
#1

Intro To ParsingIntro To Parsing

Step By StepStep By Step

#2

Self-Test Answers
• Are practical parsers and scanners based on deterministic or

non-deterministic automata?
– Deterministic
– Half credit: “they are equivalent” w/o “convert to DFA”

• How can regular expressions be used to specify nested
constructs?
– They cannot. (Scott Book 2.1.2, second sentence)

– Nested parentheses (n)n are the canonical example.

• How is a two-dimensional transition table used in table-
driven scanning?
– new_state = table[old_state][new_character]

#3

Administrivia

• Number of students submitting PA-X to a PA-Y
area: 5 / 39 = 13%
– This is a 4000-level class.
– (We could turn off submissions after the due date:

this yields a zero-tolerance late policy.)
– (We could turn off submissions before the due

date: this means students cannot work ahead.)

• PA1 average: 43.8 / 50 = 88%
– Excellent work, class!
– Real time grade-checking demo.

#4

Cunning Plan

• Formal Languages
– Regular Languages Revisited

• Parser Overview
• Context-Free Grammars (CFGs)
• Derivations
• Ambiguity

#5

One-Slide Summary

• A parser takes a sequence of tokens as
input. If the input is valid, it produces
a parse tree (or derivation).

• Context-free grammars are a notation
for specifying formal languages. They
contain terminals, non-terminals and
productions (aka rewrite rules).

#6

Languages and Automata

• Formal languages are very important in CS
– Especially in programming languages

• Regular languages
– The weakest formal languages widely used
– Many applications

• We will also study context-free languages
– A “stronger” type of formal language

#7

Limitations of Regular Languages

• Intuition: A finite automaton that runs long
enough must repeat states
– Pigeonhole Principle: imagine 20 states and 300

input characters

• A finite automaton can’t remember how
often it has visited a particular state
– Only enough to store in which state it is in
– Cannot count, except up to a finite limit

• Language of balanced parentheses is not
regular: { (i)i | i ¸ 0}
– http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

#8

The Functionality of the Parser

• Input: sequence of tokens from lexer
– e.g., the .cl-lex files you make in PA2

• Output: parse tree of the program
– Also called an abstract syntax tree

• Output: error if the input is not valid
– e.g., “parse error on line 3”

#9

Example

• Cool program text
if x = y then 1 else 2 fi

• Parser input (tokens)
IF ID = ID THEN INT ELSE INT FI

• Parser output (tree)
IF-THEN-ELSE

=

ID ID

INT

INT

#11

The Role of the Parser

• Not all sequences of tokens are programs
– then x * / + 3 while x ; y z then

• The parser must distinguish between valid
and invalid sequences of tokens

• We need
– A language or formalism to describe valid

sequences of tokens
– A method (an algorithm) for distinguishing valid

from invalid sequences of tokens

#12

Programming Language Structure
• Programming languages have recursive structure
• Consider the language of arithmetic expressions

with integers, +, *, and ()
• An expression is either:

– an integer
– an expression followed by “+” followed by

expression
– an expression followed by “*” followed by

expression
– a ‘(‘ followed by an expression followed by ‘)’

• int , int + int , (int + int) * int are expressions

#13

Notation for
Programming Languages

• An alternative notation:
 E ! int
 E ! E + E
 E ! E * E
 E ! (E)

• We can view these rules as rewrite rules
– We start with E and replace occurrences of E

with some right-hand side

• E ! E * E ! (E) * E ! (E + E) * E
 ! ... ! (int + int) * int

#14

Observation
• All arithmetic expressions can be obtained

by a sequence of replacements
• Any sequence of replacements forms a valid

arithmetic expression
• This means that we cannot obtain

(int))
by any sequence of replacements. Why?

