
#1

Programming Language Programming Language
Design and ImplementationDesign and Implementation

Wes Weimer
MW 3:30 – 4:45

OLS 120

#2

Cunning Plan
• Who Are We?

– Wes, Adam Brady

• Administrivia
• What Is This Class About?
• Brief History Lesson
• Understanding a Program in Stages

#3

Course Home Page

• google: virginia cs 4610
• http://www.cs.virginia.edu/~weimer/4610
• Lectures slides are available before class

– You should still take notes!

• Assignments are listed
– also grading breakdown, regrade policies, etc.

• Use the class Collab forum for all public
questions

#4

Course Options

• Three options are available:
– Take only CS 4610 (Programming Languages) for 3

credits
– Take CS 4610 (Progamming Languages) for 3

credits and also take CS 4501 (Compilers
Practium) for 2 credits

– Take neither

• CS 4501 Compilers Practicum
– Must attend CS 4610 PL lectures
– Has additional lectures, homeworks, tests

#5

Should I Take This Course?

• Beg for more mid-assignment checkpoints. Also, beg that
the optional two-credit class only be opened just before
the withdrawal deadline so you don't have to decide early
on before you understand what you've decided to do to
yourself. Finally, beg for mercy. :)

• Professor Weimer is very engaging in his lectures, which kept
me awake and interested even through the most boring or
difficult sections of the class. And some of the class
material WAS boring. And it was most DEFINITELY difficult.
While the assignments were VERY time-consuming and
difficult (sometimes ridiculously so), I felt great
accomplishment after completing them, and I feel that I may
have learned more from this class than any I have ever taken
before.

#6

Should I Take This Course?

• Easily the most time-consuming class that I have taken at
UVA. There were times that I got very little sleep at all. In
addition, the assignments require a deep understanding of
the material, in order to do well on them. Nevertheless, I
learned a lot from this class.

• On top of this, Professor Weimer is extremely knowledgeable
and teaches in such a way that even very difficult concepts
become much easier to grasp. This being said, do not take
Programming Languages, because you will put in over
9,000 hours into the class.

• The hardest class that I've taken at UVA. Although it's
worth 5 credits, the extra 2 credits are essentially
worthless, since all of the credit requirements are for
classes worth 3 credits each.

#7

Should I Take This Course?

• This course was the hardest course I have taken thus far,
but Professor Weimer made it very enjoyable. The amount of
work at times was a little overwhelming, but I definitely
learned a lot from it. Weimer was one of the best lecturers I
have had in the Engineering school and he truly wanted the
students to understand the material.

• This was a great course. A ridiculous amount of work but
that was known information from the first day of the course.
The instructor was enthusiastic and taught very well.

• I don't know what you should do, but this class had ruined
my life. I have spent more time on this class than the rest
of my classes combined this semester. However, knowing
what I know now I would take this class again!

#8

Compilers Practicum Sections

• There will be one sixty-minute Compilers
Section each week
– Hosted by Adam Brady, the TA

• We will vote for times that everyone in
Compilers can make
– If you cannot make the Section, you must drop

Compilers. Sorry.
– Notes posted on web.

• Next Week: pass around time signup sheet

#9

#10

#11

Course Structure
• Course has theoretical and practical aspects

– Best of both worlds!
• Need both in programming languages!
• Reading = both

– Many external and optional readings
• Written assignments = theory

– Class hand-in, right before lecture, 0-5 points
• Programming assignments = practice

– Electronic hand-in
• Strict deadlines

– Ask me why ...

#12

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We often use plagiarism detection software

 PLAGIARISM

#13

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We often use plagiarism detection software

#14

PL Course Project

• A big project: an Interpreter!
• … in four easy parts
• Start early!

#15

PL Course Goals

• At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you
will understand the theory and practice of
lexing, parsing, semantic analysis, and code
interpretation. You will also have gained
practical experience programming in multiple
different languages.

#16

Compilers Project & Course Goals

• The final project for the Compilers Practicum is
a working optimizing compiler (code generator)
that produces either bytecode or x86-64
assembly.

• At the end of this course, you will be acquainted
with the fundamental concepts in code
generation and optimization. In particular, you
will understand the theory and practice of code
generation, stack layouts, calling conventions,
dynamic dispatch, control flow graphs, and
dataflow analyses.

#17

How are Languages Implemented?

• Two major strategies:
– Interpreters (take source code and run it)
– Compilers (translate source code, run result)
– Distinctions blurring (e.g., just-in-time compiler)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

#18

Don’t We Already Have Compilers?

#19

Dismal View Of Prog Languages

 C++

Java
(or C#)

#20

(Short) History of High-Level
Languages

• 1953 IBM develops the 701 “Defense Calculator”
– 1952, US formally ends occupation of Japan
– 1954, Brown v. Board of Education of Topeka, Kansas

• All programming done in assembly

• Problem: Software costs exceeded hardware
costs!

