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PL Fencing Day

Fri Apr 27 (unless it rains) @ 3:30pm
Darden Courtyard; no experience necessary
| provide gear
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CS 4610 Final Exam

| will prepare a take-home written final.

e You can do either one of these:

- You turn in a written final. | grade it, and that
grade counts as your final exam grade.

- You do not turn in a written final. The highest of
your Miderm1, Miderm2, PS4, or PS5 is re-used as
your final exam grade.

e Not available:

- Some obscure combination of the above options
that magically favors you in all cases and has no

downsides ever. (Recall: the purpose of grading.)
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Theory?

Tetris is Hard, Even to Approximate

Erik D. Demaine”

The game of Tetris. In the popular computer
game of Tetris, we are given an initial m-by-n game-

h is a partially filled rectangular grid. The
is given, one by one, a sequence of p tetromi-
see Figure 1. Each piece begins in the middle

of the top row of

the gameboard, and — J |_
. . e

o

falls downward at a
constant speed.  As
it falls, the player
can rotate the piece
and slide it horizon-
tally. 1f, when the
piece comes to rest,
all gridsquares in an
entire row i of the gameboard are filled, row I is
cleared: all rows above h fall one row lower, and the
top row of the gamehoard is replaced by an entirely
unfilled row. Assoon as a piece is fixed in place, the
next piece appears at the top of the gameboard. Typ-

ally a one-piece lookahead is provided: when the

=

r
The fefrominoes Sq
LG [“lefi qun™}, RG

Figure 1:

is blocked by filled gridsquares from entirely entes
the gameboard. The playver’s objective is to maxi
mize his or her score (w increases as pieces are
placed and as rows are cleared).

Susan Hohenberger®

Offline Tetris.

We

introduce

the

natural

full-

formation (offline)

version of Tetris:

there is a

David Liben-Nowell®

s0 that the sum of the numbers in each set is ex-
actly T, (3-ParTiTiON is NP-complete even wh
the a;s and T are gi in unary [2].) The
gameboard is showr Figure 2. The piece sequence
consists of the following sequence of pieces for each
i: one initiator {I,LG,5q), then a; repetitions of the
filler {LG,LS,LG,LG,Sq), and then one terminator
{5q,5q). After the pieces associated with a;
we have the following additional pieces:
I’s, one RG, and 37/2 + 5 successive I
loss of generality, we force T° to be even by doubling
all input numbers.) The last three columns of the
neboard form a lock which prevents any rows from
being cleared using only the pieces corresponding to
[ TP .. 1 all buckets are filled exactly to the
same height, then the entire board can be cleared
using the last portion of our piece sequence.

The piece sequ is chose: ly so that all
pieces corresponding to each o; must be placed into
the same bucket. The bulk of our proof of correctness
is devoted to showing that, despite the decoupled na-
ture of a sequence of Tetris pieces, the only way to
possibly ¢ i :
single bucket all pieces associated with eac
We can then prove that there
for {a1,..., a3} if and only if the gameboard
entirely red using the given piece sequence.
NP-completeness of Tetris follows.

nt:

ger.
a legal 3-partitior

deterministic, finite piece sequence, and the player
knows the identity and order of all pieces that will
be presented. We study the offline version because
its hardness captures much of the difficulty of playing
Tetris; intu Iy, it is only easier to play Tetris with
complete knowledge of the future, so the diffi
playing the offline version suggests the difficult
playing the online version. It i also natural to let m
and n grow, s a relatively simple dynamic pro-
gram solves the case of m-n = O(1) in time poly(p).

NP-hardness of maximizing rows cleared. We
first show that maximizing the number of rows
cleared while playing the given sequence & NP-
complete. Our proof proceeds by a reduction from
3-Pamr N, in wh we are given a set § =
{a1,...,a35,} of integers and a bound 7, and asked
to partition § into s sets of three numbers each,

*Laboratory for Computer Science; Massachusetts Insti-
tute of Technology; AW Technology Square; Cambridge, MA
012139, USA. {edemaine,srhohen,dln}dtheory.les. mit edu.
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Game Theory

« Game Theory is a branch of applied math
used in the social sciences (econ), biology,
compsci, and philosophy. Game Theory
studies strategic situations in which one
agent's success depends on the choices of
other agents.

I SAD He YiDEo GAMES HoW WELL, TAKE
WIDEC GAMES! ARE EDUCATIONAL! THEY TEACH So? THAT “wiDEo
/
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Broad Applicability
Finding equilibria (Nash) - sets of strategies
where agents are unlikely to change behavior.