• This notation is a context-free grammar

#15

Context Free Grammars
• A context-free grammar consists of

– A set of non-terminals N
• Written in uppercase in these notes

– A set of terminals T
• Lowercase or punctuation in these notes

– A start symbol S (a non-terminal)
– A set of productions (rewrite rules)

• Assuming E 2 N
 E !  , or
 E ! Y1 Y2 ... Yn where Yi µ N [T

#16

Examples of CFGs

Simple arithmetic expressions:
 E ! int
 E ! E + E
 E ! E * E
 E ! (E)
– One non-terminal: E
– Several terminals: int + * ()

• Called terminals because they are never replaced

– By convention the non-terminal for the first
production is the start symbol

#17

The Language of a CFG

Read productions as replacement rules:

 X ! Y1 ... Yn

Means X can be replaced by Y1 ... Yn

X ! 
Means X can be erased or eaten
(replaced with empty string)

#18

Key Idea

To construct a valid sequence of terminals:
● Begin with a string consisting of the start
symbol “S”

● Replace any non-terminal X in the string
by a right-hand side of some production

X ! Y1 … Yn
● Continue replacing until there are only
terminals in the string

#19

The Language of a CFG: !

More formally, write

X1 … Xi-1 Xi Xi+1… Xn

!
X1 … Xi-1 Y1 … Ym Xi+1 … Xn

if there is a production
Xi ! Y1 … Ym

#20

The Language of a CFG: ! *

Write
 X1 … Xn ! * Y1 … Ym

if
 X1 … Xn ! … ! … ! Y1 … Ym

in 0 or more steps.

#21

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

L(G) = { a1 … an | S ! * a1 … an and

 every ai is a terminal }

L(G) is a set of strings over the alphabet of
terminals.

#22

CFG Language Examples

• S ! 0 also written as S ! 0 | 1
 S ! 1

 Generates the language { “0”, “1” }
• What about S ! 1 A
 A ! 0 | 1

• What about S ! 1 A
 A ! 0 | 1 A

• What about S !  | (S)

Pencil and
paper corner!

#23

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id 

id id + id

(id) id id

(id) id id (id)


 

#24

Cool Example

A fragment of COOL:

EXPR if EXPR then EXPR else EXPR fi

| while EXPR loop EXPR pool

| id



#25

Cool Example (Cont.)

Some elements of the language

id

if id then id else id fi

while id loop id pool

if while id loop id pool then id else id

if if id then id else id fi then id else id fi

#26

Notes

The idea of a CFG is a big step. But:

• Membership in a language is “yes” or “no”
– we also need parse tree of the input

• We must handle errors gracefully

• Need an implementation of CFGs
– bison, yacc, ocamlyacc, ply, etc.

#27

More Notes

• Form of the grammar is important
– Many grammars generate the same language

• Give me an example.

– Automatic tools are sensitive to the grammar

– Note: Tools for regular languages (e.g., flex)
are also sensitive to the form of the regular
expression, but this is rarely a problem in
practice

#28

Derivations and Parse Trees

A derivation is a sequence of productions
 S ! … ! …

A derivation can be drawn as a tree
– Start symbol is the tree’s root

– For a production X ! Y1 … Yn add children
Y1, …, Yn to node X

#29

Derivation Example

• Grammar

• String

• We're going to build a derivation!

E E+E | E E | (E) | id 

id id + id

#30

Derivation Example (Cont.)

E

E+E

E E+E

id E + E

id id + E

id id + id


 
 
 
 

Thus E !* id * id + id

#31

Derivation in Detail (1)

E

E

#32

Derivation in Detail (2)

E

E+E

E

E E+

#33

Derivation in Detail (3)

E E

E

E+E

E + 


E

E

E E

E+

*

#34

Derivation in Detail (4)

E

E+E

E E+E

id E + E 


 

E

E

E E

E+

*

id

#35

Derivation in Detail (5)

E

E+E

E E+E

id E +

id id +

E

E 


 
 

E

E

E E

E+

*

idid

#36

Derivation in Detail (6)

E

E+E

E E+E

id E + E

id id + E

id id + id


 
 

 



E

E

E E

E+

id*

idid

#37

Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• A left-right traversal of the leaves is the
original input

• The parse tree shows the association of
operations, the input string does not!

