL(1) Parsing Table Example
	LL(1) Parsing Table  Example Analysis
	Slide 26
	LL(1) Parsing Tables: Errors
	Using Parsing Tables
	LL(1) Parsing Algorithm
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	LL(1) Languages
	Q:  Movies  (263 / 842) 
	Q:  Music  (238 / 842) 
	Q:  Books  (727 / 842) 
	Top-Down Parsing. Review
	Slide 46
	Slide 47
	Slide 48
	Constructing  Predictive Parsing Tables
	Slide 50
	Computing First Sets
	Example First Set Computation
	Computing Follow Sets
	Example Follow Set Computation
	Constructing LL(1) Parsing Tables
	LL(1) Table Construction Example
	Slide 57
	Avoid Multiple Definitions!
	Notes on LL(1) Parsing Tables
	Simple Parsing Strategies
	Homework