Econ: understand and predict the behavior of
firms, markets, auctions and consumers.

Animals: (Fisher) communication, gender
Ethics: normative, good and proper behavior

PolySci: fair division, public choice. Players are
voters, states, interest groups, politicians.

PL: model checking interfaces can be viewed as a
two-player game between the program and the
environment (e.g., Henzinger, ...)

#7



Game Properties

e Cooperative (binding contracts, coalitions) or
non-cooperative

« Symmetric (chess, checkers: changing
identities does not change strategies) or
asymmetric (Axis and Allies, Soulcalibur)

e Zero-sum (poker: your wins exactly equal my
losses) or non-zero-sum (prisoner's dilemma:
gain by me does not necessarily correspond to
a loss by you)

#8



Game Properties ||

e Simultaneous (rock-paper-scissors: we all
decide what to do before we see other
actions resolve) or sequential (your turn,
then my turn)

e Perfect information (chess, checkers, go:
everyone sees everything) or imperfect
information (poker, Catan: some hidden
state)

 Infinitely long (relates to set theory) or finite
(chess, checkers: add a “tie” condition)

#9



Game Properties |l

e Deterministic (chess, checkers, rock-paper-
scissors, tic-tac-toe: the “game board” is
deterministic, even if the players are not) vs
non-deterministic (Yahtzee, Monopoly, poker:
you roll dice or draw lots)

e More later ...

HERU

c BY+o start




Game Representation

 We will represent games as trees
- Tree of all possible game instances
e There is one node for every possible state of

the game (e.g., every game board
configuration)

- Initial Node: we start here
- Decision Node: | have many moves
- Terminal Node: who won? what's my score?

#11



Introducing: Tic-Toe

e Tic-Toe is like Tic-Tac-Toe, but on a 2x2
board where two-in-a-row wins (not
diagonal).

- X goes first
- Resolutions: X wins, tie , X loses

e Example game:

X . X O X O

> > > X wins!

- Later: Can O ever win?

- Later: Can O ever win if X is smart? »



Tic-Toe Trees

e Partial game tree for Tic-Toe

#13



Tic-Toe Trees

v

X0

X

Y

X.

O.
i

e More abstract'ly/mw

X -
X.

X

X.
.0

X0
X .

X0 X X X .
X O . O X
X0 X0
O X O X
Tie! Tie!

O Moves

Moves

X .
X O

X X
. 0O

X Wins o h‘oves X Wins o WOves X Wins X Wins
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More Definitions

e An instance of a game is a path through a
game tree starting at the initial node and
ending in a terminal node.

e« X's moves in a game instance P are the set of
edges along that path P taken from decision
nodes labeled “X moves”.

e A strategy for X is a function mapping
decision each node labeled “X moves” to a
single outgoing edge from that node.

#15



Still Going!

e A deterministic strategy for X, a deterministic
strategy for O, and a deterministic game lead
deterministically to a single game instance

- Example: if you always play tic-tac-toe by going in
the uppermost, leftmost available square, and |
always play it by going in the lowermost,

rightmost available square, every time we play
we'll have the same result.

« Now we can study various strategies and their
outcomes!

#16



Winning Strategies
A winning strategy for X on a game G is a
strategy S1 for X on G such that, for all

strategies S2 for O on G, the result of playing
G with $1 and 52 is a win for X.

e Does X have a winning strategy for Tic-Toe?
e Does O have a winning strategy for Tic-Toe?

e Fact: If the first player in a turn-based
deterministic game has a winning strategy,
the second player cannot have a winning
strategy.

- Why?

#17



Impartial Games

e« An impartial game has (1) allowable moves
that depend only on the position and not on
which player is currently moving, and (2)
symmetric win conditions (payoffs).

- Only difference between Player1 and Player2 is
that Player1 goes first.

e This is not the case for Chess: White cannot
move Black's pieces

- So | need to know which turn it is to categorize
the allowable moves.

e A game that is not impartial is partisan.

#18



Nim
« Nim is a two-player game in which players take
turns removing objects from distinct heaps.