Q: Radio (117 / 842)

• This NPR radio show features Tom
and Ray Magliozzi as Click and Clack
the Tappet Brothers. It includes
Boston accents, a weekly "Puzzler",
and is brought to you in part by
"Paul Murky of Murky Research" and
the law firm of "Dewey, Cheetham
and Howe".

Q: Games (548 / 842)

•In the card game Hearts,
how many points would you
accumulate if you ended up
with all of the Queens and
all of the Jacks? (Standard
scoring.)

Q: Music (158 / 842)

•Name the "shocking" 1976
line dance created by Ric
Silver and sung and
choreographed by Marcia
Griffiths.

Q: Games (582 / 842)

•Minty, Snuzzle, Butterscotch,
Bluebelle, Cotton Candy, and
Blossom were the first six
characters in the 1982 edition of
this series of Hasbro-produced
brushable hoofed dolls with
designs on their hips.

#42

Left-most and Right-most
Derivations

• The example here is a left-
most derivation
– At each step, replace the left-

most non-terminal

• There is an equivalent notion
of a right-most derivation
– Not shown on this slide.
– But coming up next!

E

E+E

E+id

E E + id

E id + id

id id + id



 
 
 

#43

Right-most Derivation in Detail
(1)

E

E

#44

Right-most Derivation in Detail
(2)

E

E+E

E

E E+

#45

Right-most Derivation in Detail
(3)

id

E

E+E

E+


E

E E+

id

#46

Right-most Derivation in Detail
(4)

E

E+E

E+id

E E + id







E

E

E E

E+

id*

#47

Right-most Derivation in Detail
(5)

E

E+E

E+id

E E

E

+ id

id + id










E

E

E E

E+

id*

id

#48

Right-most Derivation in Detail
(6)

E

E+E

E+id

E E + id

E id + id

id id + id 



 
 

E

E

E E

E+

id*

idid

#49

Derivations and Parse Trees

• Note that for each parse tree there is a
left-most and a right-most derivation

• The difference is the order in which
branches are added

• We will start with a parsing technique
that yields left-most derivations
– Later we'll move on to right-most derivations

#50

Summary of Derivations
• We are not just interested in whether
 s 2 L(G)

– We also need a parse tree for s

• A derivation defines a parse tree
– But one parse tree may have many

derivations

• Left-most and right-most derivations are
important in parser implementation

#51

Review

• A parser consumes a sequence of tokens s
and produces a parse tree

• Issues:
– How do we recognize that s 2 L(G) ?

– A parse tree of s describes how s  L(G)
– Ambiguity: more than one parse tree

(interpretation) for some string s
– Error: no parse tree for some string s
– How do we construct the parse tree?

#52

Ambiguity
• (Ambiguous) Grammar G

 E ! E + E | E * E | (E) | int

• Some strings in L(G)
 int + int + int

 int * int + int

#53

Ambiguity. Example

The string int + int + int has two parse trees

E

E

E E

E+

in
t

+

intint

E

E

E E

E+

in
t

+

intint

+ is left-associative

#54

Ambiguity. Example

The string int * int + int has two parse trees

E

E

E E

E*

in
t

+

intint

E

E

E E

E+

in
t

*

intint

* has higher precedence than +

#55

Ambiguity (Cont.)