• John Backus: “Speedcoding”
– An interpreter
– Ran 10-20 times slower than

hand-written assembly

#21

FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly
– Many thought this impossible

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically

– (2 weeks ! 2 hours)

#22

FORTRAN I
• The first compiler

– Produced code almost as good as hand-written
– Huge impact on computer science

• Led to an enormous body of theoretical work
• Modern compilers keep the outlines of

FORTRAN I

#23

Real-World Languages

• This Indo-European language is associated
with South Asian Muslims and is the lingua
franca of Pakistan. It developed from Persian,
Arabic and Turkic influences over about 900
years. Poetry in this language is particularly
famed, as is a favorite of US President Barack
Obama.

• Example: السلم علیکم

#24

Interpreters Compilers

Lexical Analysis
Parsing
Semantic Analysis
Optimization (optional)
Interpret The Program

 The first 3, at least, can be understood by
analogy to how humans comprehend English.

Lexical Analysis
Parsing
Semantic Analysis
Optimization (optional)
Generate Machine Code
Run that Machine Code

#25

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

 This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ ” (word separator)
– Period “.” (end of sentence symbol)

#26

More Lexical Analysis
• Lexical analysis is not trivial. Consider:

How d’you break “this” up?
• Plus, programming languages are typically

more cryptic than English:
*p->f += -.12345e-6

#27

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or tokens

if x == y then z = 1; else z = 2;

• Broken up:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

#28

Parsing

• Once words are understood, the next step
is to understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree
– Often annotated with

additional information

#29

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

#30

Parsing Programs

• Parsing program expressions is the same
• Consider:

if x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

#31

Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies: reject bad programs early!

• Some do more analysis to improve the
performance of the program

#33

Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Sydney = 3;
{

int Sydney = 4;
cout << Sydney;

}
} Scoping or

aliasing
problem.

#35

Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• CS 4501 has an Optimization assignment

#36

Code Generation

• Produces assembly code (usually)
– which is then assembled into executables by an

assembler

• A translation into another language
– Analogous to human translation

• CS 4501: produce machine code
– Either “Java Bytecode” or x86-64 assembly

#37

Issues
• Compiling and interpreting are

almost this simple, but there
are many pitfalls.

• Example: How are bad programs handled?
• Language design has big impact on compiler

– Determines what is easy and hard to compile
– Course theme: trade-offs in language design

#38

Languages Today

• The overall structure of almost every
compiler & interpreter follows our outline

• The proportions have changed since
FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

– ... but still matter, ramble ramble ...

#39

Trends in Languages

• Optimization for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)
– Small devices where speed = longer battery life

• Ideas we’ll discuss are used for improving code
reliability:
– memory safety
– detecting concurrency errors (data races)
– type safety
– automatic memory management
– …

#40

Why Study Prog. Languages?

• Increase capacity of expression
– See what is possible

• Improve understanding of program behavior
– Know how things work “under the hood”

• Increase ability to learn new languages
• Learn to build a large and reliable system
• See many basic CS concepts at work

#41

What Will You Do In This Class?

• Reading (textbook, outside sources)
• Learn about different kinds of languages

– Imperative vs. Functional vs. Object-Oriented
– Static typing vs. Dynamic typing
– etc.

• Learn to program in different languages
– Python, Ruby, ML, “Cool” (= micro-Java)

• Complete homework assignments
• Write an interpreter!

#42

What Is This?

#43

The Rosetta Stone
• The first programming assignment

involves writing the same simple (50-
75 line) program in:
– Ruby, Python, OCaml, Cool and C

• PA1c, due Wed Jan 25, requires you to write
the program in two languages (you pick)

• PA1, due one week later, requires all five
Long, long be my heart with such memories fill'd!
Like the vase in which roses have once been distill'd:
You may break, you may shatter the vase if you will,
But the scent of the roses will hang round it still.

- Thomas Moore (Irish poet, 1779-1852)

#44

Live Submission Demo

• Let's visit the automated submission website

#45

Start The Homework Now

• It may help you decide whether to stay in this
course

#46

Homework
• Scott Book reading (for Monday)
• Get started on PA1c (due in 7 days)

Questions?

	Programming Language Design and Implementation
	Cunning Plan
	Course Home Page
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Discussion Sections
	Slide 9
	Slide 10
	Course Structure
	Academic Honesty
	Slide 13
	The Course Project
	Slide 15
	Slide 16
	How are Languages Implemented?
	Don’t We Already Have Compilers?
	Dismal View Of Prog Languages
	(Short) History of High-Level Languages
	FORTRAN I
	Slide 22
	Slide 23
	The Structure of an Interpreter
	Lexical Analysis
	More Lexical Analysis
	And More Lexical Analysis
	Parsing
	Diagramming a Sentence
	Parsing Programs
	Semantic Analysis
	Semantic Analysis in English
	Semantic Analysis in Programming
	More Semantic Analysis
	Optimization
	Code Generation
	Issues
	Languages Today
	Trends in Languages
	Why Study Prog. Languages?
	What Will You Do In This Class?
	What Is This?
	The Rosetta Stone
	Slide 44
	Slide 45
	Homework