- Non-cooperative, symmetric, sequential,
perfect information, finite, impartial

e One each turn, a player must remove at least
one object, and may remove any number of
objects provided they all come from the same
heap.

e |f you cannot take an object, you lose.

e Similar to Chinese game “Jianshizi” (“picking
stones”); European refs in 16™ century

#19



- AAA, BBBB, CCCCC

Example Nim
 Start with heaps of 3, 4 and 5 objects:

e Here's a game:

- AAA

> > > >

BBBB
BBBB
BBBB
BBB
BB
BB
BB

B

B

CCCCC
CCCCC
CcC

CcC

CcC

CC

C

C

| take 2 from A
You take 3 from C
| take 1 from B
You take 1 from B
| take all of A
You take 1 from C
| take 1 from B
You take all of C

| take all of B

You lose! (you cannot go)
#20



Real-Life Nim Demo

| will now play Nim against audience
members.

e Starting Board: 3, 4, 7
- AAA, BBBB, CCCCCCC
e You go first ...

S

S
e i i o e e e e
- T
£ s el e e e e 2

i
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The Rats of NIM

e How did | win every time?
- Did | win every time? If not, pick on me
mercilessly.

e Nim can be mathematically solved for any
number of initial heaps and objects.

e There is an easy way to determine which
player will win and what winning moves are
available.

- Essentially, a way to evaluate a board and
determine its payoff / goodness / winning-ness.

#22



Analysis

e You lose on the empty board.
 Working backwards, you also lose on two
identical singleton heaps (A, B)

- You take one, | take the other, you're left with
the empty board.

e By induction, you lose on two identical heaps
of any size (A", B")

- You take x from heap A. | also take x from heap B,
reducing it to a smaller instance of “two identical
heaps”.

#23



Analysis Il

e On the other hand, you win on a board with a
singleton heap (C).

- You take C, leaving me with the empty board.
e You win with a single heap of any size (C").

 What if we add these insights together?
- (AA, BB) is a loss for the current player

- (C) is a win for the current player
- (AA, BB, C) is what?

#24



Analysis Il

e (AA, BB, C) is a win for the current player.

- You take C, leaving me with (AA, BB) - which is
just as bad as leaving me with the empty board.

« When you take a turn, it becomes my turn

- So leaving me with a board that would be a loss
for you, if it were your turn

- ... becomes a win for you!

e (AAA, BBB, C) - also a win for Player1.
e (AAAA, BBBB, CCCC) - also a win for Player1.

#25



Generalize

« We want a way of evaluating nim heaps to see
who is going to win (if you play optimally).

e Intuitively ...

e Two equal subparts cancel each other out
- (AA, BB) is the same as the empty board (, )

e Win plus Loss is Win
- (CC) is a win for me, (A,B) is a loss for me,
(A,B,CC) is a win for me.

« What do we know that's kind of like addition
but cancels out equal numbers?

#26



The Trick!

e Exclusive Or
- XOR, &, vector addition over GF(2), or nim-sum
o If the XOR of all of the heaps is 0, you lose!
- empty board = 0 = lose
- (AAA,BBB) = 3®3 =0 = lose
e Otherwise, goal is to leave opponent with a
board that XORs to zero

- (AAA,BBB,C) = 3@3®1 =1, so move to
« (AAA,BBB) or (AA,BBB,C) or (AAA,BB,C)

#27



Real-Life Nim Demo Il

| played Nim against audience members.
e Starting Board: 3, 4, 7
- AAA, BBBB, CCCCCCC

e The nim sum is 3@4e7 =0
- A loss for the first player!

e This time, I'll go first.
e You, the audience, must beat me. Muahaha!

It's what lets you recognize a mistake when you make it again.

#28



Hackenbush

e« Hackenbush is a two-player impartial game
played on any configuration of line segments
connected to one another by their endpoints
and to a ground.

e On your turn, you “cut” (erase) a line
segment of your choice. Line segments no
longer connected to the ground are erased.

e If you cannot cut anything (empty board) you
lose.

#29



Hackenbush Example

e Each i is a line segment. Ignore color.
e Let's play! I'll go first.

N

Ground

#30



Hackenbush Subsumes Nim

. Consider (AAA, BBB, C) = (3,3,1) in Nim

« Who wins this completely unrelated
Hackenbush game?

H

Ground

#31



A Thorny Problem

 What about that Hackenbush tree?
e What value (nim-sum) does it have? Who wins?

Ground

#32



A Simple Twig

e Consider a simpler tree ...
« What moves do you have?

Ground

#33



Twig Analysis

e Consider a simpler tree ...
« What moves do you have?

e
(empty)

Ground

#34



Maximum Excluded
e You can move to “27, “2” or “0”.