• A grammar is ambiguous if it has more
than one parse tree for some string
– Equivalently, there is more than one right-

most or left-most derivation for some string

• Ambiguity is bad
– Leaves meaning of some programs ill-defined

• Ambiguity is common in programming
languages
– Arithmetic expressions
– IF-THEN-ELSE

#56

Dealing with Ambiguity

• There are several ways to handle ambiguity
• Most direct method is to rewrite the

grammar unambiguously
 E ! E + T | T

 T ! T * int | int | (E)

• Enforces precedence of * over +
• Enforces left-associativity of + and *

#57

Ambiguity. Example

The int * int + int has ony one parse tree
now E

E

E E

E*

in
t

+

intint

E

T

T int

T+

in
t

*

E

int

#58

Ambiguity: The Dangling Else

• Consider this new grammar
 E  if E then E
 | if E then E else E
 | OTHER

• This grammar is also ambiguous

#59

The Dangling Else: Example
• The string

if E1 then if E2 then E3 else E4

has two parse trees
if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form

#60

The Dangling Else: A Fix
• else matches the closest unmatched then
• We can describe this in the grammar (distinguish

between matched and unmatched “then”)
E  MIF /* all then are matched */

 | UIF /* some then are unmatched */

MIF  if E then MIF else MIF

 | OTHER

UIF  if E then E
 | if E then MIF else UIF

• Describes the same set of strings

#61

The Dangling Else: Example
Revisited

• The expression if E1 then if E2 then E3 else
E4 if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because
the then expression
is not a MIF

• A valid parse tree
(for a UIF)

#62

Ambiguity

• No general techniques for handling
ambiguity

• Impossible to convert automatically every
ambiguous grammar to an unambiguous
one

• Used with care, ambiguity can simplify the
grammar
– Sometimes allows more natural definitions
– So we need disambiguation mechanisms
– As shown next ...

#63

Precedence and Associativity
Declarations

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most tools allow precedence and
associativity declarations to
disambiguate grammars

• Examples …

#64

Associativity Declarations
• Consider the grammar E  E + E | int

– And the string: int + int + int
E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left-associativity declaration: %left +
 %left *

#65

Review

• We can specify language syntax using CFG
• A parser will answer whether s  L(G)
• … and will build a parse tree
• … and pass on to the rest of the compiler

• Next:
– How do we answer s  L(G) and build a parse

tree?

#66

Homework

• WA1 (written homework) due
– You must work alone.
– Write or print out your answers.
– Turn in before class or in drop-box (423 Rice).

• PA2 (Lexer) Due
– You may work in pairs.

	Lexical Analysis Finite Automata (Part 2 of 2)
	Slide 2
	Slide 3
	Summary
	Slide 5
	Languages and Automata
	Limitations of Regular Languages
	The Functionality of the Parser
	Example
	Comparison with Lexical Analysis
	The Role of the Parser
	Programming Language Structure
	Notation for Programming Languages
	Observation
	Context Free Grammars
	Examples of CFGs
	The Language of a CFG
	Key Idea
	The Language of a CFG (Cont.)
	Slide 20
	Slide 21
	Examples:
	Arithmetic Example
	Cool Example
	Cool Example (Cont.)
	Notes
	More Notes
	Derivations and Parse Trees
	Derivation Example
	Derivation Example (Cont.)
	Derivation in Detail (1)
	Derivation in Detail (2)
	Derivation in Detail (3)
	Derivation in Detail (4)
	Derivation in Detail (5)
	Derivation in Detail (6)
	Notes on Derivations
	Q: Radio (117 / 842)
	Q: Games (548 / 842)
	Q: Music (158 / 842)
	Q: Games (582 / 842)
	Left-most and Right-most Derivations
	Right-most Derivation in Detail (1)
	Right-most Derivation in Detail (2)
	Right-most Derivation in Detail (3)
	Right-most Derivation in Detail (4)
	Right-most Derivation in Detail (5)
	Right-most Derivation in Detail (6)
	Slide 49
	Summary of Derivations
	Review
	Ambiguity
	Ambiguity. Example
	Slide 54
	Ambiguity (Cont.)
	Dealing with Ambiguity
	Slide 57
	Ambiguity: The Dangling Else
	The Dangling Else: Example
	The Dangling Else: A Fix
	The Dangling Else: Example Revisited
	Slide 62
	Precedence and Associativity Declarations
	Associativity Declarations
	Slide 65
	Slide 66