« The minimal excluded of (2,2,0) is 1
- mex(2,2,0) = 1 = value of that twig

Yes, this mex thing
came out of nowhere.
r (empty)

Ground

#35



Game Equivalence

 I've claimed that the twig has nim-sum 1

e How to prove that? When are games equal?

« We write G = G' when G is equivalent to G'.

e Lemma 1. Iff G=G' then for all H, G®H =
G'@H.

e Lemma 2. GG = 0.

e Lemma 3. G = G if and only if GG’ = 0.
- Restated: G = G'iff GG’ is a loss for Player 1.
- 1f G = G, then GaG = GG’ (by Lemma 1).
- Since G&G=0 (by Lemma 2), we have 0=GaG'.

#36



A Simple Twig

e S0 twig=1 if twig®1=0
e twig®1=0 means twig®1 is a first-player loss
- You go first; two trials against me to verify ...

I

twig one Ground

#37



Generalized Pruning
e Can replace any subtree above a single
branch point with the XOR of those branches
- Via similar game-equivalence argument

pruning

q
102=3

pruning

q
4o101=4

Ground

The whole tree has value “5”.

#38



Door Analysis

 What about cycles?
e What is the value (nim-sum) of this door?

_1I1

Ground

#39



Door Analysis

e Well, what moves can you take from here?

N\

11

Ground

#40



Door Analysis

e You can move to “0”, “2” or “2”.
- mex(2,2,0) = 1 (recall: minimal excluded)
- Value of door = 1

N\

11

Ground

#41



Fusion Principle

« We may replace any cycle with an equivalent
subgraph where all of the non-ground vertices
of that cycle are fused into one vertex and all
of the ground vertices of that cycle are fused
into another vertex.

Fusing Done
A |

Ground

#42



Fusion Principle

« We may replace any cycle with an equivalent
subgraph where all of the non-ground vertices
of that cycle are fused into one vertex and all
of the ground vertices of that cycle are fused
into another vertex.

Fusion Result

—

1

You can't stop in the middle!

Ground

#43



Cold Fusion

e Let's boil the house down to something
simple!

Fusion, Fusi /s
Ground

The whole house has value 1 1=0.

How would | check that?

#44



Hackenbush Example

e This board has value 5&0e¢1=4.
e You go first. Beat me. (Time permitting.)

Tree=5 House=0 Door=1 Ground

#45



Why Do We Care?

e ... about Nim and Hackenbush?

« Theorem (Sprague-Grundy, '35-'39). Every
impartial game is equivalent to a nim sum.

e Proof: How?

- Hint: what is the most important proof technique
in computer science?

#46



Why Do We Care?

e ... about Nim and Hackenbush?

« Theorem (Sprague-Grundy, '35-'39). Every
impartial game is equivalent to a nim sum.

e Proof: By structural induction on the set
(tree) representing the game.

- LetG={G,, G, ..., G }. G is the game resulting if
the current player takes move i.

- By IH, each G_is a nim sum, G = N..

_ Letm = mex(N1, NZ, ooy Nk). We'll show: G = m.

#47



Sprague-Grundy Proof

. Let G ={N, N, ..., NJ. Then G = G. Why?

- Player 1 makes a move iin G to G = N.. Then
Player 2 can make a move equivalent to N in G'.

So the resulting game is a first-player loss, so by
Lemma 3, G = G..

e To show G=m, we'll show G+m is a first-player
loss.

o We'll give an explicit strategy for the second
player in the equivalent G'+m.

#48



Sprague-Grundy Proof |

To Show: P2 Wins in G'+m

Suppose P1 moves in the m subpart to some option g with g<m.
But since m was the minimal excluded number, P2 can move in
G' to q as well.

Suppose instead P1 moves in the G subpart to the option N..
- If N. < m then P2 moves in the m subpart from m to N..

- If N. > m then P2, using the IH, moves to m in the G’ subpart
(which has been reduced to the smaller game N. by P1's
move). There must be such a move since N. is the mex of
options in N.. If m<N_were not a suboption, the mex would
be m!

Therefore, G'+m is a first-player loss. By Lemma 1, G+m is a
first-player loss. So G=m. QED.

#49



Old-School CS Work

e Explore a new formalism
e Define properties and categories
e Investigate a few popular instances

e Show that many interesting instances are in
fact in the same equivalence class

e ... and thus that your results about that
equivalence class have broad applicability.

e Today: all impartial games are just nim!

#50
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